
Automatic Parameter Tuning for
Efficient Checkpointing

WSSP28 @ HLRS

Hiroyuki Takizawa (Tohoku University)

<takizawa@tohoku.ac.jp>
Muhammad Alfian Amrizal, Kazuhiko Komatsu, and Ryusuke Egawa

Outline

▪ Introduction

▪ Checkpointing methods

▪ Application-level incremental
checkpointing with auto-tuning

▪ Evaluation and discussions

▪ Conclusions

Background

▪ Checkpointing is to dump a whole memory image of a
running process to a checkpoint file, from which the
process can restart.
– One of the most intensive I/O operations in HPC applications

▪ The I/O performance will not increase at the same pace as the computation
performance.

▪ The ratio between the I/O performance and the computation performance will be
larger in the future system.

– Future system will require more frequent checkpointing.
▪ Future system will consist of much more hardware components, resulting in a higher
probability of facing a failure during execution.

The checkpointing overhead could dominate the total execution time.

We need to reduce the checkpointing overhead to efficiently
use future computing systems.
 Various approaches have been proposed so far.

Incremental checkpointing
Application-level checkpointing

This Work

▪ A combination of application^level
ckpt and incremental ckpt.
– Automatic parameter tuning (auto-tuning) is also
employed to reduce the overhead.

– A simple API, Appicpr, is provided as a prototype
implementation of the proposed approach.

Outline

▪ Introduction

▪ Checkpointing methods

▪ Application-level incremental
checkpointing with auto-tuning

▪ Evaluation and discussions

▪ Conclusions

Application-Level Ckpt

▪ Only necessary data for restarting the process
are periodically saved in a checkpoint file.
– Programmers explicitly write the file I/O operations in their applications.

– Most of practical HPC applications would have a kind of application-level
checkpointing capability, which simply write specific data to checkpoint
files.

▪ For example, printf in C language, and WRITE statement in Fortran are simply
used for the file I/O operations of application-level checkpointing.

0 1 2 3 4 5 6 7

Ckpt file1st ckpt
2nd ckpt

Incremental Ckpt

▪ Only updated data since the last checkpointing
are written to a checkpoint file to overwrite the
previous data.
– Reduce the amount of data written upon checkpointing, and hence the
checkpoint overhead.

0 1 2 3 4 5 6 7

Ckpt file1st ckpt

2nd ckpt

Page-Based Incremental Ckpt

▪ All pages are write-protected after checkpointing.

▪ An exception occurs when an application tries to
update a page.

▪ The exception handler records the information
about updated pages, and disables the protection.

▪ Finally, the application can update the page.

0 1 2 3 4 5 6 7

protect
update

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
yes
no
yes

Exception!

Implementation Issues of
Incremental Ckpt

▪ Implementation needs system programming
– Write protection of pages

– Exception handling

 Application programmers might be unfamiliar
with them.

– In general, incremental checkpointing has been implemented as system-
level checkponting, not application-level.

▪ The cost of exception handling is not negligible.
– The first write access to each page since the last checkpointing invokes
exception handler. Exception handling might be invoked frequently,
resulting in degrading the memory access performance.

Outline

▪ Introduction

▪ Checkpointing methods

▪ Application-level incremental
checkpointing with auto-tuning

▪ Evaluation and discussions

▪ Conclusions

Application-Level Incremental
Ckpt with Auto-Tuning

▪ Appicpr: a simple API for programmers to make
application-level ckpt incremental.
– The API is designed by considering legacy HPC applications in mind, and
can be called from Fortran programs.

▪ Multiple pages are merged into one management
region for the update information management.
– How many pages should be merged into one management region?
The optimal management region size depends on the memory update
patterns of the application.

 Automatic tuning for each application.

Code example

▪ Conventional application-level ckpt

▪ Application-level ckpt with Appicpr

real, dimension(asize,asize) :: array

open(newunit=u,file='test.dat',form='unformatted')
write(u) array
close(u)

real, dimension(asize,asize) :: array

!open(newunit=u,file='test.dat',form='unformatted')
call appic_open('test.dat')
call appic_register(array,sizeof(array))
!write(u) array
call appic_write(array)
!close(u)
call appic_close()

Effects of Merging Pages

▪ Merit
– Reducing the number of exceptions handler invocations, and
thus reduce the exception handling overhead.

▪ Demerit
– The whole of each management region is written to a
checkpoint file even though it may contain unchanged pages.
= After disabling the write protection, an exception does not
occur and thus the update information about the other pages
is unknown.

0 1 2 3 4 5 6 7

protect
update

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

yes
no

no
?

no
?

no
yes

no
?

Exception!

Management Granularity
Auto-Tuning

▪ Procedure of management granularity auto-tuning
– Initially, each page is a management region.

– At checkpointing, only updated regions are written to a checkpoint file.

– If a region and its next region are both updated, the region is “marked”

– Number of marked regions >= Number of updated regions / 2.
= Marked regions are in majority of updated regions.

– The management granularity (the number of pages in a management
region) is doubled.

