

Experiences with NEC's New Vector System SX-Aurora TSUBASA and Its Extension for the Future

Hiroaki Kobayashi

Special Advisor to President (for ICT Innovation) Deputy Directer for the HPC Strategy of Cybersicence Center Chair of Computer and Mathematics Sciences Department Professor of Graduate School of Information Sciences

> Tohoku University koba@tohoku.ac.jp 28th WSSP October 9-10, 2018

SX-Aurora TSUBASA A300-2 #00001

Today's Agenda

Quick Introduction of NEC's New Vector System: SX-Aurora TSUBASA

- An X86-Attached SX Vector System Aiming at Standardization and Customization
- ✓ The New Execution Model of Scalar/OS Offloading
- **★** Early Evaluation of SX-Aurora TSUBASA
 - ✓ Tohoku Univ.'s Application Kernels
 - ✓ HPCG
 - Vector Offloading Mechanism
- 📩 On-going R&D
 - Design consideration of SX-Aurora TSUBASA for the Next Generation
 - ✓ R&D of a Quantum Computing-Assisted HPC Infrastructure

The First Impression of SX-Aurora TSUBASA

SX-Aurora TSUBASA A300-2 #00001

NEC Brand-New Vector System: SX-Aurora-Tsubasa

Source: NEC

The Customization Highest Mem. BW ✓ Largest Single Core Performance

- **The Standardization**
 - Linux Environment

New execution model centralized on vector computing

Hardware Specification of SX-Aurora TSUBASA

SX-Aurora TSUBASA A300-2 #00001

X86 Processor(Xeon)

/ector Engine (VE)	Type 10B
Frequency	1.4 GHz
Performance/Core	537.6 GF(SP), 268.8 GF (DP)
No. of Cores	8
Performance/Socket	4.30 TFLOPS (SP) 2.15 TFLOPS (DP)
Memory Subsystem	HBM2 8GB x6
Memory Bandwidth	1.2 TB/s
Memory Capacity 28th WSSP	48 GB

Vector Host (VH)	Intel Xeon Gold 6126
Frequency	2.60 GHz / 3.70 GHz (Turbo boost)
Performance/Core	166/236 GF(SP), 83/118 GF (DP)
No. of Cores	12
Performance/Socket	1,996/2,840 GF(SP) 998.4/1,420 GF(DP)
Memory Subsystem	DDR4-2666 DIMM 16GB x 6
Memory Bandwidth	128 GB/s
Memory Capacity	96 GB

28th WSSP

A New Execution Model of SX-Aurora TSUBASA

Conventional Execution Model of Accelerators PCIe Gen3 Host GPU Start processing, Data transfers Kernel Result transfer execution Kernel execution End Accelerator as a Slavel processing Data transfers easily become bottleneck

SX-Aurora TSUBASA Execution Model

Oct. 9-10, 2018

Comparison between SX-ACE and SX-Aurora

		SX-Aurora (2018)	SX-ACE (2014)	Improvement	
CPU Performance	Number of Cores	lumber of Cores 8 4		2x	
	Total Flop/s in DP (Total Flop/sin SP)	2.15Tflop/s (4.3Tflop/s)	256Gflop/s	8.4x (16.8x)	
	Memory Bandwidth	1.2TB/sec	256GB/sec	4.7x	
	ADB Capacity	16MB(Shared)	4MB(Private)	16x	
	B/F	0.55	1	0.55X	
OS		Lunux	Super-UX	00	

Oct. 9-10, 2018

Hiroaki Kobayashi, Tohoku University

Comparison between Xeon Gold, SX-Aurora TSUBASA VE and V100

	Intel Xeon Gold 6126	NEC Vector Engine Type 10B	NVIDIA Tesla V100		
Frequency	2.6 GHz / 3.7 GHz(Turbo)	1.4 GHz	1.245 GHz		
No. of cores	12	8	5120		
Performance/socket	1,996/2,840 GF (SP) 998.4/1,420 GF (DP)	4.3 TF (SP) 2.15 TF (DP)	14 TF (SP) 7 TF (DP)		
Memory subsystem DDR4-2666 DIMM 16GB x 6 channel		HBM2 8GB x 6 modules	HBM2 4GB x 4 modules		
Memory bandwidth	128 GB/s	1.22 TB/s	900 GB/s		
Memory capacity	96 GB	48 GB	16 GB		
Price?	CONTROL OF THE SECOND				

