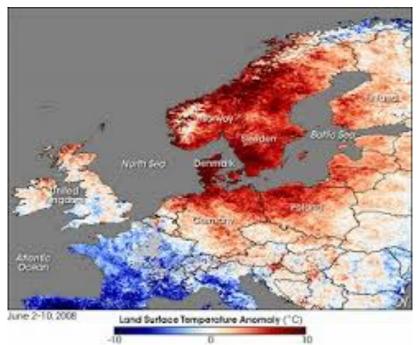
Accelerating Heatstroke Risk Simulation on Modern Vector Computers

<u>Ryusuke Egawa (Tohoku University),</u> <u>Yoko Isobe (NEC / Tohoku Univ),</u> <u>Toshiyuki Kato (NEC),</u> <u>Akimasa Hirata (Nagoya Institute of Techologies)</u>

Background

The number of heat waves with fatalities has increased in Europe, North America, and Asia.


Heatstroke

- The number of people hospitalized suffering heatstroke is increasing
 - 58,000 patients in 2014

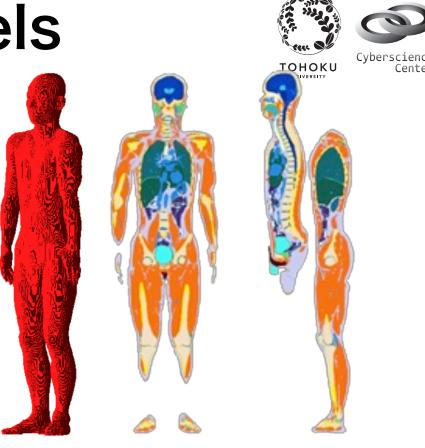
Needs for alerting the risk of heatstroke precisely

- Olympic game will be held at Tokyo in the most hottest season :-)
- 10 million foreigners will joint to the event

Motivation

The environment changes with time, and different individuals are vulnerable to heatrelated illness to different degree

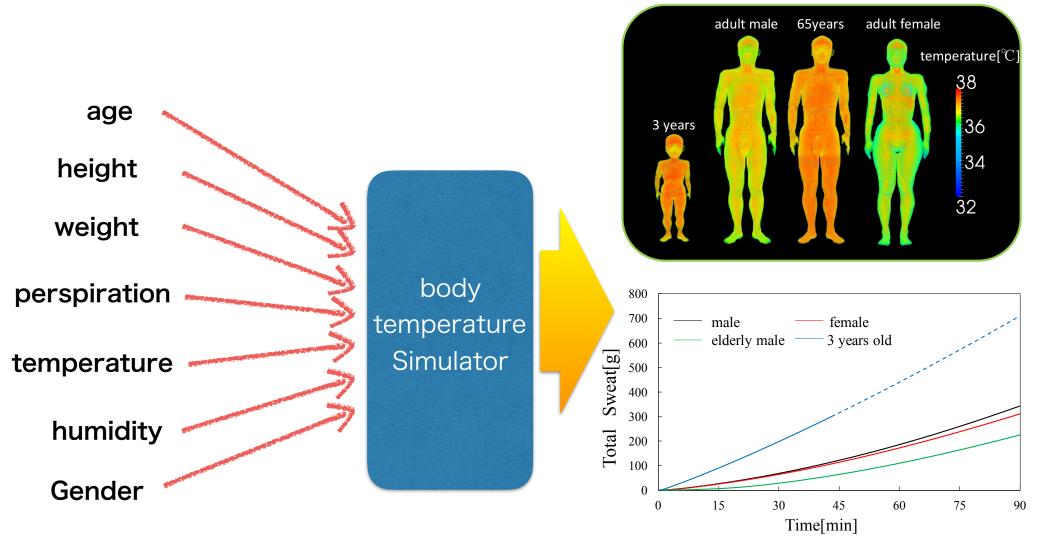
- The changes of body temperature strongly depend on individual (differences body size, age, gender tend to perspire a lot or not, difference in genders, etc.)
- An appropriate health risk assessment covering 90% of the population would facilitate and effective response to increased rates of heat illness for major summer sports events and the elderly in daily life


Human Body Models

Japanese adult male and female body models and a three-year-old child model

• The adult model

51 anatomic regions (provides by NICT)


skin, muscle, brain, lens, heart, and etc.

