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Machine learning and scientific computing

Machine learning, conceived as a computational discipline, is a
kind of scientific computing.

How much of scientific computing is machine learning?
Well, how much of world population is in Germany?
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Machine learning and scientific computing

Since the early days of computer-based scientific computing in the
1940s, the attitude has been:

Trust, but verify

There is eight decades of practical and theory wisdom about
what this entails.

Numerical analysts have been conceptualizing how to negociate
what computational methods to trust for all this time.

Yet, the literature on the philosophy of machine learning seems
quite disconnected. . .
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An hommage to Hegel?
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An hommage to Hegel?

After Hegel’s death, the asteroid ephemeris calculator
Heinrich Christian Schumacher (1780–1850; Fig. 1.14) felt
compelled to comment. In a letter to Gauss, he noted that
Hegel’s Dissertation had been included in a publication of
his collected works. He expressed his disgust in Biblical
terms: “ ‘Among Noah’s sons there was at least one who
covered up his father’s shame, but the Hegelians pulled off
the cloak which time and forgetfulness had spread over the
shame of their master.’ Gauss replied that the compari-
son limped badly, for Noah got drunk only once, while
Hegel’s insania was pure wisdom compared to what
he wrote later!”



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

An hommage to Hegel?

Let’s go on a hypothetical trip
to the end of the solar system with Hegel!

(See the simple Python experiment. . . )
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A hard landing!

What is happening?

How should we diagnose the problem?

What are the important takehome messages about how science
works, more broadly?
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Floating-point arithmetic (FPA)

My proposal is to discuss a non-existent book:
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Floating-point arithmetic (FPA)

For our purposes, the history of computer arithmetic can be a
wealth of information!

There is no controversy here; it can hardly arise in the con-
text of exact integer arithmetic, so long as there is general
agreement on what integer the correct result should be.
However, as soon as approximate arithmetic enters
the picture, so does controversy, as if one person’s
“negligible” must be another’s “everything.”

Computer Organization and Design, 2013

We can understand some of the non-trivial differences between
contexts involving approximations and those that don’t just by
looking at conceptually intricate questions about this
mathematically simple theory.
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Floating-point arithmetic (FPA)

What are floating-point numbers all about?

Operations on R,C
rounding

floating-point arithmetic F

0 1 2

Bit type

Bit number

S

1

E

2

E E E E E E E

9

F

10

F F F F F F F F F F F F F F F F F F F F F F

32

Scientific notation: +2.99792458× 108

“95% of the folks out there are completely clueless about
floating-point.” (James Gosling, 1998)
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Floating-point arithmetic (FPA)

FPA can lead to surprising errors. On your “pocket calculator,”
chances are those all return different values:

s1 = 1020 + 17− 10 + 130− 1020

s2 = 1020 − 10 + 130− 1020 + 17

s3 = 1020 + 17− 1020 − 10 + 130

s4 = 1020 − 10− 1020 + 130 + 17

s5 = 1020 − 1020 + 17− 10 + 130

s6 = 1020 + 17 + 130− 1020 − 10

The answers will probably be 0, 17, 120, 147, 137 and −10.

(You may need to add ‘.0’ to the numbers to enforce float types.)
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Floating-point arithmetic (FPA)

Suppose we want to calculate

γ =
√

1− v2/c2

in a Lorentz transform in SR, but in float32. Step function!
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Floating-point arithmetic (FPA)

There are tons of interesting funny things about floating-points!

For example, take the
discrete logistic map:

xk+1 = µxk(1− xk)

What would happen in
the long run if we
simulate this system?

A: For any precision, all discrete dynamical systems are periodic!
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Floating-point arithmetic (FPA)

In each case, there’s an important sense in which the computation
does not provide the correct answer.

A couple observations:

Double-precision seems to be giving better answers than
single-precision.

In such context, we may be tempted to make the following
associations:

more precision, more accuracy, less error, better result

Should we always be more satisfied with the more precise
answer?
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Two hugely different questions

Often, such computations are just fine, though there’s always
some error. How should we think about such situations?

This suggests two importantly different questions:

1 Is this answer closer to the truth than this other answer?
(conceptually easy)

2 Is the answer accurate enough? (conceptually trickier)

This second question is context-dependent in a sense that
needs clarification. Can we illustrate its relevant features within
the confines of arithmetic?
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This suggests two importantly different questions:
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Significant figures arithmetic

Floating-point arithmetic is only one of the interesting paradigms!



