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Can we trust our machine learning algorithms?

▶ Do we have reasons for thinking that our machine learning algorithms
learn well?

▷ Epistemic trust—reliability.
▷ The mathematical theory of machine learning promises formal learning

guarantees.
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Philosophy of science

▶ Methodology of science.
▷ Is there something like scientific method?
▷ If so, can we justify this method, that is, provide reason for why it is

good?

▶ Formal methodology of science.
▷ Can we give a formal account of scientific method?
▷ Can we formally justify this method?



3/38

The problem of induction

▶ Scientific reasoning is inductive reasoning.
▶ Hume: we cannot have a justification for inductive inferences.
▷ No purely mathematical argument will cut it.
▷ No extra-mathematical (empirical) argument will cut it.

▶ But how does this leave room for any formal theory of scientific method
and its justification?
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The problem of induction and ML

▶ Machine learning algorithms likewise take an inductive or generalization
leap.

▶ So they are likewise susceptible to Hume’s argument.

▶ How does this leave room for any formal theory of machine learning
methods and their justification?
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A puzzle?

▶ The no-free-lunch theorems of supervised learning suggest a skeptical
conclusion about machine learning algorithms.

▷ “All learning algorithms are equally lacking in epistemic justification.”
▷ “A standard procedure like empirical risk minimization is just as good as

empirical risk maximization.”

▶ At the same time, the business of learning theory is to show that some
possible algorithms are better than others.

▷ “We can prove that empirical risk minimization is a good method (and
we couldn’t for empirical risk maximization).”
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The plan

1. The no-free-lunch theorems.
2. The road to skepticism.
3. Ways out? Universal prediction.

II. Statistical learning theory and beyond.
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The no-free-lunch (NFL) theorems

▶ Wolpert (1993,1996): “no free lunch theorems for supervised learning.”
▷ “All learning algorithms are a priori equivalent.”
▶ Schaffer (1994): “conservation law of generalization performance.”
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A simple version

▶ Every day we try to predict whether our breakfast will be tasty (T), or
not (N).

▶ Our learning algorithm makes a guess whether breakfast will be tasty
today, based on the days past.
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A simple version

▶ Consider histories of two consecutive days.
▷ There are 22 such histories or learning situations.

▷ There are 23 different possible learning algorithms (functions from
{∅, T, N} to {T, N}).

∅

T

TTTN

N

NTNN
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A simple version

▷ A learning algorithm’s error in a particular learning situation is its mean
number of mistakes.

▶ Here, then, is an NFL statement: every prediction algorithm attains
the same error in equally many learning situations.

▷ Assume a uniform distribution on learning situations.
▶ Then we can say that every learning method has the same expected

error 1/2.

∅

T

TTTN

N

NTNN



10/38

A simple version

▷ A learning algorithm’s error in a particular learning situation is its mean
number of mistakes.

▶ Here, then, is an NFL statement: every prediction algorithm attains
the same error in equally many learning situations.

▷ Assume a uniform distribution on learning situations.
▶ Then we can say that every learning method has the same expected

error 1/2.

∅

T

TTTN

N

NTNN



11/38

A reformulation

▶ The assumption of a uniform distribution on learning situations is not
really well-motivated.

▶ In fact, this is, for the purpose of learning, really a worst-case assumption
(cf. Boole, Peirce, Carnap, . . . )

▷ “In a universe where learning is impossible, every learning algorithm is
equivalent.” Well, yes . . .

▶ But this assumption is actually not essential for a skeptical conclusion . . .
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A reformulation

▶ For every learning algorithm, there is a learning situation in which it is
not successful, yet in which another learning algorithm is successful.

▶ There is no universal learning algorithm.
▷ Many modern formulations are of this form (e.g., Shalev-Shwartz &

Ben-David, 2014).
▶ Every learning algorithm must come with some restrictive inductive bias.
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The plan

1. The no-free-lunch theorems.
2. The road to skepticism.
3. Ways out? Universal prediction.
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The road to skepticism

▶ We are concerned with a limited set of standard, generic, algorithms.
▶ What justification do we have for these standard learning algorithms?
▷ NFL: these algorithms must have specific biases.
▷ So, how do we justify these biases..?
▶ The world must have a structure that neatly matches these biases . . .
▷ E.g., Giraud-Carrier and Provost’s (2005) “weak assumption of machine

learning” that “the process that presents us with learning problems [. . . ]
induces a non-uniform probability distribution [over learning situations].”

▷ OK, but how to justify such an assumption?
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The road to skepticism

▶ Hume’s argument for inductive skepticism.
▷ Inductive reasoning must proceed upon the supposition that the universe

is induction-friendly.
▷ What reason can we give for this supposition?
▷ We certainly cannot give any deductive, a priori reason, because it’s

logically possible that the universe is not induction-friendly.
▷ But we also cannot give a good inductive reason, because that would be

circular!
▷ Specifically, we cannot conclude from the success of inductive method so

far (past evidence for induction-friendliness) that inductive method will
remain successful (that the universe is, in fact, induction-friendly).