Height [m]	1.73
Weight [kg]	65
Surface area [m ²]	1.75
$S/W [m^2/kg]$	0.027

How can we estimate the body temperature

Simulation conditions 90minutes under sunshine with 37.5°C and 65% humidity

Flowchart of Bio-heat Modeling with Thermoregulatory Response in Computational Domain

IEEE Access

Received December 27, 2017, accepted January 3, 2018, date of publication January 11, 2018, date of current version February 28, 2018. Digital Object Identifier 10.1109/ACCESS.2018.2791962

Risk Management of Heatstroke Based on Fast Computation of Temperature and Water Loss Using Weather Data for Exposure to Ambient Heat and Solar Radiation

KAZUYA KOJIMA¹, AKIMASA HIRATA[©]¹, (Fellow, IEEE), KAZUMA HASEGAWA¹, SACHIKO KODERA¹, ILKKA LAAKSO², (Member, IEEE), DAISUKE SASAKI³, TAKESHI YAMASHITA³, RYUSUKE EGAWA⁴, YUKA HORIE⁵, NANAKO YAZAKI⁵, SAERI KOWATA⁵, KENJI TAGUCHI⁶, AND TATSUYA KASHIWA⁶, (Member, IEEE) ¹Department of Electrical and Mechanical Engineering, Nagoya Institute of Technology, Nagoya 466-8555, Japan

²Department of Electrical Engineering and Automation, Aalto University, 02150 Espoo, Finland

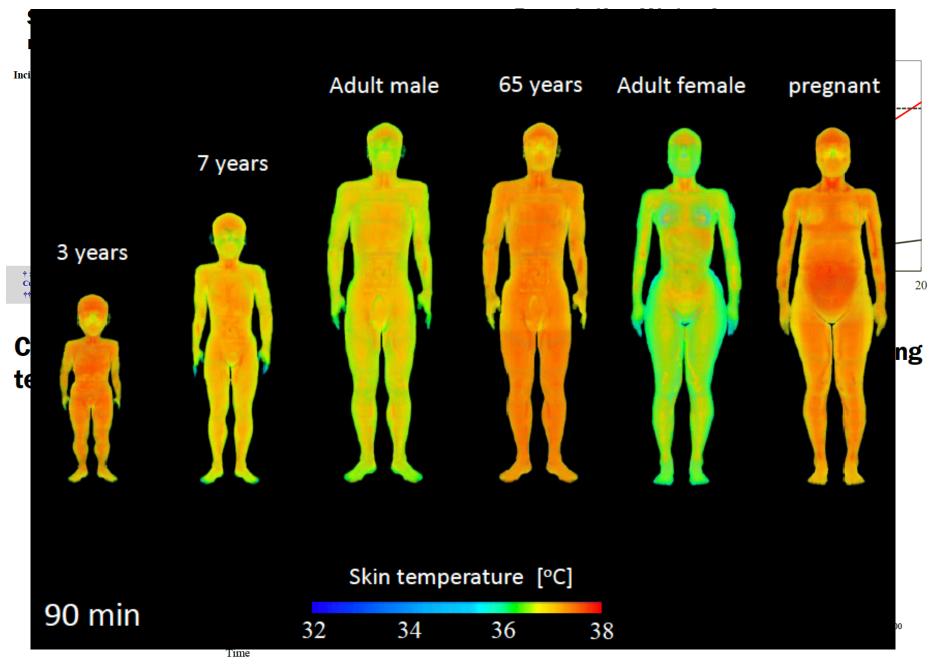
³Information Technology Division, Information Department, Tohoku University, Sendai 980-8578, Japan

⁴Cyberscience Center, Tohoku University, Sendai 980-8578, Japan

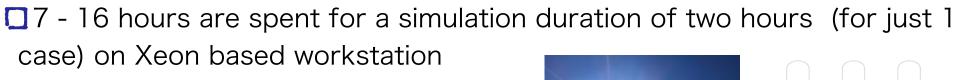
⁵Japan Weather Association, Tokyo 170-6055, Japan

⁶Department of Electrical and Electronic Engineering, Kitami Institute of Technology, Kitami 090-8507, Japan

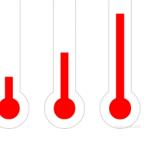
Corresponding author: Akimasa Hirata (ahirata@nitech.ac.jp)


This work was supported by the Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures and High Performance Computing Infrastructure in Japan under Project jh170010-NAH.