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

Significant figures arithmetic

In case you forgot the idea behind significant-figures
arithmetic. . .

The joke is based on the idea that

1.0 · 108 + 3 = 1.00000003 is not right.

1.0 · 108 + 3 = 1.0 · 108 is right.

This is different than the FPA paradigm.

Here, whether an answer is good (enough) is assessed with
respect to an epistemic context that characterizes uncertainty.
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Significant figures arithmetic

Again, equivalent propositions are not so straightforward:

f(x) = x(
√
x+ 1−

√
x) g(x) =

x√
x+ 1 +

√
x

f(x) and g(x) are identically equal, so the two equations have the
same truth-conditions.

However, if we perform arithmetic operations in significant
figures arithmetic, or with any other finite-precision arithmetic,
things change. . . Take x = 5.000 · 102 (i.e., 4 sig figs):

f(500) = 10.00 and g(500) = 11.18

If everything were exact, we’d have ≈ 11.17476 · · · .

Good scientific programming requires sensitivity to such
matters! It it absolutely crucial!
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Significant figures arithmetic

Comparing floating-point and significant-figure arithmetic has
revealed two distinct standards of accuracy, i.e., two standards
for assessing matters of approximation.

So the situation is not simply one where:

Okay, we know what is epistemically better,
and we just want more of it.

Moreover, the second standard introduces something quite
interesting:

The inference’s quality depends on what we know (and
ignore!) about the premises.

So, there’s no sharp cut between matters of truth-of-premises
and inferential strenght.
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A third standard of accuracy: asymptotic orders

And this is just the tip of the iceberg!

In 1972, MIT mathemati-
cian Gilbert Strang intro-
duced the term variational
crime to describe a theo-
retical problem with FEM.

As it turns out, articulat-
ing more standards of
accuracy is essential to
understanding what’s hap-
pening.
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Preliminary conclusions and how to move forward

Preliminary conclusions:

Computers can easily give you answers that are way off.

There are different standards of accuracy in scientific practice.

It’s not just about minimizing error (relative to a given norm).

It’s about interpreting whether the error is small enough
in an epistemic context.

From here, I’d like to emphasize this last idea, as (I think) it
remains marginally known to many philosophers &
practitionners.
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What methodological feature guarantees success?

Let’s start with a brute fact about science:

Our theories, models, hypotheses, and what have you, are typically
not strictly true.
(Technically, they are not satisfied by the universe.)
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Let’s start with a brute fact about science:

Our theories, models, hypotheses, and what have you, are typically
not strictly true.
(Technically, they are not satisfied by the universe.)

“Although this may seem a paradox, all
exact science is dominated by the idea
of approximation.”
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What methodological feature guarantees success?

Let’s start with a brute fact about science:

Our theories, models, hypotheses, and what have you, are typically
not strictly true.
(Technically, they are not satisfied by the universe.)

“I can’t get no satisfaction. [. . . ] He’s
tellin’ me more and more about some
useless information.”
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What methodological feature guarantees success?

But that’s OK. Reasoning with false
premises is a sign of greatness!

To justify his use of idealizations in
physics, Galileo claimed that he was
following the example of Archimedes.

Archimedes had made the same false
assumptions “perhaps to show that he
was so far ahead of others that he
could draw true conclusions even from
false assumptions.”
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What methodological feature guarantees success?

In real scientific practice, we need to rely on approximate truth
(equivalently, accuracy) and related concepts.

Some philosophers speak as if it were a small trivial thing, with no
deep consequence concerning what science fundamentally is.
It couldn’t be more false! . . . but if it were true, many of the good
people working in applied maths would end up unemployed!

In addition to mischaracterizing scientific practice, focussing on
truth-conditions generates many problems (e.g., about
idealizations) that are quite hard to figure out from that
perspective.



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

What methodological feature guarantees success?

In real scientific practice, we need to rely on approximate truth
(equivalently, accuracy) and related concepts.

Some philosophers speak as if it were a small trivial thing, with no
deep consequence concerning what science fundamentally is.

It couldn’t be more false! . . . but if it were true, many of the good
people working in applied maths would end up unemployed!

