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Recall: The road to skepticism

▶ We are concerned with a limited set of standard, generic, algorithms.
▶ What justification do we have for these standard learning algorithms?
▷ NFL: these algorithms must have specific biases.
▷ So, how do we justify these biases..?
▶ The world must have a structure that neatly matches these biases . . .
▷ E.g., Giraud-Carrier and Provost’s (2005) “weak assumption of machine

learning” that “the process that presents us with learning problems [. . . ]
induces a non-uniform probability distribution [over learning situations].”

▷ Analogous to Hume’s “principle of the uniformity of nature.”
▶ OK, but how to justify such an assumption..?
▶ So we’re stuck.
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The postulate of general induction-friendliness

▶ Let’s backtrack.
▷ We don’t want to have to defend some grand assumption that the world

is friendly to induction / to our machine learning algorithms.

▶ Okasha (2001, 2005): this is the weak point in Hume’s argument.
▷ Inductive inference does not rely on some universal uniformity assumption.
▶ Sober (1988, 2015): Hume commits a “quantifier-shift fallacy”.
▷ There is no universal assumption that every inductive inference requires;

rather, every inductive inference requires a specific “local” assumption.
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General inductive rules

▶ Okasha: rejecting general postulates/notions of induction-friendliness, we
must also reject the possibility of general rules for induction.

▷ This is also the core of Norton’s (2003, 2021) “material theory of
induction.”

▶ But in machine learning theory, we do study generic rules for
induction—generic learning algorithms.

▷ How to square this with the view that every inductive inference requires
particular, local, assumptions?

▶ Even if we use generic machine learning methods, they must in each
application still employ—and thus be provided with—local assumptions.
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The plan

1. Model-relative justification.
2. Statistical learning theory.
3. Application: Occam’s razor.
4. The “generalization puzzle”: the way forward?
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Data-only v. model-dependent

▶ The NFL theorems rely on a conception of learning algorithms as purely
data-driven, as data-only.

▶ NFL: There is no universal data-only learning algorithm.
▶ Every data-only learning algorithm must come with some restrictive

inductive bias.

▶ Given any such algorithm, we can expose its inductive bias, and question
its justification.



6/32

Data-only v. model-dependent

▶ But many standard learning algorithms are more naturally conceived of as
explicitly model-dependent.

▷ Such an algorithm does not only take input data, but on each application
also requires for input an inductive model.

▷ On each application, the inductive model represents the inductive bias.

▶ Crucially, model-dependent algorithms can be given a model-relative
justification.

▶ This is what learning theory, for many standard learning algorithms, gives
us.
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Example

▶ Empirical Risk Minimization is a function both of a training sample and
of a hypothesis class H, a set of classifiers.

▷ Given a training sample S and a model H, it returns a classifier that,
among the classifiers in H, minimizes the empirical error on S.

▶ The fundamental theorem of learning theory says that for any H (that is
sufficiently simple), ERM(H) will with arbitrarily high probability return a
classifier that has error arbitrarily close to that of the best classifier in H.

▷ In contrast, empirical risk maximization, for given H, returns with
arbitrarily high probability a classifier that has error arbitrarily close to
that of the worst classifier in H.

▶ This gives us a model-relative justification for preferring ERM to
empirical risk maximization.
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Summary: two conceptions of learning algorithms

▶ Data-only:
▷ Must come with an inherent inductive bias.
▷ Given any such proposed algorithm, we can expose its inductive bias, and

question its justification.
▶ Model-dependent:
▷ Itself a generic method, that on each application we must provide a

model.
▷ Can be given a general yet model-relative justification, in the form of

learning-theoretic guarantees.
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“Defensive epistemology”

▶ The original epistemological project is one where our concern is the
(ultimate) basis of our knowledge.

▷ This is a project of tracing the justificatory basis for a statement or belief
of interest.

▷ We ask, what is the basis for trusting what our learning algorithm returns?
▷ Since the algorithm must have a particular inductive bias, we are lead to

ask, what is the basis for this inductive bias?
▷ Since no ultimate basis is forthcoming, we are led to skepticism.
▶ Many authors in the philosophy of science have arrived at a view that this

general epistemological project is simply a dead end.
▷ Van Fraassen speaks of “defensive epistemology,” Levi of “predigree

epistemology.”
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“Forwards-looking epistemology”

▶ The alternative project that arises is a pragmatist one that takes seriously
that we will always start with a body of beliefs or presuppositions that we
do not seriously or actively doubt.

▷ The interesting question is not whether we actually have an ultimate
justification for these beliefs.

▶ The interesting question is how to proceed from these beliefs: how to
improve these beliefs.

▷ This is still an interesting question of justification!
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“Forwards-looking epistemology”

▶ Moreover, this project aligns well with (traditional) machine learning.
▷ Russell (1991): “the picture that is currently fashionable in machine

learning is that of an agent that already knows something and is trying to
learn some more.”