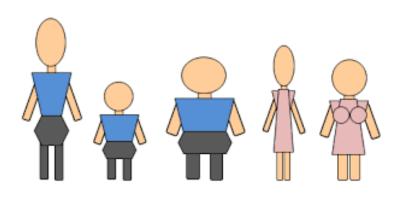
ABSTRACT Several indexes, such as the heat index, wet-bulb globe temperature, and the universal thermal climate index, are used to estimate the risk of seasonal heat illness. These indexes correspond to the heat load of an individual in identical environmental conditions for a prolonged period of time. In daily life, the environment changes with time, and different individuals are vulnerable to heat-related illness to different degrees. An appropriate health risk assessment covering 90% of the population would facilitate an effective response to increased rates of heat illness for major summer sport events and the elderly in daily life. In this paper, a fast computation for simulating temperature elevation and sweating is implemented using weather forecast data. In particular, a bioheat equation considering thermoregulatory responses is solved in the time domain using anatomical human body models including young adults, the elderly, and children. To accelerate simulation, the computational code is vectorized and parallelized, and subsequently implemented on an SX-ACE supercomputer. The computational results are validated in typical cases of young adults, children,


WSSP@HLI

The solver provides…


Original Code and Challenges

Not parallelized


- Target: As fast as possible!
 - O to create the Heat-Stroke Risk Data Bas
 - to achieve a short TAT and high QoS

First Touch

PROC.NAME	FREQ	EXCLUSIVE	AVER.TIME	MOPS	MFLOPS	V.OP	AVER.	VECTOR	I-CACHE	O-CACH	BANK	CONFLICT	ADB HIT
		TIME[sec](%)	[msec]			RATIO	V.LEN	TIME	MISS	MISS	CPU PO	NETWORK	ELEM.%
temprise_k	300	3371.986(89.9)	11239.954	853.5	193.7	14.8	216.5	12.55	3.559	1128.78	1.14	1.834	6.26
read_model_temp	1	325.450(8.7)	325449.655	853	1.4	0.36	224.3	0.05	11.55	45.121	0.002	0.005	54.88
cal_h	300	25.284(0.7)	84.279	44643.7	7250	99.33	222	25.282	0.001	0.002	1.477	1.897	4.93
tmp	11	14.385(0.4)	1307.769	1332.2	154.6	41.36	219.9	0.383	0	0.886	0	0.032	5.16
sw_calc	300	13.450(0.4)	44.834	54844.6	14626	99.26	223.6	13.439	0.002	0.004	0	1.064	5.11
det_cell	1	0.885(0.0)	884.73	10651.5	180.1	94.87	217.6	0.312	0	0.086	0.014	0.093	86.36
main	1	0.325(0.0)	325.358	26024.2	3271.3	98.99	229.1	0.3	0.004	0.006	0.052	0.03	46.57
make_mask	1	0.184(0.0)	183.822	21253.7	0	99.1	218.6	0.173	0	0	0.001	0.033	59.05
total	915	3751.949(100.0)	4100.491	1349.4	276.4	45.62	221.5	52.491	15.117	1174.888	2.686	4.988	6.11

□ just running "as is" code on a single node of SX-ACE

• 300steps, mesh size 2mm, 866×320×160

▶ the final target is 5400Steps for single case.