In addition to mischaracterizing scientific practice, focussing on
truth-conditions generates many problems (e.g., about
idealizations) that are quite hard to figure out from that
perspective.



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

What methodological feature guarantees success?

In real scientific practice, we need to rely on approximate truth
(equivalently, accuracy) and related concepts.

Some philosophers speak as if it were a small trivial thing, with no
deep consequence concerning what science fundamentally is.
It couldn’t be more false! . . . but if it were true, many of the good
people working in applied maths would end up unemployed!

In addition to mischaracterizing scientific practice, focussing on
truth-conditions generates many problems (e.g., about
idealizations) that are quite hard to figure out from that
perspective.



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

What methodological feature guarantees success?

In real scientific practice, we need to rely on approximate truth
(equivalently, accuracy) and related concepts.

Some philosophers speak as if it were a small trivial thing, with no
deep consequence concerning what science fundamentally is.
It couldn’t be more false! . . . but if it were true, many of the good
people working in applied maths would end up unemployed!

In addition to mischaracterizing scientific practice, focussing on
truth-conditions generates many problems (e.g., about
idealizations) that are quite hard to figure out from that
perspective.



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

What methodological feature guarantees success?

Clifford Truesdell very well explained why
we’re not seeking the whole truth and
nothing but the truth:

“One good theory extracts and exaggerates

some facets of the truth. Another good

theory may idealize other facets. A theory

cannot duplicate nature, for if it did so in all

respects, it would be isomorphic to nature

itself and hence useless, a mere repetition of

all complexity which nature presents to us,

that very complexity we frame theories to

penetrate and set aside.”
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Modeling as a question-driven endeavour

My view is that we avoid many difficulties by just changing our
angle on these matters:

The aim of science is not primarily to generate accurate
representations, but to accurately answer questions about

real systems about which much is unknown.

Thus, mathematical modeling is a question-driven endeavour.
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Modeling as a question-driven endeavour

Here’s the general picture:

mathematical representationmodelling assumption

real system

solution

questions answers to questions

choose

construct

extract

presents leads to
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Modeling as a question-driven endeavour

Which steps typically contain errors? Every key step!

mathematical representationmodelling assumption

real system solution

questions answers to questions

choose

construct

extract

presents leads to
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Modeling as a question-driven endeavour

This has three obvious consequences:

1 a good model doesn’t have to capture all aspects of a system
correctly, but only those we’re interested with (behaviour of
interest). I call this ‘selective accuracy’.

2 a representation does not have to be true or even accurate in
order to lead us to satisfactory answers.

3 It’s more important for a model to be informative than
true (or accurate).

Selectively accurate representations are only a means to an end.
Everything else being equal, the more accurate the better, but
everything else is rarely equal in actual scientific practice.
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Assessing Models Requires a Delicate Balancing Act

So, the key question now is:

Are the errors accumulated in this whole process leading us to
mischaracterize the behaviour of interest?

The tricky part is that we cannot just pretend that we can use the
“exact model that gets all the details right” as a benchmark,
since once we add all those details to get our modelling
assumptions perfectly right (supposing we could do that), then the
resulting model equations would likely be completely intractable
(in which case: no description, no prediction, no explanation, no
trifecta!).
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Assessing Models Requires a Delicate Balancing Act

accuracy and
completeness

of the assumptions

tractability of
model equations

In other words, some models are too true to be good.
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Assessing Models Requires a Delicate Balancing Act

The criteria for assessing the consequences of errors are thus the
following:

If we introduce error concerning a dominant factor, the
representation will be invalidated.

If we introduce error concerning a non-dominant factor, the
representation will be selectively accurate.

From this point of view, the epistemological burden is to
determine the impact of a factor.

The general method to determine this is perturbation analysis.
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Assessing Models Requires a Delicate Balancing Act

Perturbation analysis examines the
effects of small changes of an
aspect of a representation (tweaking
a parameter or a functional term).

Some systems are sensitive to
changes in some aspects, others are
robust under perturbation.



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

Assessing Models Requires a Delicate Balancing Act

Perturbation analysis examines the
effects of small changes of an
aspect of a representation (tweaking
a parameter or a functional term).

Some systems are sensitive to
changes in some aspects, others are
robust under perturbation.



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

Assessing Models Requires a Delicate Balancing Act

Perturbation analysis examines the
effects of small changes of an
aspect of a representation (tweaking
a parameter or a functional term).