▷ Domingos (2012): “induction (what learners do) is a knowledge lever: it
turns a small amount of input knowledge into a large amount of output
knowledge.”

▶ The model-relative guarantees from learning theory serve exactly this
project.

▷ There are provably better and worse algorithmic ways of proceeding.
▶ Learning theory thus provides a normative component to a

forwards-looking epistemological perspective on machine learning
methods.
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The plan

1. Model-relative justification.
2. Statistical learning theory.
3. Application: Occam’s razor.
4. The “generalization puzzle”: the way forward?
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The framework of SLT

▶ We do classification.
▷ For instance, we seek to learn whether our Käsespätzle will be tasty (T)

or not (N).

▷ We assume there is some unknown distribution D(X × Y) that governs
the relation between instances in X (given by attributes like temperature,
color, smell) and labels in Y = {T, N} (tasty or not).

▷ We draw a training sample S from this unknown distribution D.
▷ Based on the training sample, our algorithm learns a classifier

h : X → {T, N} that is a function from all possible Käsespätzles
(combinations of attribute values) to labels.
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The framework of SLT

▶ We want to say something about what makes for a good method—in a
model-relative sense!

▶ In SLT, inductive bias enters in the form of a class H of hypotheses.
▷ So a learning algorithm is a function AH : H × S → H from samples to

hypotheses in given H.
▶ The goal is to learn a hypothesis that is the (near) best in the class.
▷ That is, a hypothesis h that has a true risk

LD(h) = Prob(x,y)∼D [h(x) ̸= y ]

that is not much worse than that of the best in the class,

min
h′∈H

LD(h′).
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Learnability

▶ We now formulate a guarantee of “probably-approximately-correct”
(PAC) learnability.

▷ Pick an accuracy term ϵ to bound the distance from the best hypothesis
in the class.

▷ Pick a confidence term δ to bound the probability of finding a near-best
hypothesis.

Definition (Learnability)

A hypothesis class H is learnable if there exists a learning method AH : S → H
and a sample size function mH : (0, 1)2 → N such that for all ϵ, δ ∈ (0, 1), for
all m ≥ mH(ϵ, δ) and any distribution D over X × Y,

ProbS∼Dm

[
LD(AH(S)) ≤ min

h∈H
(LD(h)) + ϵ

]
≥ 1 − δ. (1)

▶ What makes a hypothesis class learnable?
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Uniform convergence

▶ The cornerstone of SLT—or the original Vapnik-Chervonenkis theory—is
a uniform version of the law of large numbers.

▷ Specifically, this is the convergence, for each hypothesis simultaneously,
of the empirical error to the true risk.

Definition (Uniform convergence)

A hypothesis class H has the uniform convergence property if there exists a
sample size function muc

H : (0, 1)2 → N such that for all ϵ, δ ∈ (0, 1), for all
m ≥ muc

H (ϵ, δ) and any distribution D over X × Y we have

ProbS∼Dm [(∀h ∈ H) (|LS(h) − LD(h)| ≤ ϵ)] ≥ 1 − δ. (2)

▶ What you see is what you get!
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Uniform convergence, ERM, and learnability

▶ Uniform convergence motivates the learning method of empirical risk
minimization (ERM).

▷ ERMH on sample S selects a hypothesis with smallest empirical error,

h ∈ min
H

(LS(h)).

▷ Uniform convergence gives a bound on true risk in terms of empirical
error,

(∀h ∈ H) (LD(h) ≤ LS(h) + ϵ) ,

and ERM can be seen to explicitly minimize this bound.
▶ If H has the uniform convergence property, then H is learnable by ERMH.
▶ But when does a hypothesis class have the uniform convergence property?
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VC dimension

▶ It turns out that the uniform convergence property can be characterized
by a purely combinatorial property of the hypothesis class.

▶ This is the property of finite Vapnik-Chervonenkis dimension.
▷ The VC dimension of H is the largest size k of a subset X of instances

such that each of the 2k possible labelings of X is predicted by some
h ∈ H. (It is infinite if there is no largest size.)

▷ It is a measure of the “richness” of a hypothesis class—the extent to
which it covers possibilities.

▶ We call a hypothesis class with finite VC dimension a VC class.
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The fundamental theorem

Theorem (Fundamental theorem of statistical learning theory)

The following are equivalent:
H has the uniform convergence property;
H is uniformly learnable;
H is uniformly learnable by ERMH;
H is a VC class.
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Underfitting v. overfitting

▶ The fundamental theorem concerns estimation error, which is one side of
the infamous bias-complexity trade-off.

LD(ĥ) = min
h∈H

LD(h)︸ ︷︷ ︸
approx. error

+ LD(ĥ) − min
h∈H

LD(h)︸ ︷︷ ︸
est. error

.

▷ The fundamental theorem is about model-relatively preventing
overfitting—this is avoided if H is VC class.