O almost same performance with Intel based system

D a few kernel dominate execution time

• with low vectorization ratio, I/O Overhead

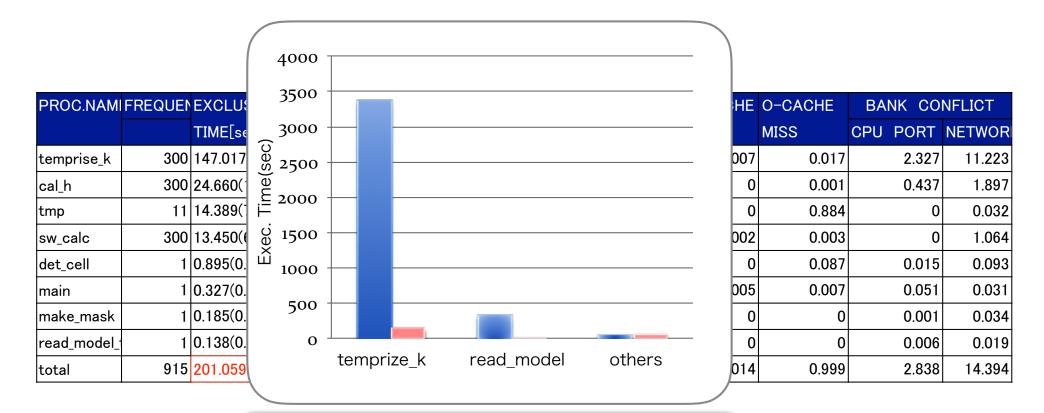
Ovectorize, and then parallelize

Performance optimization

D Following optimizations are applied

• Vectorization by Loop division, Loop expansion

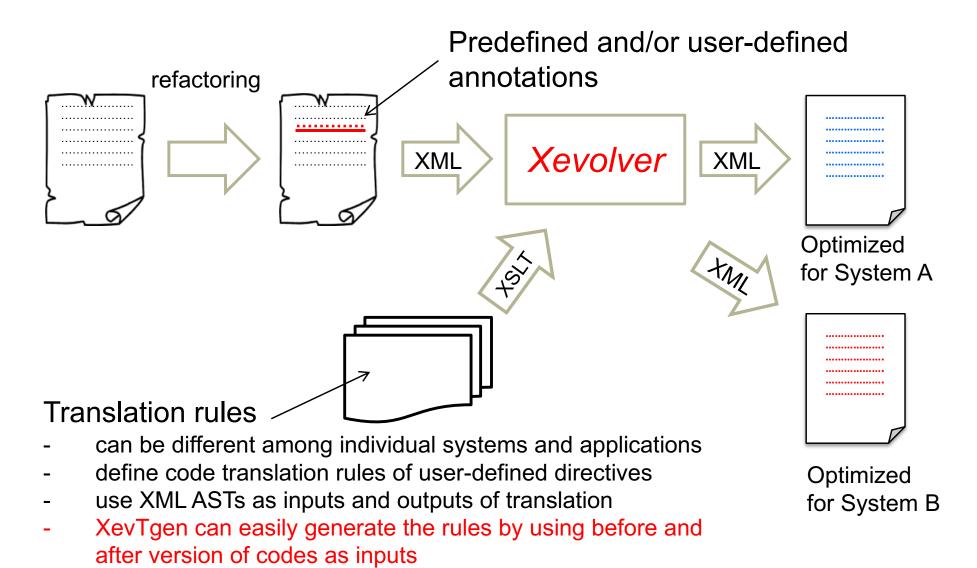
O Improve load-store performance


• Re-organize a block with many "If statements"

• Reducing the number of communications

Change "scalar variables" to array, Function inlining, remove redundant assignments/calculations

Node Performance



 $3751sec \rightarrow 201sec$ (300steps) 16.5 x speedup

XEVOLVER

The contents of HPC Refactoring Catalog

Current Status

♦ 57 lists are available at <u>https://one.sc.cc.tohoku.ac.jp/hpcref/</u>

	Items	#
1	Expanding vector length	7
2	Improving vector operation ratio	1
3	Avoiding conditional/redundant executions	6
4	Code modification for adopting vector instructions	7
5	Loop level vectorizations	14
6	Intra-node parallelization	1
7	Using system-specific instructions	1
8	Memory access optimization	10
9	Library utilization	6
10	Overlapping mem. And arith. operations	1
11	Reducing memory footprint	3

Catalog No.43

Replacing a variable with an array for promoting vectorization

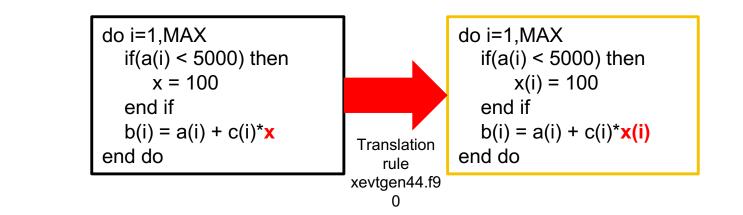
【Befor 59: 60:	re】 integer :: x	【After 77: 78:] integer :: x(MAX)
61:	x = 0	79:	x = 0
62:	do i=1,MAX	80:	do i=1,MAX
63:	if(a(i) < 5000) then	81:	if(a(i) < 5000) then
64:	x = 100	82:	x(i) = 100
65:	end if	83:	end if
66:	$b(i) = a(i) + c(i)^* \mathbf{X}$	84:	$b(i) = a(i) + c(i)^*x(i)$
67:	end do	85:	end do