Some systems are sensitive to
changes in some aspects, others are
robust under perturbation.



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

Assessing Models Requires a Delicate Balancing Act

Moreover, the robustness can
change in functions of some
parameters.

In a qualitative analysis, we
can find bifurcation points
that will allow us to determine
the situation’s sensitivity.
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can find bifurcation points
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Assessing Models Requires a Delicate Balancing Act

Classification of all 2D linear diff. equations dx/dt = Ax by two
parameters.

Tr

det

Knowing critical and bifurcation points is typically easier than
working with a “perfectly accurate and complete model,” so there

is an epistemic gain.
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Assessing Models Requires a Delicate Balancing Act

My suggestion is that, to the extent that the success of
mathematics remains mysterious or miraculous-looking, it is
because we have failed to understand how science can prosper
while pervaded with error and uncertainty.

This is a failure to appreciate how to establish trust in
mathematical methods.

Moreover, to the extent that there is
such a failure, it is because we have
an insufficiently rich set of rational
reconstruction tools in our
philosophical toolbox.



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

Assessing Models Requires a Delicate Balancing Act

My suggestion is that, to the extent that the success of
mathematics remains mysterious or miraculous-looking, it is
because we have failed to understand how science can prosper
while pervaded with error and uncertainty.

This is a failure to appreciate how to establish trust in
mathematical methods.

Moreover, to the extent that there is
such a failure, it is because we have
an insufficiently rich set of rational
reconstruction tools in our
philosophical toolbox.



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

Assessing Models Requires a Delicate Balancing Act

science

lo
gi

c

pr
ob

ab
ili

ty

p
er

tu
rb

at
io

n
th

eo
ry

as fundamental
as the other two

Is P true? Does P follow from Σ?How probable is P given Σ? How confident am I in P?What are the consequences of tweaking paramaters in P?I call them the three pillars of scientific rationality.
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But more generally, what is the
basic strategy deployed in
perturbative reasoning?

Start with an analogy:
s’habiller comme un oignon

A flexible way to dress for a wide
variety of temparatures, exercise
levels, etc.
You’re never perfectly comfortable, but you’re always pretty
much alright.

In honor of this practice, I call the strategy semantic layering.
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For lack of a precise technical characterization of what semantic
layering is (working on it!), I’ll give three simple examples
widespread in scientific practice:

1 An example from linear algebra (SVD processing).

2 An example from ODEs (marching methods).

3 An example from multidimensional interpolation (matching
boundary conditions).
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Linear algebra: image processing using SVDs

Consider an m× n matrix A (any m,n will do).

What can be interesting about an array of numbers? Well, lots!

First, re-think how you think of matrix multiplication. Go from
thinking about A×B as a matrix with elements

cij =
∑

aikbjk

to the outer product view:

= + + +

That’s a sum of rank-1 matrices (layers)!
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Linear algebra: image processing using SVDs

Images are matrices!
The classic Mandrill example
of destructive compression
uses just this approach!

Now, here’s one with 90% of
the layers.

What’s gone wrong?

I’ve used a bad layering
method.
A good layering method is one that decomposes layers in order
of importance to create an impression of monotonicity.



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

Linear algebra: image processing using SVDs

Images are matrices!
The classic Mandrill example
of destructive compression
uses just this approach!

Now, here’s one with 90% of
the layers.

What’s gone wrong?

I’ve used a bad layering
method.
A good layering method is one that decomposes layers in order
of importance to create an impression of monotonicity.



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

Linear algebra: image processing using SVDs

Images are matrices!
The classic Mandrill example
of destructive compression
uses just this approach!

Now, here’s one with 90% of
the layers.

What’s gone wrong?

I’ve used a bad layering
method.

A good layering method is one that decomposes layers in order
of importance to create an impression of monotonicity.



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

Linear algebra: image processing using SVDs

Images are matrices!
The classic Mandrill example
of destructive compression
uses just this approach!

Now, here’s one with 90% of
the layers.

What’s gone wrong?

I’ve used a bad layering
method.
A good layering method is one that decomposes layers in order
of importance to create an impression of monotonicity.



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

Linear algebra: image processing using SVDs

I haven’t cherry-picked my image.

It works with images of other primates as well!