▷ The absolute error of an hypothesis also depends on how good our
inductive model H is—whether H is not underfitting.
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Underfitting v. overfitting
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The plan
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The justification for Occam’s razor

▶ Is it a good idea to prefer simplicity in inductive inference?
▶ Old debate in machine learning and in particular in statistical learning

theory (and older still in philosophy of science).

▶ Can statistical learning theory offer a justification for preferring simplicity?
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The notion of simplicity

▶ No attempt at giving some robust definition of the complexity of
individual hypotheses can be considered successful.

▶ However, learning theory has developed robust notions of the complexity
or capacity of hypothesis classes.

▷ In particular, in statistical learning theory, the VC dimension is a robust
notion of the complexity of a hypothesis class.

▷ We can call a hypothesis class simple iff it is a VC class.
▷ (I’m simplifying here. Finite size still matters, so really a graded notion.)
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“Means-ends epistemology” (Formal learning theory)

▶ Kelly, Schulte, et al.: inductive problems call for a context-dependent
means-ends analysis of what epistemic notions of success (ends) are
attainable with what assumptions and methods (means).

▷ Fits a forward-looking epistemological perspective, where the analysis
gives a model-relative justification for methods that solve the problem.

▶ But we can also fix a learning problem and notion of success, and ask
what assumptions are required for a method to possibly solve the problem.

▷ Here we are after characterization results that give necessary and
sufficient conditions for the attainability of the relevant notion of success.

▷ Kelly (1996): “To revive Kant’s expression, such results may be thought
of as transcendental deductions for reliable inductive inference, since they
show what sort of knowledge is necessary if reliable inductive inference is
to be possible.”

▶ For instance, the fundamental theorem shows that a necessary and
sufficient condition for learnability is a hypothesis class of finite VC
dimension.
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The justification for Occam’s razor

▶ A qualified model-relative means-ends justification.
▷ We come to a certain problem of classification, that we are prepared to

cast as a problem in statistical learning.
▷ We come to this problem with further prior knowledge still, and we are

interested in doing well relative to this prior knowledge.
▷ Now the fundamental theorem tells us that for the formal guarantee of

learnability (a formal expression of “doing well”), the hypothesis class (a
formal encoding of our prior knowledge) must be a VC class—must be
sufficiently simple.

▶ This gives us a means-ends model-relative justification for modeling, if we
can, our prior knowledge in the shape of a simple class of hypotheses.

▶ The if we can is a pretty strong qualification—but can be weakened in a
analogous argument based on the more general method of structural risk
minimization.
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The plan
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A backwards-looking story . . . ?

▶ Does all of this still fit modern machine learning?
▷ Classical learning theory can’t actually seem to account for the observed

generalization behavior of certain much-used algorithms.
▷ Specifically, the model-relative guarantees from SLT are of the form,

if the model is not too complex (has sufficiently low capacity),
then we have a certain generalization guarantee.

▷ But the inductive models in these algorithms are way too complex!
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Zooming in

▶ Indeed, a clear separation between inductive model and learning algorithm
seems lost in learning algorithms for deep neural nets.

▷ The relevant ERM-approximating algorithms (versions of stochastic
gradient descent) appear to themselves have some implicit inductive bias.

▶ But maybe these algorithms implement some “implicit regularization”
that still gives a low “effective capacity,” so that the SLT story still
applies?

▷ That is, maybe the antecent in “if sufficiently small capacity, then
generalization” is still satisfied?
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Zhang et al. (2017).

▶ More specifically, what SLT gives us are “what-you-see-is-what-you-get”
(“wysiwig”) bounds:

if sufficiently small capacity, then wysiwig.

▷ The paper by Zhang et al. (2017), “Understanding deep learning requires
rethinking generalization,” drives a wedge in the consequent.

▶ Specifically, they empirically showed the following:
1. A neural network applied to a “natural” dataset of labeled images attains

low training error and low test error (small generalization gap).
2. The same network applied to the same dataset but with the labels

randomly shuffled still attains low training error (indeed, perfect fit!) but
(by definition—the data is random!) does not attain low test error (large
generalization gap).

▷ So training error is no indication for generalization error—directly against
wysiwyg.
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The double-descent phenomenon (Belkin et al., 2019)
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The way forward?

▶ Belkin (2021): need for a “new framework for a theory of induction.”
▷ With again a fundamental role for a philosophical principle of Occam’s

razor: “Select the smoothest function, according to some notion of
functional smoothness, among those that fit the data perfectly” (p. 218).

▷ Rather akin to a “principle of simplicity of nature”. . .

▶ A different theory—and a different epistemology?
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To conclude: take-home

Classical learning theory offers a general yet model-relative jus-
tification for standard learning algorithms.
However, classical learning theory has trouble accounting for
modern generalization behavior—and it’s not fully clear what
a new learning theory and its justificatory story might look like.
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