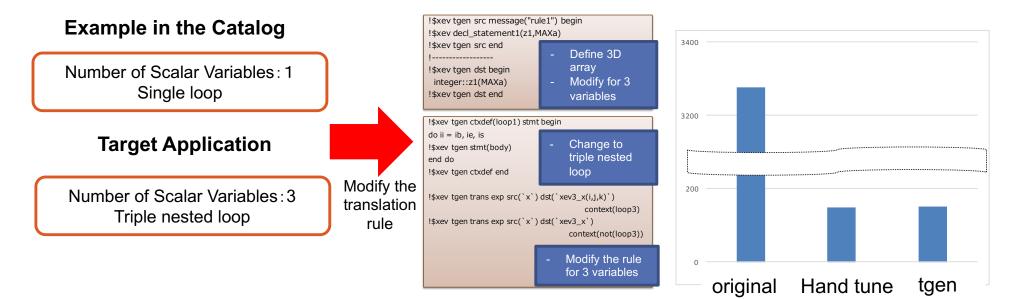
Since the scalar valuable x changes in every iteration, the compiler cannot vectorize this code. To vectorize this loop, the scalar valuable x is replaced to the array x.

A CASE STUDY :PRACTICAL USAGE OF THE HPC REFACTORING

Cyberscience Center

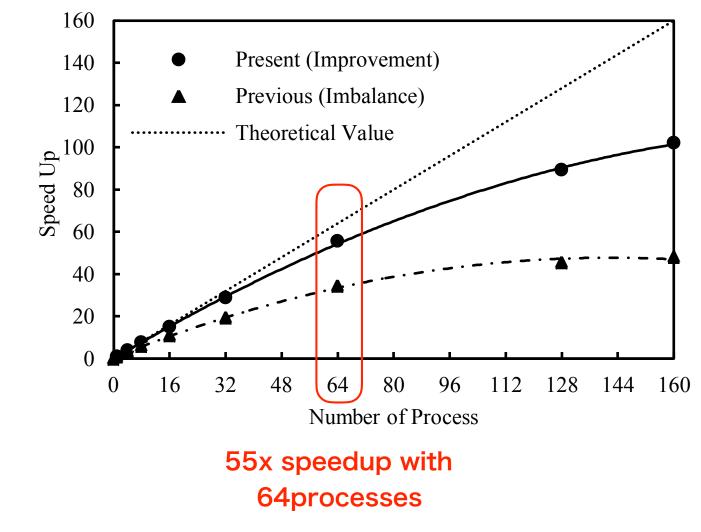
before


65: DO	K=1,MODELZ
66:	
67: DC	D J=1,MODELY
68: D	DO I=1,MODELX
• • • •	
111:	IF(UOLD(I,J,K).GE.US(I,J,K))THEN
112:	BCOEF=2**((UOLD(I,J,K)-US(I,J,K))/6)
113:	TEMP_DIFF=UOLD(I,J,K)-US(I,J,K)
114:	
115:	ELSE
116:	TEMP_DIFF=0E0
117:	ENDIF
126:	IF(UOLD(I,J,K).LT.39E0)THEN
127:	BCOEF=1E0
128:	
129:	ELSE IF(UOLD(I,J,K).LT.44E0)THEN
130:	BCOEF=1E0+0.8E0*(UOLD(I,J,K)-39E0)
131:	
132:	ELSE
133:	BCOEF=1E0+(5E0*0.8E0)
134:	ENDIF
135:	
136:	ENDIF
137:	
138:	ELSE
139:	BCOEF=1E0
140:	TEMP_DIFF=0E0
141:	ENDIF
• • • •	
148:	U(I,J,K)=UOLD(I,J,K)+(DT*SAR(I,J,K)/CP(LK(I,J,K))&
149:	&+DT*A(LK(I,J,K))*storetemp2(i,j,k)/(ROU(LK(I,J,K))*CP(LK(I,J,K)))&
150:	&-(DT*BCOEF*B(LK(I,J,K))*(UOLD(I,J,K)-henkaTB))/(ROU(LK(I,J,K)) · ·