(only 5.2% of the layers)
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Linear algebra: image processing using SVDs

Last minute addition: Had I known we’d do linear regressions
yesterday, I would have expanded more on this technique.
It’s based on the the holy grail of numerical linear algebra, i.e.,
the singular value decomposition (pic lifted from Wiki):

Destructive image compression, linear regressions, factor analysis,
Lyapunov eponents, etc. are just SVD!
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Solution of ODEs: marching methods

Take a differential equation dx
dt = f(x, t). Write its solution x(t) as

an asymptotic power series about t0:

x(t) = x(t0)+x′(t0)(t−t0)+
x′′(t0)

2
(t−t0)2 +

x′′′(t0)

6
(t−t0)3 + · · ·

Each term in the Taylor
series is a layer; the method
creates an impression of
monotonicity.

Truncate after first order
term and use this as a
“marching method”
through the vector field.
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h=1
h=0.5
h=.1
Exact solution
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Multidimensional interpolation

The same idea can be deployed to approximate multivariate
functions f(x1, x2, . . . , xn):
this time, we use multivariate gauge functions in our asymptotic
series.

The formula for multivariate Taylor series looks more messy, but
it’s conceptually as simple as the former case:

It representents f(x1, x2, . . . , xn) as an infinite superposition of
layers that create an impression of monotonicity.
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Multidimensional interpolation

Example of increasingly higher-order approximations:

Example of a surface to approximate.
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Multidimensional interpolation

Example of increasingly higher-order approximations:

A so-called bilinear interpolant.
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Multidimensional interpolation

Example of increasingly higher-order approximations:

A so-called quadratic interpolant.
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Multidimensional interpolation

In the next sections, I’ll present a few views on computing that
deploys those ideas in a systematic framework. My aim is to
convince you of the following thesis:

You should trust your computer’s solutions precisely when
constructing a simplified (or idealized), layered model would

be justifiable (in some sense to be determined).
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Two perspectives on computing

There are at least two mainstreams of views about computing:

1 Computation theory (Turing machine paradigm).

Paradigmatic algorithm is Euclidean GCD algorithm.
Exact integer-valued computation.

2 Scientific computing (Numerical analysis paradigm).

Paradigmatic algorithm is Newton’s method for rootfinding or
Euler’s method for solving ODEs.
Inexact real/complex-valued computation.

Most real-world problems require the second perspective (e.g.,
most scientific simulations are based on the second paradigm)—but
is it an essentially different view of computing? Yes.
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Two perspectives on computing

Sure, computation is based on “algorithms”, but in practice this
can mean very different things. . .

A lot of attention devoted to computing in philosophy of mathe-
matics has to do with things like the 4-color theorem:

That essentially combinatorial idea is what is articulated in com-
plexity theory:

Here computers con-
tribute by surveying
massive problem in-
volving case-by-case
brute force discrete
computation.

This approach is inspired by meta-
mathematics and theoretical com-
puter science.

P = NP? Who cares? For SVDs and
PDEs, O(n3) is already pushing the
limits!

Let’s say a bit more about orders of
complexity. . .
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Computational Equivalence

Defining computational complexity demands a bit more work.
For instance, take the problem of finding the determinant of a
matrix A ∈ Rn×n using two methods:

1 Lapacian expansion by minors:

det(A) =

n∑
j=1

(−1)i+jaijMij . (1)

This recursion has a cost of O(n · (n− 1) · · · 2 · 1) = O(n!).

2 Finding trace of matrix diagonalized by Gaussian elimination.
The computational cost is only O(n3) operations.

They have very different orders of computational complexity.
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Computational Equivalence

Logarithmic scale plot of orders of computational cost.
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Turing computation

The Turing machine
model of computation is
perfect to understand this
concept of complexity.

It elaborates a notion of computation based on effective
computability, and an idea of what is truly feasible by further

adding constraints on time and memory for given
implementations on digital computers.
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Turing computation

However, this is misleading—is does not give a good image of
what is truly feasible in practice.

We can see it by considering this intriguing quote from Nick
Trefethen (a Jedi master of Num.An.):

[. . . the numerical analysts’] central mission is to compute
quantities that are typically uncomputable, from an ana-
lytic point of view, and to do it with lightning speed.

Computing something incomputable? At lighting speed?
Has the Master gone mad?