FUITSU

You may be interested in Post-K Processor... ~Become available in 2021?~

A64FX Chip Overview

Architecture Features

- Armv8.2-A (AArch64 only)
- SVE 512-bit wide SIMD
- 48 computing cores + 4 assistant cores*

*All the cores are identical

- HBM2 32GiB
- Tofu 6D Mesh/Torus 28Gbps x 2 lanes x 10 ports
- PCIe Gen3 16 lanes

7nm FinFET

- 8,786M transistors
- 594 package signal pins

Peak Performance (Efficiency)

- >2.7TFLOPS (>90%@DGEMM)
- Memory B/W 1024GB/s (>80%@Stream Triad)

	A64FX (Post-K)	SPARC64 XIfx (PRIMEHPC FX100)
ISA (Base)	Armv8.2-A	SPARC-V9
ISA (Extension)	SVE	HPC-ACE2
Process Node	7nm	20nm
Peak Performance	>2.7TFLOPS	1.1TFLOPS
SIMD	512-bit	256-bit
# of Cores	48+4	32+2
Memory	HBM2	HMC
Memory Peak B/W	1024GB/s	240GB/s x2 (in/out)

All Rights Reserved. Copyright © FUJITSU LIMITED 2018

T. Yoshida, "Fujitsu High Performance CPU for the Post-K Computer," Hot Chips 30, 2018.

The Similar Architecture with The Same Performance Available Right Now!

Vector Engine Processor Overview

SX-Aurora TSUBASA

Components

- 8 vector cores
- 16MB LLC
- 2D mesh network on chip
- DMA engine
- 6 HBM2 controllers and interfaces
- PCI Express Gen3 x16 interface

© NEC Corporation 2018

Specs

Core frequency	1.6GHz
Core performance	307GF(DP) 614GF(SP)
CPU performance	2.45TF(DP) 4.91TF(SP)
Memory bandwidth	1.2TB/s
Memory capacity	24/48GB

Technology

16nm FinFET process
 4.8 billion transistors

Stiffener / Organic substrate

Y.Yamada and S.Momose, "Vector Engine Processor of NEC's Brand-New Supercomputer Aurora TSUBASA," Hot Chips 30, 2018.

12

Benchmark Programs for Performance Evaluation

Kernels	Fields	Methods	Memory access	Grids	Code B/F	Vector Length	Vector Ratio	Actual B/F
Land Mine	Electromagnetic	FDTD	Sequential	100x750x750	6.22	250.9	99.2	5.14
Earthquake	Seismology	Dependent Friction Law	Sequential	2047x2047x256	4.00	255.9	99.4	4.00
Turbulent Flow	CFD	Navier-Stokes	Sequential	512x16384x512	8.00	255.8	99.1	1.47
Antenna	Electromagnetic	FDTD	Sequential	252755x9x97336	1.73	255.7	99.7	0.98
Plasma	Physics	Lax-Wendroff	Indirect	20M	0.82	256.0	70.9	0.11
Turbine	CFD	LU-SGS	Indirect	480x80x80x10	0.96	239.5	99.7	0.0084

Tohoku Univ.'s Kernels Results

Performance Evaluation of SX-Aurora TSUBASA by Using the HPCG Benchmark

- ★ HPCG (High Performance Conjugate Gradients) is designed to exercise computational and data access patterns that more closely match a broad set of important applications,
 - ✓ HPL for top500 is increasingly unreliable as a true measure of system performance for a growing collection of important science and engineering applications.
- ★ HPCG is a complete, stand-alone code that measures the performance of basic operations in a unified code:
 - ✓ Sparse matrix-vector multiplication.
 - ✓ Sparse triangular solve.
 ✓ Vector updates.
 ✓ Global dot products.
 Benchmark
 Kernel
 Required B/F
 HPL
 DGEMM
 <0.1
 HPGMG
 GSRB
 >1
 HPCG
 SpMV, SYMGS
 >4
 - ✓ Local symmetric Gauss-Seidel smoother.
 - ✓ Driven by multigrid preconditioned conjugate gradient algorithm that exercises the key kernels on a nested set of coarse grids.
 - \checkmark Reference implementation is written in C++ with MPI and OpenMP support.