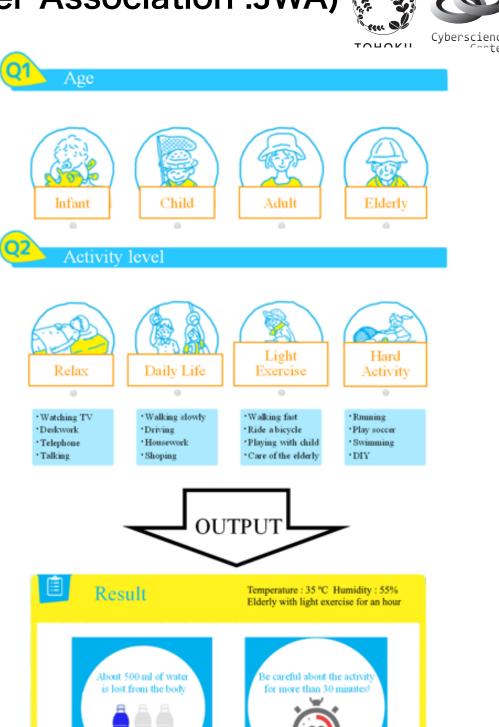

After

65: DO K=1,MODELZ						
66:						
67: DO J=1,MODELY						
68: DO I=1,MODELX						
111:	IF(UOLD(I,J,K).GE.US(I,J,K))THEN					
112:	BCOEF_(I,J,K)=2**((UOLD(I,J,K)-US(I,J,K))/6)					
113:	TEMP_DIFF=UOLD(I,J,K)-US(I,J,K)					
114:						
115:	ELSE					
116:	TEMP_DIFF=0E0					
117:	ENDIF					
•••						
126:	IF(UOLD(I,J,K).LT.39E0)THEN					
127:	BCOEF_(I,J,K)=1E0					
128:						
129:	ELSE IF(UOLD(I,J,K).LT.44E0)THEN					
130:	BCOEF_(I,J,K)=1E0+0.8E0*(UOLD(I,J,K)-39E0)					
131:						
132:	ELSE					
133:	BCOEF_(I,J,K)=1E0+(5E0*0.8E0)					
134:	ENDIF					
135:						
136:	ENDIF					
137:						
138:	ELSE					
139:	BCOEF_(I,J,K)=1E0					
140:	TEMP_DIFF=0E0					
141:	ENDIF					
148:	U(I,J,K)=UOLD(I,J,K)+(DT*SAR(I,J,K)/CP(LK(I,J,K))&					
149:	&+DT*A(LK(I,J,K))*storetemp2(i,j,k)/(ROU(LK(I,J,K))*CP(LK(I,J,K)))&					
150:	&-(DT* BCOEF_(I,J,K) *B(LK(I,J,K))* • •					

A CASE STUDY :PRACTICAL USAGE OF THE HPC REFACTORING



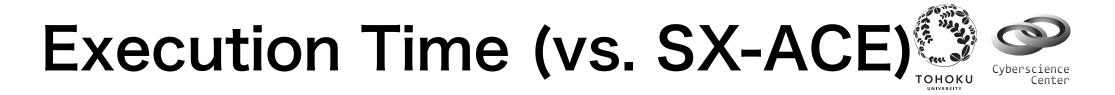
Parallel Performance



77 sec in the adult model and 17 sec in the child model

Web based App (Japan Weather Association :JWA)

- Database is developed for core temperature elevation and sweating
 - 104 combinations of ambient temperature (from 28 to 40°C per 1°C)
 - relative humidity (from 10 to 80 % per 10 %) were chosen
 - 7296 simulations were conducted and used for generating the database.
 - 170k page views from April 2017 to September 2017.


Evaluation Setups

	SX-ACE 1 CPU	Aurora 1 VE	Ratio
Core Peak Performance [GFLOPS] (double)	64.0	268.8	4.2
Number of cores	4	8	2.0
Node Peak Performance [GFLOPS]	256.0	2,150.4	8.4
Memory Bandwidth per node or VE [GByte/s]	256.0	1,228.8	4.8
Memory Capacitance of node or VE [GByte]	64	48	0.75
B/F	1.0	0.57	0.57

Simulation Code

- Updated version of Heatstroke Risk Simulator
 - Considering the duration of heat radiation with finer time steps
- Actual B/F 1.57 WSSP@HLRS

Conclusions

Precise risk simulation of body temperature changes

O Heatstroke

O Concepts of Heat-stroke-Risk Alert System

Porting the code to vector systems

• Web based Apps

Toward Real Time Risk Assessments

• Nice performance using a single VE

• Using more numbers of VEs remains as our future work.

More detailed information of the simulation can be found in IEEE Access,

K. Kojima, et. al., "Risk Management of Heatstroke Based on Fast Computation of Temperature and Water Loss using Weather Data for Exposure to Ambient Heat and Solar Radiation,". [IEEE Access,(2018),1-10]