

Vector Engine Processor of SX-Aurora TSUBASA

Shintaro Momose, Ph.D., NEC Deutschland GmbH 9th October, 2018 WSSP

© NEC Corporation 2018

Contents

- 1) Introduction
- 2) VE Processor Architecture
- 3) Performance
- 4) 2 Dimensional Vector Function

SX-Aurora TSUBASA

SX-Aurora TSUBASA

POINT Memory Bandwidth

1.22TB/s / processor, 150GB/s / core

POINT Easy to Use

Fortran/C/C++ programing, OpenMP Automatic vectorization/parallelization

High sustained performance on x86/Linux environment

Supercomputer Model

For large scale configurations
DLC with 40°C/104°F water

Rack Mount Model

Flexible configurationAir Cooled

Tower Model

For developer/programmerPersonal supercomputer

Air Cooled Card

Two types of packages

Passive Cooling Type

For Server

Water Cooled Card

- Direct liquid cooling
- Hot water cooling available

40°C/104°F water

Direct Liquid Cooling Type For Supercomputer

Vector Engine

Vector Engine Card Implementation

Standard PCIe card

- PCIe Gen3 x16 interface
- Full-length full-height card
- Dual slot
- <300W power</p>

Power consumption under benchmark workloads

Vector Engine Processor Module

2.5D implementation

- A VE processor and six 8Hi or 4Hi HBM2 modules on a silicon interposer
- Lidless package to minimize thermal resistance
- Package size: 60mm x 60mm
- Interposer size: 32.5mm x 38mm
- VE processor size: 15mm x 33mm

Stiffener

Organic substrate

World's first implementation of a processor with 6 HBM2s

Vector Engine Processor Overview

SX-Aurora TSUBASA

Components

- 8 vector cores
- 16MB LLC
- 2D mesh network on chip
- DMA engine
- 6 HBM2 controllers and interfaces
- PCI Express Gen3 x16 interface

Specs

Core frequency	1.6GHz		
Core performance	307GF(DP) 614GF(SP)		
CPU performance	2.45TF(DP) 4.91TF(SP)		
Memory bandwidth	1.2TB/s		
Memory capacity	24/48GB		

Technology

• 16nm FinFET process

Ø		Ŵ	00	00000	
HBM2	HBM2 I/F	DMA Engine 9 9 9 00	HBM2 I/F	HBM2	
НВМ2	HBM2 I/F LLC 8MB	core core	LLC 8MB HBM2 I/F	НВМ2	
НВМ2	HBM2 I/F	9 8 9 PCIe I/F	HBM2 I/F	HBM2	
				000000	64

Vector Core

Vector Processing Unit (VPU)

- Powerful computing capability
 - 307.2GFLOPS DP / 614.4GFLOPS SP performance
- High bandwidth memory access
 - 409.6GB/sec Load and Store

Scalar Processing Unit (SPU)

- Provides the basic functionality as a processor
 - Fetch, decode, branch, add, exception handling, etc...
- Controls the status of complete core

Address translation and data forwarding crossbar

- To support contiguous vector memory access
 - 16 elements/cycle vector address generation and translation, 17 requests/cycle issuing
 - 409.6GB/sec load and 409.6GB/sec store data forwarding

Vector Processing Unit

13

Four pipelines, each 32-way parallel Instruction from SPU - FMA0: FP fused multiply-add, integer multiply Total Inst. buffer 32VPPs - FMA1: FP fused multiply-add, integer multiply 96 FMAs Renaming - ALU0/FMA2: Integer add, multiply, mask, FP FMA Vector pipeline (VPP) - ALU1/Store: Integer add, store, complex operation Scheduling Doubled SP performance by 32bit x 2 packed VR Bank5 VR Bank1 VR Bank2 VR Bank4 16 Masks VR Bank3 VR Bank0 vector data support Vector register (VR) renaming with 256 physical VRs Forwarding 64 architectural VRs are renamed **FMA1** FMA2 FMA0 ALUO Enhanced preload capability - Avoidance of WAR and WAW dependencies OoO scheduling Complex operation Dedicated complex operation pipeline to prevent pipeline stall

• Vector sum, divide, mask population count, etc.