No, he’s using the root ‘compute’ in two different senses.
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Sources of error in mathematical modelling

Neither modeling nor simulating are error-free:

1. Systemic Error

2. Experimental Error

3. Discretization Error
4. Rounding Error

Modelling Error
incl. ideal./simpl./omission/etc

Computational Error

fcts, integrals, etc.

f(x),
∫
g(x), etc.

truncate
truncated asymptotic series

y(x, ε) =
∑N

k=0 yk(x)φk(ε)

flow
ẋ = f(t,x(t);µ)

discretization
discrete functions (maps)

xk+1 = Φ(tk, xk, . . . , x0, h, f)

Operations on R,C
rounding

floating-point arithmetic F

0 1 2

Bit type

Bit number

S

1

E

2

E E E E E E E

9

F

10

F F F F F F F F F F F F F F F F F F F F F F

32
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Sources of error in mathematical modelling

Here, the crucial epistemological
question is:

When we don’t know the exact
solution of a model, how do we
determine if our “approximate”
solution is sufficiently accurate?

Even if it might seem counter-intuitive, it is generally easier to
determine whether we’re close enough to the truth than to
know what the truth is!

I will further argue that the question makes no sense if we don’t
consider a specific (collection of) modelling context(s) — so I
argue for a variant of the sig. fig. approach.
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Backward Error Analysis

A fruiful perspective on error in scientific computing is backward
error analysis. Let me sketch it. . .

We represent a mathematical problem by an operator ϕ, that has
an input (data) space I as its domain and an output (result,
solution) space O as its codomain:

ϕ : I → O,

and we write y = ϕ(x). (ϕ can be a function or some other
operator.)

As we said, when the problem stems from a realistic modelling
context, it typically can’t be solved directly.
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Backward Error Analysis

Accordingly, we introduce the notion of an engineered problem ϕ̂
(which is by design computable):

x y

ŷ

ϕ

∆y = forward error
ϕ̂

We also call ϕ the reference problem.

“Wrong” question: Is ∆y small enough?

Instead, we write ŷ = ϕ̂(x). Then, instead of saying that ŷ is the
approximate solution to ϕ (the reference problem), we say that
it is the exact solution to ϕ̂ (the engineered problem).
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Backward Error Analysis

But we can go further, and “reflect back” the forward error:

x

x+ ∆x

y = ϕ(x)

ŷ = ϕ(x+ ∆x)

input space output space

backward —

— forward

ϕ

ϕ

ϕ̂

Figure: Backward error analysis: The general picture.

The smallest such ∆x is what is called the backward error.
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Backward Error Analysis

Perhaps more nicely, when problems working with a ring of formal
power series, we can rigorously define “approximately” commuting
diagram in which we can replace ‘≈’ by the order to which the
approximation holds.

x

x+ ∆x

y = ϕ(x)

ŷ = ϕ(x+ ∆x)

≤ η ≤ ε≈



Intro Finite precision A � Balancing Act Semantic layering Extracting solutions: the BEA p.o.view End

Backward Error Analysis

That gives us three different but interrelated kinds of errors:

1 forward error

2 backward error

3 residual

They are used in a number of ways, and measured in a number of
ways, resulting in different standards of accuracy.
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Backward Error Analysis

Here’s one of the first historical case
of Backward Error Analysis.

BEA has become broadly influential
in the 1990s and systematized for
the first time in the late 60s with the
works on Wilkinson on linear algebra
and algebraic equations.

Suppose you want to solve Ax = b. You (unwisely) choose to use
Gaussian elimination without pivoting to find an approximate x̂.
Wilkinson showed that there exists a matrix E with “relatively
small” entries such that (A + E)x̂ = b. That is, the method
exactly solved a slightly different problem.
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Backward Error Analysis

Then, the situation is this:

⇒ If solving the problem ϕ̂(x) amounts to having solved the
problem ϕ(x+ ∆x) for a ∆x smaller than the
perturbations inherent in the modeling context
(specifying estimates of error and uncertainty), then our
solution ŷ must be considered completely satisfactory.

The focus has shifted from small forward error to small
perturbation of the input.
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Backward Error Analysis

Backward-Error Analysis in a picture:
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Taking stock

Let’s take stock.

Again, consider Nick Trefethen’s quote:

[. . . the numerical analysts’] central mission is to compute
quantities that are typically uncomputable, from an ana-
lytic point of view, and to do it with lightning speed.

