Vector Engine Processor of SX-Aurora TSUBASA

Shintaro Momose, Ph.D., NEC Deutschland GmbH
9th October, 2018
WSSP
Contents

1) Introduction
2) VE Processor Architecture
3) Performance
4) 2 Dimensional Vector Function
SX-Aurora TSUBASA
SX-Aurora TSUBASA
Design Strategy

SX-Aurora TSUBASA

1. **Memory Bandwidth**
 - 1.22TB/s / processor, 150GB/s / core

2. **Easy to Use**
 - Fortran/C/C++ programming, OpenMP
 - Automatic vectorization/parallelization

3. **x86/Linux**
 - High sustained performance on x86/Linux environment
Scalable Vector Supercomputer

Supercomputer Model
- For large scale configurations
- DLC with 40°C/104°F water

Rack Mount Model
- Flexible configuration
- Air Cooled

Tower Model
- For developer/programmer
- Personal supercomputer

A500 series

A300 series

A100 series
Vector Engine Card

Air Cooled Card
- Two types of packages

Passive Cooling Type
For Server

Active Cooling Type
For Tower/Workstation

Water Cooled Card
- Direct liquid cooling
- Hot water cooling available

40°C/104°F water

Direct Liquid Cooling Type
For Supercomputer
Vector Engine Card Implementation

Standard PCIE card
- PCIE Gen3 x16 interface
- Full-length full-height card
- Dual slot
- <300W power

Power consumption under benchmark workloads:

- DGEMM
- STREAM
- HPCG
2.5D implementation

- A VE processor and six 8Hi or 4Hi HBM2 modules on a silicon interposer
- Lidless package to minimize thermal resistance
- Package size: 60mm x 60mm
- Interposer size: 32.5mm x 38mm
- VE processor size: 15mm x 33mm
Vector Engine Processor Overview

Components
- 8 vector cores
- 16MB LLC
- 2D mesh network on chip
- DMA engine
- 6 HBM2 controllers and interfaces
- PCI Express Gen3 x16 interface

Specs

<table>
<thead>
<tr>
<th></th>
<th>1.6GHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core frequency</td>
<td></td>
</tr>
<tr>
<td>Core performance</td>
<td>307GF(DP)</td>
</tr>
<tr>
<td></td>
<td>614GF(SP)</td>
</tr>
<tr>
<td>CPU performance</td>
<td>2.45TF(DP)</td>
</tr>
<tr>
<td></td>
<td>4.91TF(SP)</td>
</tr>
<tr>
<td>Memory bandwidth</td>
<td>1.2TB/s</td>
</tr>
<tr>
<td>Memory capacity</td>
<td>24/48GB</td>
</tr>
</tbody>
</table>

Technology
- 16nm FinFET process
Vector Core

Vector Processing Unit (VPU)
- Powerful computing capability
 - 307.2GFLOPS DP / 614.4GFLOPS SP performance
- High bandwidth memory access
 - 409.6GB/sec Load and Store

Scalar Processing Unit (SPU)
- Provides the basic functionality as a processor
 - Fetch, decode, branch, add, exception handling, etc...
- Controls the status of complete core

Address translation and data forwarding crossbar
- To support contiguous vector memory access
 - 16 elements/cycle vector address generation and translation, 17 requests/cycle issuing
 - 409.6GB/sec load and 409.6GB/sec store data forwarding
Vector Processing Unit

- Four pipelines, each 32-way parallel
 - FMA0: FP fused multiply-add, integer multiply
 - FMA1: FP fused multiply-add, integer multiply
 - ALU0/FMA2: Integer add, multiply, mask, FP FMA
 - ALU1/Store: Integer add, store, complex operation

- Doubled SP performance by 32bit x 2 packed vector data support

- Vector register (VR) renaming with 256 physical VRs
 - 64 architectural VRs are renamed
 - Enhanced preload capability
 - Avoidance of WAR and WAW dependencies

- OoO scheduling

- Dedicated complex operation pipeline to prevent pipeline stall
 - Vector sum, divide, mask population count, etc.

Total 96 FMAs
Scalar Processing Unit

- General enhancements
 - 4 instructions / cycle fetch and decode
 - Sophisticated branch prediction
 - OoO scheduling
 - 8-level speculative execution
 - Four scalar instruction pipes
 - Two 32kB L1 caches + unified 256kB L2 cache
 - Hardware prefetch

- Support for contiguous vector operation
 - Dedicated vector instruction pipe
 - 16 elements / cycle coherency control for vector store
Memory Subsystem

- **High bandwidth**
 - 409.6 GB/s x2 core bandwidth
 - Over 3 TB/s LLC bandwidth
 - 1.2 TB/s memory bandwidth

- **Caches**
 - Scalar L1/L2 caches in each core
 - 16 MB shared LLC

- **Two memory networks**
 - 2D mesh NoC for core memory access
 - Ring bus for DMA and PCIe traffic

- **DMA engine**
 - Used by both vector cores and x86 node
 - Can access VE memory, VE registers, and x86 memory
Network on chip (NoC)

- 2D mesh network
 - Maximize bandwidth with minimal wiring
 - Minimizing data transfer distance
 - 16 layered mesh

- Deadlock avoidance
 - Dimension-ordered routing
 - Virtual channels for request and reply

- Adaptive flow control

- Age based QoS control
Last Level Cache (LLC)

- Memory side cache
 - Avoiding massive snoop traffic
 - Increasing efficiency of indirect memory access
- 16MB, write back
- Inclusive of L1 and L2
- High bandwidth design
 - 128 banks, in total more than 3TB/s bandwidth
- Auto data scrubbing
- Assignable data buffer feature
 - Priority of data can be controlled by a flag for vector memory access instructions
Benchmarks

Benchmark conditions
SX-Aurora TSUBASA: SX-Aurora TSUBASA A500 model
Intel Xeon: Intel Xeon Gold 6142 2 sockets, 192GB DDR4-2666
NVIDIA Tesla V100: Intel Xeon CPU E5-2630v4 2 sockets, 128GB DDR4-2400, NVIDIA Tesla V100 16GB
Floating point calculation and memory bandwidth

Industry leading memory access performance and efficiency

Comfortable enough compute capability for memory intensive workloads

Note: VE price is much cheaper than V100
Performance on General Benchmarks

HPCG and Himeno benchmark (Poisson equation solver)

Competitive performance and power efficiency available using standard programming paradigms

Note: VE price is much cheaper than V100
Statistical machine learning

- NEC’s Frovedis™ framework for AI/BigData processing
 - Apache Spark MLlib compatible API
 - Open source
 - https://github.com/frovedis
- Workloads
 - Web ads optimization (Logistic regression)
 - Document clustering (K-means)
 - Recommendation (Singular value decomposition)
Summary

SX-Aurora TSUBASA
- A new product line of vector supercomputers based on Aurora architecture
- Vector capability is provided in a standard x86/Linux environment

Vector Engine
- High memory bandwidth by six HBM2s configuration
- Enhancements of the vector microarchitecture to provide high sustained performance and power efficiency

Benchmarks
- Very competitive performance and power efficiency using standard programming paradigms
- Outstanding performance on statistical machine learning workloads with Frovedis framework