TOHOKU

UNMIVERSITY

AUtonitc Parameter Tuning for
Efficient Checkpointing

7
7

WSSP28 @ HLRS

d

Hiroyuki Takizawa {Tohoku University)

<takizawa@tohoku.ac jp> |
- Muhommad Alfion Amrizal, Kozuhiko Komaotsu, ond Ryusuke Egowa

Outine '

e ————— -

- Infroduction

- Checkpointing methods

- Application-level incremental
C

- Evaluation and discussions

- Conclusions

eckpointing with auto-tuning

Background

%ﬁ.ﬁn O s!«?#o@a??c’ﬁ‘&?ep@.nﬁ.i“‘ 3.';:";4 .‘J: % ofa
proce mn resiart

— One of the most intensive I/0 operations in HPC applications

» The I/0 performance will not increase at the same pace as the computation
~ performance*

= The ratio between the I/O performance and the computation performance will be
larger in the future system-

i Fubure system will require more frequent checkpointing-

= Future system will consist of much more hardware components, resulting in a higher
probability of facing a failure during execution-

> The checkpointing overhead could dominate the total execution time:

to reduce the ¢ inting o d to efficient!
e Th e LoHing Sysisri i etheadp efficianity

- Various approaches have been proposed so far-

Incremental checkpointing
Application-level checkpointing

This Work

S = T

e

- A combiniion of application-level
ckpt and incremental ckpt.

- Automatic parameter tuning (QUtO-tUNING) /s also
employed to reduce the overhead:

- A simple API, APPICPr, /s provided as a prototype
implementation of the proposed approach-

Outine '

e ————— -

- Infroduction
- Checkpointing methods
- Application-level incremental

checkpointing with auto-tuning

- Evaluation and discussions
- Conclusions

Appllmhan-l.evel Ckpt

S — e ——

iny necessary data for restarimg ihe process
are periodically saved in a checkpoint file.

— Programmers explicitly write the file /0O operations in their applications-

- Most of practical HPC applications would have a kind of application-level

checkpointing capability, which simply write specific data to checkpoint
files-

= For example, printf jn C language, and WRITE statement in Fortran are simply
used for the file I/0O operations of application-level checkpointing:

'.
l)

7;t Ckpt \»
2rd ckpt

ncremeni Ckpi

e = ey —— = ——— =

Only updated dl‘l‘d since the last checkpointin
are written to a checkpoint file to overwrite the
previous data.

- Reduce the amount of data written upon checkpointing, and hence the
checkpoint overhead- ‘

ZHM’

Page-Based Incremenml Ckpt

- All pages are wnte—protected after checkpomhng

- An exception occurs when an application fries to
update a page. |

- The exception handler records the mformahon '
about updated pages, and disables the protection.

- Finally, the application can update the page.

Exce tion!

yes yes yes yes yes yes

protect yes
update -~ NO yes

RS i T——— e —— e =

Implementation issues of
iIncremental Ckpt

S ‘ e = e =

- implementation needs system programming
— Write protection of pages
— Except/on hand/mg

ppllcahon programmers might be unfamiliar
wnih them.

— In general, incremental checkpointing has been /mp/emem‘:ed as system-
Ievel checkponting, not application-level.

- The cost of exception hnding is not negligible.

— The first write access to each page since the last checkpointing invokes
exception handler- Exception handling might be invoked frequently,
resulting in degrading the memory access performance:

Qutine '

—— e ——————— ——

. Infroduction |

- Checkpointing methods

- Application-level incremental
C

- Evaluation and discussions

- Conclusions

eckpointing with auto-tuning

AE plication-Level Incrementql
pt wnth Aum-'mnmg

S e I —— == =

- Appicpr:a slmple API for programmers to make
application-level ckpt incremental.

- The APl is designed by considering legacy HPC applications in mind, and
~ can be called from Fortran programs-

- Multiple pages are merged into one management
region for the update information management.

- How many pages should be merged into one management region?
The. optimal management region size depends on the memory update
patterns of the application-

> Automatic tuning for each ¢ qpplmqtmn

Code example

s . s

- Conventional application-level ckpt

real, dimension(asize,asize) :: array

open(newunit=u,file='test.dat',form='unformatted')
write(u) array
close(u)

- Application-level ckpt with Appucpr

real, dimension(asize,asize) :: array

lopen(newunit=u,file="test.dat',form="unformatted')
call appic_open('test.dat')

call appic_register(array,sizeof(array))

lwrite(u) array

call appic write(array)

I'close(u)

call appic_close()

Effects of Mergmg ques

—— e =

| Except/on’ i :
protect no no yes yes yes yes
update ? yeS ? 2 Bg... NO no no
- Merit

— Reducing the number of exceptions handler invocations, and
thus reduce the exception handling overhead-

- Demerit

— The whole of each management region is written to a
checkpomt file even though it may contain unchanged fages
After disabling the write protection, an exception does not

occur and thus the update information about the other pages
is unknown:

Management Granularity
Aum-Tumng

e = e ——— e =

marked es

 Procedure of mangemeni grnulariiy auto-iuning
- Initially, 'each page is a management region: '
— At checkpointing, only updated regions are written to a checkpoint file:
— If a region and its next region are both updated, the region is “marked”

— Number of marked regions >= Number of updated regions / 2-
= Marked regions are in majority of updated regions-

— The management granularity (the number of pages in a management
region) is doubled-

Management Granularity
Auto-Tuning

—,

I.

_ . - ; Y,
marked Y€S no no no |

 Procedure of management granularity auto-tuning
- Initially, 'each page is a management region: '
— At checkpointing, only updated regions are written to a checkpoint file:
— If a region and its next region are both updated, the region is “marked”

— Number of marked regions >= Number of updated regions / 2-
= Marked regions are in majority of updated regions-

— The management granularity (the number of pages in a management
region) is doubled-

7
.