What are the two senses of ‘computable’?

1 A problem is computable if you can find an algorithm that
exactly computes it in finite time.

2 A problem is computable if there’s an easy-to-compute nearby
problem that you can compute instead.

The latter gives a very different perspective on computability.
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Condition

Now, the next question is: what is the relationship between the
forward and the backward error?

The relationship we seek lies in a problem-specific coefficient of
magnification, i.e., the sensitivity of the solution to perturbations
in the data, that we call the conditioning of the problem.

The normwise relative condition number κ is the maximum of
the ratio of the relative change in the solution to the relative
change in input, which is expressed by

κrel = sup
x

‖δy‖
‖δx‖

= sup
x

‖∆y
y ‖
‖∆x

x ‖
= sup

x

‖ (ϕ(x̂)−ϕ(x))
ϕ(x) ‖

‖ x̂−xx ‖

for some norm ‖ · ‖. Note: this is just the sensitivity measure from
perturbation theory; it really introduces nothing fundamentally
new, but it’s more quantitatively precise.
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Condition

As a result, we obtain the relation

‖δy‖ ≤ κrel‖δx‖ (2)

between the forward and the backward error. Knowing the
backward error and the conditioning thus gives us an upper bound
on the forward error.

If κ has a moderate size, we say that the problem is
well-conditioned. Otherwise, we say that the problem is
ill-conditioned.

Note: even for a very good algorithm, the approximate solution to
an ill-conditioned problem may have a large forward error.
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Condition

Words of wisdom from Rob Corless:

“[. . . ] most people will have to deal eventually

with the fact that mathematical problems

encountered in science and engineering are

usually merely one representative out of an

infinite class of mathematical models for the

phenomenon in question, and further that the

input data to the model will usually be of low

accuracy compared to the precision available on

most computers or calculators. In such cases,

fanatical obsession with accurately solving the

specified model problem is neither necessary

nor appropriate, while analysis of the effect of

perturbations of the input data and/or the

model is essential.” Corless (1993)
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Condition

Shameless self-promotion!
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Condition

For a given problem ϕ, the image y can have many forms. E.g.,
if the reference problem ϕ consists in finding the roots of the
equation ξ2 + xξ+ 2 = 0, then for each value of x the object y will
be a set containing two numbers satisfying ξ2 + xξ + 2 = 0, i.e.,

y =
{
ξ
∣∣ ξ2 + xξ + 2 = 0

}
. (3)

In general, we can then define a problem to be a map

x
ϕ−−−−→

{
ξ | φ(x, ξ) = 0

}
, (4)

where φ(x, ξ) is some function of the input x and the output ξ.
The function φ(x, ξ) is called the defining function and the
equation φ(x, ξ) = 0 is called the defining equation of the
problem.
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if the reference problem ϕ consists in finding the roots of the
equation ξ2 + xξ+ 2 = 0, then for each value of x the object y will
be a set containing two numbers satisfying ξ2 + xξ + 2 = 0, i.e.,

y =
{
ξ
∣∣ ξ2 + xξ + 2 = 0

}
. (3)

In general, we can then define a problem to be a map

x
ϕ−−−−→

{
ξ | φ(x, ξ) = 0

}
, (4)

where φ(x, ξ) is some function of the input x and the output ξ.
The function φ(x, ξ) is called the defining function and the
equation φ(x, ξ) = 0 is called the defining equation of the
problem.
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Condition

We can now give a general definition of residual.

Given the reference problem ϕ—whose value at x is a y such that
the defining equation φ(x, y) = 0 is satisfied—and an engineered
problem ϕ̂, the residual r is defined by

r = φ(x, ŷ). (5)

As we see, we obtain the residual by substituting the computed
value ŷ (i.e., the exact solution of the engineered problem) for y as
the second argument of the defining function.

The residual is always computable if the defining equation is
closed-form.
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General Method

Residual-based a posteriori backward error analysis then proceeds
as follows:

1 For the problem ϕ, use an engineered version of the problem
to compute the value ŷ = ϕ̂(x).

2 Compute the residual.

3 Use the computed value of the residual to obtain an estimate
of the backward error (i.e., reflect the residual back as a
perturbation of the input data).