▶ So we’re stuck.
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The plan

1. The no-free-lunch theorems.
2. The road to skepticism.
3. Ways out? Universal prediction.
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Ways out . . . ?

▶ Maybe we have just been overly demanding?

▶ Suppose we lower our aims to estimating the limiting relative
frequency of tasty breakfasts, as the days go by?

▷ That is, we are interested in estimating limdays→∞
tasty days

days .
▷ For instance, if breakfasts are only tasty in the weekends, the limiting

relative frequency is 2/7.
▷ Let’s adopt the straight rule method that always outputs the estimate

tasty days
days .

▶ The estimates of the straight rule will get closer and closer to the limiting
relative frequency (if it exists).
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The pragmatic justification of induction

▶ Reichenbach: the inductive method is successful, whenever success is
attainable at all.

▷ The straight rule converges on the limiting relative frequency, whenever
there exists a limiting relative frequency at all.

▶ The straight rule method is a universal method for Reichenbach’s
estimation problem.

▷ So the no-free-lunch theorem does not hold for all learning problems.
▶ But Reichenbach’s learning problem is slightly trivial . . .



20/38

Ways out . . . ?

▶ Let’s try to be a little more demanding again . . .

▶ Suppose we still want to successfully predict next outcomes, but we
weaken our success criterion to predicting successfully in the limit.

▷ Let’s also suppose our predictions can be probabilistic (we always issue a
probability of the next breakfast being tasty).

▷ Then we want the predicted probabilities to converge to 1 for tasty days
and 0 for nontasty days.
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Sequential prediction

▶ We play a prediction game against Nature. That is, every round t,
▷ we first make a (probabilistic) prediction for the next outcome, 0 or 1;
▷ then Nature reveals the outcome, 0 or 1, and we suffer a loss.
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Sequential prediction

▶ A prediction method is a function pred from {0, 1}∗ to [0, 1]

▷ Example: always fifty-fifty, p(xxx) = 1
2 for all xxx ∈ {0, 1}∗.

▷ Example: Laplace’s rule of succession, p(xxx) = #1xxx+1
l(xxx)+2
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Universal prediction

▶ The promise of algorithmic information theory, in particular the
predictive theory developed by Solomonoff (1964) and Levin (1970).

▷ A universal prediction method that predicts by data compression.
▷ Formalized in terms of Kolmogorov complexity.

▶ For every computable data-generating distribution, this prediction
method will (with probability 1) converge on the right probabilities.
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Carnap’s inductive logic
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Carnap’s inductive logic
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Carnap’s inductive logic
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Putnam v. Carnap’s inductive logic
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Putnam:

▶ “Certainly it appears implausible to say that there is a rule whereby one
can go from the observational facts (if only one had them all written out)
to the observational prediction without any ‘detour’ into the realm of
theory.”

Theory
(model/hypothesis)

Prediction of next datumObserved data sequence

▶ “. . . we get the further consequence that it is possible in principle to build
an electronic computer such that it would always make the best
prediction–i.e. the prediction that would be made by the best possible
scientist if he had the best possible theories. Science could in principle be
done by a moron (or an electronic computer).”
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Putnam’s diagonal argument

▶ The following two conditions on a universal prediction method are
incompatible.

▷ It should converge on all computable patterns.
▷ It should be computable.

PRED

predU
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Putnam’s diagonal argument

▶ The following two conditions on a universal prediction method are
incompatible.

▷ It should do well whenever some (computable!) method does well.
▷ It should be computable.

PRED

predU
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Putnam’s diagonal argument

▶ The following two conditions on a universal prediction method are
incompatible.

▷ It should be universal among all possible (computable!) methods.
▷ It should be computable.

PRED

predU
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Putnam’s diagonal argument
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Putnam’s diagonal argument

▶ The following two conditions on a universal prediction method are
incompatible.

▷ It should be universal among all possible (computable!) methods.
▷ It should be computable.

PRED

predU



32/38

The Solomonoff-Levin method

▶ Try to escape diagonalization by expanding to a class of computably
approximable methods, that does contain ‘universal elements.’

PRED∆1

pred∆1

▶ Take-home message: it can’t be done.
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The Solomonoff-Levin method

▶ Try to escape diagonalization by expanding to a class of computably
approximable methods, that does contain ‘universal elements.’

PRED∆2

pred∆2

▶ In sum: it can’t be done.
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The Solomonoff-Levin method

▶ Try to escape diagonalization by expanding to a class of computably
approximable methods, that does contain ‘universal elements.’
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pred∆2

▶ In sum: it can’t be done.
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No universal prediction method

▶ So this attempt to escape the no-free-lunch theorems didn’t
work—algorithmic information theory can’t really help us.

▶ In general, no-free-lunch results for interesting learning problems seem
inescapable.

▶ But then how can machine learning theory still have a constructive story
to tell—how can it give some kind of epistemic justification for our
standard learning algorithms?
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To conclude: looking back and forwards

In this lecture, we discussed the no-free-lunch theorems, and
how they seem to obstruct the possibility of a justification for
our machine learning algorithms.
In the next, we will see how these negative results do still leave
room for a positive story.

tom.sterkenburg@lmu.de


