Performance evaluation and analysis of SX-Aurora TSUBASA

Kazuhiko Komatsu Tohoku University 9 October, 2018 WSSP28

Background

- Supercomputers are important infrastructures
 - Widely used for scientific research as well as various industries
 - Top1 system reaches 122.3 Pflop/s
- Big gap between theoretical performance and sustained performance
 - Only compute-intensive applications stand to benefit from high peak performance
 - Memory-intensive applications are limited by lower memory performance

Memory performance has gained more and more attentions

SX-Aurora TSUBASA with the world's highest memory bandwidth

- Two important concepts of its design
 - High usability
 - High sustained performance
- New architecture
 - Vector host (VH) is attached to vector engines (VEs)
 - VE is responsible for executing an entire application
 - VH is used for processing system calls invoked by the applications

New execution model

Highlights of the execution model

- Two advantages over conventional execution model
 - Avoid frequent data transfers between VE and VH
 - Applications are entirely executed on VE
 - → High sustained performance
 - No special programming
 - Explicit specifications of computation kernels are not necessary
 - System calls are transparently offloaded to the VH
 - Programmers do not need to care system calls

→ High usability

Specification of SX-Aurora TSUBASA

- High memory bandwidth
 - 1.22 TB/s world's highest memory bandwidth
 - Six HBM2 memory modules integration
 - 3.0 TB/s LLC bandwidth
 - LLC is connected to cores via 2D mesh network
- High computational performance
 - 2.15 Tflop/s@1.4 GHz
 - 8 powerful vector cores
 - 16 nm FINFET process technology
 - 4.8 billion transistors
 - 14.96 mm x 33.00 mm

9 October, 2018

WSSP28

Block diagram of a vector processor

Performance evaluation of SX-Aurora TSUBASA

- SX-Aurora TSUBASA A300-2
 - 2x VEs Type 10B
 - 1x VH

X86 Linux

Vector Engines

VE	Type 10B	VH	
Frequency	1.4 GHz	CPU	Intel Xeon Gold 6126
Peak FP / core	268.8 GFLOPS	Frequency	2.60 GHz / 3.70 GHz (Turbo)
# cores	8	# cores	12
Peak DP Flops / socket	2.15 TFLOPS	Mem BW	128 GB/s
Memory BW	1.2 TB/s	Mem Capacity	96 GB
Memory capacity	48 GB	Mem config	DDR4-2666 DIMM 16GB x 6

Experimental environments

Processor	SX-Aurora Type 10B	Xeon Gold 6126	SX-ACE	Tesla V100	Xeon Phi KNL 7290
Frequency	1.4 GHz	2.6 GHz	1.0 GHz	1.245 GHz	1.5 GHz
# of cores	8	12	4	5120	72
DP flop/s (SP flop/s)	2.15 T (4.30 T)	998.4 GF (1996.8 GF)	256 GF	7 TF (14 TF)	3.456 TF (6.912 TF)
Memory subsystem	HBM2 x6	DDR4 x6ch	DDR3 x16ch	HBM2	MCDRAM DDR4
Memory BW	1.22 TB/s	128 GB/s	256 GB/s	900 GB/s	450+ GB/s 115.2 GB/s
Memory capacity	48 GB	96 GB	64 GB	16 GB	16 GB 96 GB
LLC BW	2.66 TB/s	N/A	1.0 TB/s	N/A	N/A
LLC capacity	16 MB shared	19.25 MB shared	1 MB private	6 MB shared	1 MB shared by 2 cores

Applications used for evaluation

- SGEMM/DGEMM
 - Matrix-matrix multiplications to evaluate the Peak flop/s
- Stream benchmark
 - Simple kernels (copy, scale, add, triad) to measure sustained memory performance
- Himeno benchmark
 - Jacobi kernels with a 19-point stencil as a memory-intensive kernels
- Tohoku univ's kernels
 - Kernels of practical applications of Tohoku univ in Earthquake, CFD, Electromagnetic
- Microbenchmark for offload evaluation
 - Mixture with vector-friendly jacobi kernels and I/O kernels

SGEMM/DGEMM Performance

- High scalability up to 8 threads
 - High vectorization ratio 99.36%, good vector length 253.8
- High efficiency and achieve almost ideal performance
 - Efficiecy 97.8~99.2%

9 October, 2018

WSSP28

Memory performance(Stream Triad)

- High sustained memory bandwidth of SX-Aurora TSUBASA
 - Efficiency: Aurora 79%, ACE 83%, Skylake 66%, V100 81%
- Scalability
 - Saturated even when the number of cores is 3 or 4

9 October, 2018

WSSP28

Himeno (Jacobi) performance

- Higher performance... except GPU
 - Vector reduction becomes bottleneck due to copy among vector pipes
- Nice thread scalability
 - 6.9x speedup in 8 threads => 86% parallel efficiency (OpenMP overhead?)

Application kernel performance

- SX-Aurora TSUBASA could achieve high performance
 - Plasma, Turbine => Indirect access, memory latency-bound
 - Antenna => computation-bound to memory BW-bound
 - Land mine, Earthqauke, Turbulent flow =>memory or LLC BWbound

Memory bound? or LLC bound?

- Further analysis using 4 types of Bytes/Flop ratio
 - **Memory B/F** = (memory BW) / (peak performance)
 - **LLC B/F** = (LLC BW) / (peak performance)
 - Code B/F = (necessary data in Byte) / (# FP operations)
 - Actual B/F = (# block memory access) * (block size) / (# FP operations)

B/F ratio	Actual < Memory	Memory > Actual	
Code < LLC	Computation-bound	Memory BW-bound	
Code > LLC	LLC BW-bound	Memory or LLC bound *	

- Code B/F > Actual B/F * LLC BW / Memory BW => LLC bound
- Code B/F < Actual B/F * LLC BW / Memory BW => memory bound

Application kernel performance

B/F ratio	Actual < Memory	Memory > Actual	
Code < LLC	Computation-bound	Memory BW-bound	
Code > LLC	LLC BW-bound	Memory or LLC bound *	

- Land mine => LLC-bound
- Earthqauke => LLC-bound
- Turbulent flow => memory BW-bound
- Antenna => memory BW-bound

Evaluation of the execution model

- (Transparent/Explicit)
 Offload from VE to VH
- Offload from VH to VE

16

Multi-VE performance on A300-8

- Stream VE-level scalability
 - Almost ideal scalability up to 8 VEs
- Himeno VE-level scalability
 - Good scalability up to 4VEs
 - Lack of vector lengths when more than 5VEs
 - Problem size is too small

Conclusions

- Performance evaluation and analysis of SX-Aurora TSUBASA
 - Standard benchmark programs
 - → High potential of compute and memory performances
 - Kernels of practical applications
 - → High memory performance leads high sustained performance
 - Microbenchmark
 - → Effectiveness of a new execution model