4 How satisfactory is the solution? Compare the backward error
to the modelling error and uncertainty.

5 Finally, examine the conditioning (sensitivity) of the problem.
If the problem is well-conditioned and the computed solution
amounts to a small backward error, then conclude that your
solution is satisfactory.
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Backward error with a computed residual

For many kinds of problems, there is a disarmingly easy way to
find such a ∆x based on the (always computable) residual.

x

x+ ∆x

y = ϕ(x)

ŷ = ϕ(x+ ∆x)

input space output space

backward —

— forward

ϕ

ϕ

ϕ̂

Calculate y = ϕ(x; p).

Rewrite this as:
y − ϕ(x; p) = 0.

Suppose ŷ is an inexact
solution (so, 6= y).

Then, ŷ − ϕ(x; p) = r(x; p) .
(approximate solution ⇒ non-zero residual).

Equivalently: ŷ = ϕ(x; p) + r(x; p) =df ϕ̂(x; p).
So: approximate solution to ϕ ⇒ exact solution to a perturbed

problem ϕ̂.
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Example of Backward Error Analysis: Initial-Value Problems

Let’s see how all this applies to initial value problems:

(
f(t,x),x0

)

(
f(t,x) + εv,x0

)

y =
{
x(t) : ẋ = f(t,x),x(0) = x0

}

x̂(t)

input space output space

backward error εv— — forward error

ϕ

ϕ

ϕ̂, e.g., RK45

Figure: Commutative diagram for the backward error analysis of initial
value problems. Note that we can also perturb x0, or both x0 and f . In
some cases, this diagram will be implicitly replaced by an “almost
commutative diagram.”

We have exactly solved this modified problem (which we call the
reversed-engineered problem):

x′ = f(t, x) + εv(t)
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Example of Backward Error Analysis: Initial-Value Problems

For the practitioners, here’s how simple it is in Matlab:

sol = ode45(@myodefun,tspan,x0,options);

mesh = linspace( ti, tf, numpoints );

[xhat,dotxhat] = deval( sol, mesh );

Residual = dotxhat - myodefun(xhat,mesh);

It’s so easy, it almost feels like cheating!

Note: Only possible with modern continuous methods, such as the
continuous Runge-Kutta methods.
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Interpreting reverse-engineered problems

If we consider perturbations of the functional f from the p.o.v. of
dynamical systems, the analysis allows us to find to which
perturbed vector field our computed solution is tangent!

∆(t) = ˙̂x(t)− f(t, x̂(t)) ⇒ ˙̂x(t) = f(t, x̂(t)) + ∆(t)

∆t can be understood as
asserting modelling
assumptions!

Assessing computational
error is thereby reduced to
assessing modelling error
in a completely
metric-independent way.
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Interpreting reverse-engineered problems

Then, the situation is this:

If solving the problem ϕ̂(x) amounts to having solved the
problem ϕ(x+ ∆x) for a ∆x smaller than the
perturbations inherent in the modeling context
(specifying estimates of error and uncertainty), then our
solution ŷ must be considered completely satisfactory.

The algorithm found a solution as good the modeling
context deserves.

For all we known, the computed solution might be the exact
description of the system modeled.
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A cool connection shedding light on perturbations

This BEA framework sheds an interesting light on the dual nature
of perturbations.

Both philosophers and scientists use the phrase “perturbation
theory” with two distinct ideas in mind:

approximation (how different approximate–or
perturbative–solutions to a problem relate)

physical disturbance (how solutions to different problems–or
perturbed equations–relate to each other)

One of the insight of this approach is that approximations and
disturbances are the flip side of the same coin. Semantically
speaking, there’s no difference between the two.
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A cool connection shedding light on perturbations

x

x+ ∆x

y = ϕ(x)

ŷ = ϕ(x+ ∆x)

input space output space

backward —

— forward

ϕ

ϕ

ϕ̂

force field, mass, IC

integrate

exact equation of motion

approx. integrate
with θ ≈ 0

inexact equation of motion

perturbed force field, etc

exact eqs. of perturbed system
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The Takehome Message

In conclusion, let’s return to Russell’s nice
quote:

“Although this may seem a paradox, all exact
science is dominated by the idea of
approximation.”

Accordingly, the point of the epistemology of sciences is not
to try to understand how science would be without errors
and uncertainty, but rather the point is to understand how
we can live with them.
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The Takehome Message

Thank you!

nfillion@sfu.ca
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