0 1 2 3 4 5 6 7

marked nono no no nonoyesyes

Nm = 2, Nc = 3

Management Granularity
Auto-Tuning

▪ Procedure of management granularity auto-tuning
– Initially, each page is a management region.

– At checkpointing, only updated regions are written to a checkpoint file.

– If a region and its next region are both updated, the region is “marked”

– Number of marked regions >= Number of updated regions / 2.
= Marked regions are in majority of updated regions.

– The management granularity (the number of pages in a management
region) is doubled.

0 1 2 3 4 5 6 7

marked no nonoyes

Nm = 1, Nc = 2

Management Granularity
Auto-Tuning

▪ Procedure of management granularity auto-tuning
– Initially, each page is a management region.

– At checkpointing, only updated regions are written to a checkpoint file.

– If a region and its next region are both updated, the region is “marked”

– Number of marked regions >= Number of updated regions / 2.
= Marked regions are in majority of updated regions.

– The management granularity (the number of pages in a management
region) is doubled.

0 1 2 3 4 5 6 7

marked nono

Nm = 0, Nc = 1

Outline

▪ Introduction

▪ Checkpointing methods

▪ Application-level incremental
checkpointing with auto-tuning

▪ Evaluation and discussions

▪ Conclusions

Experimental Setup

▪ NEC LX406Re-2 System
– Cyberscience Center, Tohoku University

– Intel Xeon E5-2695v2

– NEC ScaTeFS file system

Time for writing 1GB data to a file.
 Writing small data chunks is slow.
= Larger management granularity is beneficial
in terms of file I/O performance.

More significant on SX-AT

VH-VE collaboration is needed.
= File IO operation should be offloaded to VH.

Himeno Benchmark

▪3-dimensional Jacobi kernel
– Every element is sequentially updated one by one.

– Checkpoint is taken when a whole slice is updated.

Each slice should be one management region.

= We have to judge if each slice is updated or not.

Management Granularity

A larger granularity leads to a lower overhead.

Overhead of Exception Handling

Performance Evaluation Results

Appicpr can always find the best granularity,
and reduce the checkpointing overheads.

Outline

▪ Introduction

▪ Checkpointing methods

▪ Application-level incremental
checkpointing with auto-tuning

▪ Evaluation and discussions

▪ Conclusions

Conclusions

▪ Appicpr
– A combination of application-level ckpt, incremental ckpt,
and auto-tuning.

– The reliability can be improved by reducing the
ckeckpointing overheads and hence taking checkpoints
more frequently.

– Evaluation results show that the checkpointing overhead
can significantly be reduced if only a part of a large
array is updated during the checkpointing interval.

▪ Future work
– In this work, management granularity is monotonically
increased, and never decreased, because it is difficult to
decide if it should be decreased. This will be further
discussed in our future work.

– Checkpointing interval tuning is considered as well as
management granularity.

Energy Cost and Resiliency

• 3-level checkpointing using CheCL:

– level-1: RAM ckpt → can tolerate failures that do not require reboot (level-1 failures)

– level-2: local disk ckpt → can tolerate failures that require reboot (level-2 failures)

– level-3: PFS ckpt → can tolerate more severe failures (level-3 failures)

26

nodelevel-1: RAM ckpt

level-2: local disk ckpt

level-3: PFS ckpt

local disk local disklocal disk local disk

PFS

node node node

Timeai→0.35sec/GB
Power →18watt
Energy→6.3J/GB
Recoverable failures: 46%

Timeai→9.09sec/GB
Power →8watt
Energy→72.7J/GB
Recoverable failures: 79%

Timeai→13.79sec/GB
Power →8watt
Energy→110.32J/GB
Recoverable failures: 100%

Better resiliency comes at the cost of
higher energy overhead

Adaptive Checkpointing with Temperature Monitoring

• Temperature monitoring is required for adaptive ckpt
– Monitor the temperature constantly at an interval 𝜹

– Translate the temperature data into failure rate 𝜆(𝑡)

– Perform runtime analysis to decide optimal checkpoint interval

27

Problem Statement

• Monitoring overheads could be problematic at large scale
– I/O overhead, context switches, and interrupts

– Disk writing overhead for visualization and analysis

– In Ganglia[6], such overheads are observed to be significant even at
smaller scale (42 nodes)

• Trade-off between monitoring overhead and checkpoint
interval’s optimality
– Intensive monitoring → optimal interval BUT large overhead

– Less monitoring → small overhead BUT sub-optimal interval

• Aim of this work: Reduce the reliance on monitoring activities
while still maintaining the optimality of checkpoint interval

28[6] M. L. Massie et al., The Ganglia Distributed Monitoring System: Design, Implementation, and Experience, Parallel Computing 30(7), 817-840,
2004.

Acknowledgments

– This work was partially supported by JST CREST “An
Evolutionary Approach to Construction of a Software
Development Environment for Massively-Parallel
Heterogeneous Systems,” DFG SPPEXA ExaFSA project,
and Grant-in-Aid for Scientific Research(B) 16H02822.

– The performance evaluation results were obtained using
supercomputing resources of the Cyberscience Center,
Tohoku University.

