Optimization of a Stencil Computation considering the Architecture of SX-Aurora TSUBASA

31st Workshop on Sustained Simulation Performance (WSSP31)

Kazuhiko Komatsu

2021/3/18

Agenda

- Background
- Objective and approach
- Optimizations of a stencil computation
- Evaluation
- Conclusions and future work

Introduction

Vector computing capability everywhere

- Vector processor
 - NEC SX series
 - 256 words (2KB =16 Kbits) vector processing
- GPU
 - Massive parallel computing in a kind of a vector computing way
 - NVIDIA GPU, AMD GPU
 - SIMT
- CPU
 - Vector computing capability support
 - Intel Xeon, Fujitsu A64FX
 - 512 bits vector processing

Modern vector computer

- SX-Aurora TSUBASA
 - Vector engine (VEs) are attached to a vector host (VH)
 - **VE** is responsible for the execution of an application

SX-Aurora TSUBASA (A300-8)

Communication patterns in A300-8

cores in a VE — VE-VE via PCIe — VE-VE via CPU — VE-VE via IB — VH-VH via IB

Need to consider the hierarchy to expolit full performance of a system

Objective

Objective

- Exploit high performance of such a computing system
 - Himeno benchmark as a stencil computation
 - An incompressible fluid analysis code
 - Poisson's equation using the Jacobi iteration method
 - 19-point stencil calculation
 - Memory-bound computation

Approach

- Exploit various bandwidths of a system for the efficient vector computing
 - Apply optimizations considering architecture characteristics

Architecture-aware optimizations

- Multi-leve optimization
 - Node-level
 - Exploit LLC bandwidth
 - to make up for memory bandwidth
 - Expoit HBM2 bandwidth
 - Expoit vector capability
 - Enhance vectorization
 - Reduce the loop overhead
 - Tune the domain decomposition
 - Multi-node level
 - Choose an appropriate path for communications
 - Tune the process mapping

Node-level optimization

- Store reusable data on the LLC
 - Each element of a pressure array can be reused 18 times
 - Store the array in the LLC with a high priority
 - Insert a directive "#pragma NEC retain(array-name)"

→Efficient use of the LLC bandwidth

- Loop unrolling
 - Long loops with nested structures in the kernel
 - Use plenty of vector registers to reduce the loop overheads
 - →Efficient vector computation

```
1:for(n=0; n<nn; ++n){
2: gosa = 0.0;
3: wgosa= 0.0;
4: for(i=1; i<imax-1; ++i)
5:#pragma _NEC outerloop_unroll(16)
6: for(j=1; j<jmax-1; ++j)
7:#pragma _NEC retain(p)
8: for(k=1; k<kmax-1; ++k){
9: s0 = a[0][i][j][k] * p[i+1][j][k]
10: + a[1][i][j][k] * p[i][j+1][k]
```

Node-level optimization (2)

- Domain decomposition
 - k direction >= vector length
 - Keep enough vector length
 - 256+ in the case of SX
 - i direction > j direction
 - Achieve high LLC hit ratio
 - → Efficient vector processing

```
1:for(n=0; n<nn; ++n){
2: gosa = 0.0;
3: wgosa= 0.0;
4: for(i=1; i<imax-1; ++i)
5:#pragma _NEC outerloop_unroll(16)
6: for(j=1; j<jmax-1; ++j)
7:#pragma _NEC retain(p)
8: for(k=1; k<kmax-1; ++k){
9: s0 = a[0][i][j][k] * p[i+1][j][k]

March 18, 20

March 18, 20
```


Decomposition (2, 4, 4)

Multi-node level optimization

- Multi-level bandwidth aware Process mapping
 - Processes to calculate adjacent domains are assigned to the cores in the same node
 - Amounts of data transfer among different nodes in different PCIe switches are reduced
 - Processes to communicate with different PCIe switch are distributed in a node
 - Load of data transfers should be equally distributed
 - Multiple VEs in a PCIe switch can communicate different PCIe switches in the case of SX

14

Multi-VE/VH level optimization(2)

Procedure

- Measurements of multi-level bandwidth of a system
 - Bandwidth is measured using a benchmark program
 - This step needs to be done when the system is installed
- Analysis of communication of an application
 - Communication are analyzed as a preliminary setup
 - patterns, amounts, orders, and so on
- Mapping processes considering an application and a system

Experimental Environment s

Systems

System	Model	Host	Accelerator
Aurora1	A300-2	Xeon Gold 6126 x1	VE Type 10B x1
Aurora2	A300-2	Xeon Gold 6126 x1	VE Type 10B x2
Aurora8	A300-8	Xeon Gold 6126 x2	VE Type 10B x8
Xeon		Xeon Gold 6126 x1	-
V100		Xeon Gold 6126 x1	V100 x1

Benchmark

- Aurora, Xeon: Himeno benchmark MPI C language version
- V100: Himeno benchmark OpenACC Fortran version

Evaluation

- Performance
- Scalability
- Power efficiency

	NEC VE Type 10B	Intel Xeon Gold 6126	NVIDIA Tesla V100
Performance (SP)	4.30 Tflop/s	883.2 Gflop/s	14 Tflop/s
Memory bandwidth	1.22 TB/s	128 GB/s	900 GB/s
LLC bandwidth	2.66 TB/s	N/A	N/A

Bandwidth of SX-Aurora TSUBASA

OSU benchmark

SW

IB HCA

CPU

Single VE performance

- 16% improvement over the original code
- High efficiency
 - SX-Aurora TSUBASA original: 6.6%, optimized: 7.7%, Xeon: 4.1%, V100 2.2%

Multiple VEs: domain decomposition

- The domain decomposition impacts on the large number of processes
 - Good parameters in most cases
 - K direction size should be large
 - J direction size < i direction size

Multiple VEs: process mapping

(a)

(b)

(c)

- Process mapping is effective more than 40 processes
 - The data transfer between different PCIe switches affects the performance
 - About 50~100 Gflop/s performance differences

Multiple VEs: All optimizations

- Higher performance over the original version
 - 6.79 x performance improvement in 8 VEs
 - 84.9% parallel efficiency in 8 VEs

Performance per Watt

- The performance per power improves when the large number of VEs
 - Optimization do not affects the power consumpition
 - The power consumpiton does not increase much even when the number of VEs increases

Conclusions

Conclusions

- SX-Aurora TSUBASA has achieved high performance of the himeno benchmark by the optimizations
 - Multi-levels of bandwidth is exploited
 - Loop unrolling and tuning of the domain decomposition are relatively effective
 - Higher performance than Xeon and V100
- Performance per power also improves by optimizations

Future Work

- More detailed analysis of the process mapping
 - Cooperation of the domain decomposition and the process mapping
- Evaluate and analyze on a large system