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Background

▪ Checkpointing is to dump a whole memory image of a 
running process to a checkpoint file, from which the 
process can restart.
– One of the most intensive I/O operations in HPC applications

▪ The I/O performance will not increase at the same pace as the computation 
performance.

▪ The ratio between the I/O performance and the computation performance will be 
larger in the future system.

– Future system will require more frequent checkpointing.
▪ Future system will consist of much more hardware components, resulting in a higher 
probability of facing a failure during execution.

The checkpointing overhead could dominate the total execution time.

We need to reduce the checkpointing overhead to efficiently 
use future computing systems. 
 Various approaches have been proposed so far.

Incremental checkpointing
Application-level checkpointing



This Work

▪ A combination of application^level
ckpt and incremental ckpt.
– Automatic parameter tuning (auto-tuning) is also 
employed to reduce the overhead.

– A simple API, Appicpr, is provided as a prototype 
implementation of the proposed approach.
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Application-Level Ckpt

▪ Only necessary data for restarting the process  
are periodically saved in a checkpoint file.
– Programmers explicitly write the file I/O operations in their applications.

– Most of practical HPC applications would have a kind of application-level 
checkpointing capability, which simply write specific data to checkpoint 
files.

▪ For example, printf in C language, and WRITE statement in Fortran are simply 
used for the file I/O operations of application-level checkpointing.
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Incremental Ckpt

▪ Only updated data since the last checkpointing
are written to a checkpoint file to overwrite the 
previous data.
– Reduce the amount of data written upon checkpointing, and hence the 
checkpoint overhead.
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Page-Based Incremental Ckpt

▪ All pages are write-protected after checkpointing.

▪ An exception occurs when an application tries to 
update a page.

▪ The exception handler records the information 
about updated pages, and disables the protection.

▪ Finally, the application can update the page.
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Implementation Issues of 
Incremental Ckpt

▪ Implementation needs system programming
– Write protection of pages

– Exception handling

 Application programmers might be unfamiliar
with them.

– In general, incremental checkpointing has been implemented as system-
level checkponting, not application-level.

▪ The cost of exception handling is not negligible.
– The first write access to each page since the last checkpointing invokes 
exception handler. Exception handling might be invoked frequently, 
resulting in degrading the memory access performance.
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Application-Level Incremental 
Ckpt with Auto-Tuning

▪ Appicpr: a simple API for programmers to make 
application-level ckpt incremental.
– The API is designed by considering legacy HPC applications in mind, and 
can be called from Fortran programs.

▪ Multiple pages are merged into one management 
region for the update information management.
– How many pages should be merged into one management region?
The optimal management region size depends on the memory update 
patterns of the application.

 Automatic tuning for each application.



Code example

▪ Conventional application-level ckpt

▪ Application-level ckpt with Appicpr

real, dimension(asize,asize) :: array

open(newunit=u,file='test.dat',form='unformatted')
write(u) array
close(u)

real, dimension(asize,asize) :: array

!open(newunit=u,file='test.dat',form='unformatted')
call appic_open('test.dat')
call appic_register(array,sizeof(array))
!write(u) array
call appic_write(array)
!close(u)
call appic_close()



Effects of Merging Pages

▪ Merit
– Reducing the number of exceptions handler invocations, and 
thus reduce the exception handling overhead.

▪ Demerit
– The whole of each management region is written to a 
checkpoint file even though it may contain unchanged pages.
= After disabling the write protection, an exception does not 
occur and thus the update information about the other pages 
is unknown.
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Management Granularity 
Auto-Tuning

▪ Procedure of management granularity auto-tuning
– Initially, each page is a management region.

– At checkpointing, only updated regions are written to a checkpoint file.

– If a region and its next region are both updated, the region is “marked”

– Number of marked regions >= Number of updated regions / 2.
= Marked regions are in majority of updated regions.

– The management granularity (the number of pages in a management 
region) is doubled.
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Experimental Setup

▪ NEC LX406Re-2 System
– Cyberscience Center, Tohoku University

– Intel Xeon E5-2695v2

– NEC ScaTeFS file system

Time for writing 1GB data to a file.
 Writing small data chunks is slow.
= Larger management granularity is beneficial 
in terms of file I/O performance.



More significant on SX-AT

VH-VE collaboration is needed.
= File IO operation should be offloaded to VH.



Himeno Benchmark

▪3-dimensional Jacobi kernel
– Every element is sequentially updated one by one.

– Checkpoint is taken when a whole slice is updated.

Each slice should be one management region.

= We have to judge if each slice is updated or not.



Management Granularity

A larger granularity leads to a lower overhead.

Overhead of Exception Handling



Performance Evaluation Results

Appicpr can always find the best granularity,
and reduce the checkpointing overheads.
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Conclusions

▪ Appicpr
– A combination of application-level ckpt, incremental ckpt, 
and auto-tuning.

– The reliability can be improved by reducing the 
ckeckpointing overheads and hence taking checkpoints 
more frequently.

– Evaluation results show that the checkpointing overhead 
can significantly be reduced if only a part of a large 
array is updated during the checkpointing interval.

▪ Future work
– In this work, management granularity is monotonically 
increased, and never decreased, because it is difficult to 
decide if it should be decreased. This will be further 
discussed in our future work.

– Checkpointing interval tuning is considered as well as 
management granularity.



Energy Cost and Resiliency

• 3-level checkpointing using CheCL:

– level-1: RAM ckpt → can tolerate failures that do not require reboot (level-1 failures)

– level-2: local disk ckpt → can tolerate failures that require reboot (level-2 failures)

– level-3: PFS ckpt → can tolerate more severe failures (level-3 failures)
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nodelevel-1: RAM ckpt

level-2: local disk ckpt

level-3: PFS ckpt

local disk local disklocal disk local disk

PFS

node node node

Timeai→0.35sec/GB
Power →18watt
Energy→6.3J/GB
Recoverable failures: 46%

Timeai→9.09sec/GB
Power →8watt
Energy→72.7J/GB
Recoverable failures: 79%

Timeai→13.79sec/GB
Power →8watt
Energy→110.32J/GB
Recoverable failures: 100%

Better resiliency comes at the cost of 
higher energy overhead



Adaptive Checkpointing with Temperature Monitoring

• Temperature monitoring is required for adaptive ckpt
– Monitor the temperature constantly at an interval 𝜹

– Translate the temperature data into failure rate 𝜆(𝑡)

– Perform runtime analysis to decide optimal checkpoint interval
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Problem Statement

• Monitoring overheads could be problematic at large scale
– I/O overhead, context switches, and interrupts

– Disk writing overhead for visualization and analysis

– In Ganglia[6], such overheads are observed to be significant even at 
smaller scale (42 nodes)

• Trade-off between monitoring overhead and checkpoint 
interval’s optimality
– Intensive monitoring → optimal interval BUT large overhead

– Less monitoring →  small overhead BUT  sub-optimal interval

• Aim of this work: Reduce the reliance on monitoring activities 
while still maintaining the optimality of checkpoint interval

28[6] M. L.  Massie et al., The Ganglia Distributed Monitoring System: Design, Implementation, and Experience, Parallel Computing 30(7), 817-840, 
2004.
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