Management Granularity
Aum-Tumng

e = e ——— e =

ﬂ...l..ﬂ.

marked NO

- Procedure of mangemeni granvlarity auto-iuning
- Initially, 'each page is a management region: '
— At checkpointing, only updated regions are written to a checkpoint file:
— If a region and its next region are both updated, the region is “marked”

— Number of marked regions >= Number of updated regions / 2-
= Marked regions are in majority of updated regions-

— The management granularity (the number of pages in a management
region) is doubled-

Outine '

e ————— ——

- Infroduction

- Checkpointing methods

- Application-level incremental
C

- Evaluation and discussions

- Conclusions

eckpointing with auto-tuning

Expenmentql Setup | &

e

- NEC a.xuoske-z System ! |
— Cyberscience Center, Tohoku University | ==
- Intel Xeon E5-2695v2 | = =
-~ NEC 5caTeF5 file system :

Time for writing 1GB data to a file:
> Writing small data chunks is slow-

= Larger management granularity is beneficial
in terms of file I/O performance-

64 128 256 512 1024 2048 4096 8192 16384
Data Size [Kbytes]

More significant on SX-AT

VH-VE collaboration is needed-
= File 10 operation should be offloaded to VH-

—
S
)

D,
)

£

|_

Vo> D o
IR PO)
YT TR A W 96

B o gV oK (D Lo
NTDY o

Data Chunk Size [KB]

Himeno Benchmark

— = — = S — T — = —— e —

- 3-dimensional Jacobi kernel

- Every element is sequentially updated one by one-
—Checkpoint is taken when a whole slice is updated-

>Each slice should be one management region.
= We have 1o judge if each slice is updated or not.

Management Granularity

= T e

A larger granularity leads to a lower overhead-
. Overhead of Exception Handling

-7

@)}

L

=N

[F'S]

]
L
75
L
-
=
-
-
-
=
2
L
>

no ckpt . 8 16 32

Management Region Size [Kbytes]

: ° b ;
Performance Evaluation Results
Full dump ™ Incremental ™ Appicpr
1.0E+03
1.0E+02
2 1.0E+01

1.0E+00

o
]
g
]
=
-
=
p—
5]
)
P

1.0E-01
1.0E-02

1.0E-03
Problem Size

Appicpr can always find the best granularity,
and reduce the checkpointing overheads-

Outine '

e ————— -

- Infroduction
- Checkpointing methods
- Application-level incremental

checkpointing with auto-tuning

- Evaluation and discussions
- Conclusions

Conclusions

= i : —_—— = -

. Appicpr

— A combination of application-level ckpt, incremental ckpt,
and auto-tuning:

— The reliability can be improved by reducing the
ckeckpointing overheads and hence taking checkpoints
more frequently-

— Evaluation results show that the checkpointing overhead
can significantly be reduced if only a part of a large
array is updated during the checkpointing interval-

- Future work

— In this work, management granularity is monotonically
increased, and never decreased, because it is difficult to
decide if it should be decreased- This will be further
discussed in our future work-

— Checkpointing interval tuning is considered as well as
management qranularity-

Energy Cost and Resiliency

e 3-level checkpointing using CheCL:
— level-1: RAM ckpt = can tolerate failures that do not require reboot (level-1 failures)
— level-2: local disk ckpt = can tolerate failures that require reboot (level-2 failures)
— level-3: PFS ckpt = can tolerate more severe failures (level-3 failures)

level-1: RAM ckpt node node node node
3
Gl Time -0.35sec/GB g ([N (([)
-GPU2 -GPUI -GPU2 -GPUI GPU2 -GPUI -GPU2 -GPUI
Power - 18watt

Energy—>6.3J/GB
Recoverable failures: 46%
level-2: local disk ckpt
Time -9.09sec/GB 1
Power ->8watt
[Energy972.7J/GB] ki
Recoverable failures: 79%
level-3: PFS ckpt
Time —->13.79sec/GB
Power —>8watt

Energy—>110.32J/GB
Recoverable failures: 100%

RAM Disk RAM Disk RAM Disk RAM Disk

rgy Cost and Re

Better resiliency comes at the cost of
higher energy overhead *

Adaptive Checkpointing with Temperature Monitoring

 Temperature monitoring is required for adaptive ckpt
— Monitor the temperature constantly at an interval 6
— Translate the temperature data into failure rate A(t)
— Perform runtime analysis to decide optimal checkpoint interval

® Monitoring timings <> Monitoring interval @ Checkpoint timings

afailure rate curve A(t)

Monitoring-ON

Problem Statement

* Monitoring overheads could be problematic at large scale
— 1/0 overhead, context switches, and interrupts
— Disk writing overhead for visualization and analysis

— In Ganglial®, such overheads are observed to be significant even at
smaller scale (42 nodes)

* Trade-off between monitoring overhead and checkpoint
interval’s optimality
— Intensive monitoring = © optimal interval BUT ® large overhead
— Less monitoring > © small overhead BUT ® sub-optimal interval

* Aim of this work: Reduce the reliance on monitoring activities
while still maintaining the optimality of checkpoint interval

[6] M. L. Massie et al., The Ganglia Distributed Monitoring System: Design, Implementation, and Experience, Parallel Computing 30(7), 817-840,
2004.

Acknowledgments

N e

— This work was partially supported by J5T CREST “An
Evolutionary Approach to Construction of a Software
Development Environment for Massively-Parallel
Heterogeneous Systems,” DFG SPPEXA ExaFS5A project,

and Grant-in-Aid for Scientific Research(B) 16 HO2822-

— The performance evaluation results were obtained using

supercomputing resources of the Cyberscience Center,
Tohoku University-