Store data, List address

SX-Aurora TSUBASA

VR Bank6

ALU1

VR Bank7

Store/Compley

Load data

Scalar Processing Unit

- General enhancements
 - 4 instructions / cycle fetch and decode
 - Sophisticated branch prediction
 - OoO scheduling
 - 8-level speculative execution
 - Four scalar instruction pipes
 - Two 32kB L1 caches + unified 256kB L2 cache
 - Hardware prefetch
- Support for contiguous vector operation
 - Dedicated vector instruction pipe
 - 16 elements / cycle coherency control for vector store

SX-Aurora TSUBASA

Memory Subsystem

SX-Aurora TSUBASA

High bandwidth

- 409.6GB/s x2 core bandwidth
- Over 3TB/s LLC bandwidth
- 1.2TB/s memory bandwidth

Caches

- Scalar L1/L2 caches in each core
- 16MB shared LLC
- Two memory networks
- 2D mesh NoC for core memory access
- Ring bus for DMA and PCIe traffic
- DMA engine

- Used by both vector cores and x86 node
- Can access VE memory, VE registers, and x86 memory

Network on chip (NoC)

SX-Aurora TSUBASA

2D mesh network

- Maximize bandwidth with minimal wiring
- Minimizing data transfer distance
- 16 layered mesh
- Deadlock avoidance
 - Dimension-ordered routing
 - Virtual channels for request and reply
- Adaptive flow control
- Age based QoS control

Last Level Cache (LLC)

- Memory side cache
 - Avoiding massive snoop traffic
 - Increasing efficiency of indirect memory access
- 16MB, write back
- Inclusive of L1 and L2
- High bandwidth design
 - 128 banks, in total more than 3TB/s bandwidth
- Auto data scrubbing
- Assignable data buffer feature
 - Priority of data can be controlled by a flag for vector memory access instructions

SX-Aurora TSUBASA

Benchmarks

Benchmark conditions SX-Aurora TSUBASA: SX-Aurora TSUBASA A500 model Intel Xeon: Intel Xeon Gold 6142 2 sockets, 192GB DDR4-2666 NVIDIA Tesla V100: Intel Xeon CPU E5-2630v4 2 sockets, 128GB DDR4-2400, NVIDIA Tesla V100 16GB

Orchestrating a brighter world

Basic Performance

Floating point calculation and memory bandwidth

Industry leading memory access performance and efficiency Comfortable enough compute capability for memory intensive workloads

Note: VE price is much cheaper than V100

Performance on General Benchmarks

HPCG and Himeno benchmark (Poisson equation solver)

Competitive performance and power efficiency available using standard programming paradigms

Note: VE price is much cheaper than V100

Performance on Machine Learning

SX-Aurora TSUBASA

Statistical machine learning

- NEC's Frovedis[™] framework for AI/BigData processing
 - Apache Spark MLlib compatible API
 - Open source
 - -<u>https://github.com/frovedis</u>
- Workloads
 - Web ads optimization (Logistic regression)
 - Document clustering (K-means)
 - Recommendation (Singular value decomposition)

Summary

SX-Aurora TSUBASA

- A new product line of vector supercomputers based on Aurora architecture
- Vector capability is provided in a standard x86/Linux environment

Vector Engine

- High memory bandwidth by six HBM2s configuration
- Enhancements of the vector microarchitecture to provide high sustained performance and power efficiency

Benchmarks

- Very competitive performance and power efficiency using standard programming paradigms
- Outstanding performance on statistical machine learning workloads with Frovedis framework

Orchestrating a brighter world

© 2018 NEC Corporation. All rights reserved. Specifications are subject to change without notice. NEC is a registered trademark of NEC Corporation. All other trademarks mentioned here are the properties of their respective owners.