Sustained Performance of HPCG-Benchmark

Grid sizes

Z Y X

HPCG-Benchmark Efficiency

Grid sizes

Hiroaki Kobayashi, Tohoku University

Evaluation of the New Execution Model: OS/Scalar Offloading from Vector Processing

VH Offloading Mode

Offloading of vector operations

VE Offloading Mode

Impressions of SX-Aurora TSUBASA

- ★ SX-Aurora TSUBASA has a great potential to achieve a high sustained performance for memory-intensive applications, but...
 - Compiler development is still underway, limiting the sustained performance regarding auto-vectorization and autoparallelization, anyway use the latest one for the best performance!
 - Compiler is also not fully exploiting enlarged and core-shared capacity of LLC. Software controlled function is desired to make the best use of it for reducing off-chip memory transactons
 - For some applications, the LLC bandwidth to cores becomes a bottleneck even with a high hight rates
 - Shared LCC of SX-Aurora, 2.66 against 1.2 of Mem. vs. Dedicated ADB of SX-ACE, 1 against 0.256 all in TB/s)

Unofficial Web Site of SX-Aurora TSUBASA

http://www.cal.is.tohoku.ac.jp/_wp/en/2018/06/15/how-to-install-sx-aurora-tsubasa/

- Our website provides the information about
 - How to setup software environments
 - How to update software environments
 - Events
 - etc

Oct. 9-10, 2018

28th WSSP

Design Consideration of the Future Vector Systems *

*This work is partially conducted with NEC, but the contents do not reflect any future products of NEC

SX-Aurora TSUBASA A300-2 #00001

Hiroaki Kobayashi, Tohoku University

Timeline of the Cyberscience Center HPC System Development and R&D For the Future

Reenforce the academic and industry collaboration for the HPC R&D at Tohoku University

- **★** Tohoku-Univ NEC Joint Research Division of High-Performance Computing
 - ★ Founded in June, 2014, 8-Year Period until 2022

- R&D on HPC technologies to exploit high-sustained performance of science and engineering applications on current HPC Systems and to realize Future HPC Systems targeting at 2021
- Evaluation and Improvement of the current HPC environments through migration of SX-9 applications to SX-ACE
- Detailed Evaluation and Analysis of Modern HPC Systems, not only Vector Systems but also Scalar-Parallel and Accelerator-Based Systems
- Feasibility study of a future highly balanced HPC system for high sustained performance of practical applications in the post-peta scale era

★ Faculty Members

- Hiroaki Kobayashi, Professor and division director
- 🎐 Hiroyuki Takizawa, Professor
- Ryusuke Egawa, Associate Professor
- Akihiko Musa (NEC), Visiting Professor
- Mitsuo Yokokawa (Kobe Univ), Visiting Professor
- Shintaro Momose (NEC), Visiting Associate Professor
- Masayuki Sato, Assistant Professor
- ✓ In collaboration with visiting researchers from NEC and the technical staff of Cyberscience Center

Scaling may be End, but Silicon is not End! And Use it Smart and Effective! Tech Scaling

- We are facing the end of Moore's low due to the physical limitations, and the transistor cost is hard to reduce, however
- Silicon is still fundamental constructing material for computing platforms such as plastic, steel and concrete for automobiles, buildings and home appliances.
 - ★So, we have to become much more smart for design of Future HEC systems.
 - ★ Use precious silicon budget (+ advanced device technologies) to effectively design mechanisms that can maximize the sustained performance and power-efficiency of individual applications domains.

It's time to focus on Domain-Specific Architectures(DSAs) for computation-intensive, memory-intensive, I/O intensive, low-precision computing… etc applications to improve silicon/power efficiency!

New HPC System Architecture Design Concept of Ensemble Architecture: Make different DSAs combine and complementary work together to realize the general-purpose functionality as a single computing infrastructure

Aurora-2 in 2021?

What Does the Next Vector System Look Like in Year Around 2020-2021?

★Vector Engine Spec.

- The 7nm Technology becomes available?
 - 5X more transistors from 16nm tech?
 - 5X in # of Cores, i.e. 50 VE cores feasible?
 - up to 15TF, if the core performance is same, but should be lowered due to power/thermal limitation of the chip.

Aurora in 2018

New Developed Vector Processor

Normal programing with Fortran/C/C++

1.2TB/s memory bandwidth

8 cores / processor
2.45TF performance

PCIe Card Implementation, but not an accelerator

★Memory Subsystem

- 2x in Memory BW, and 1.5X in Memory Capacity when using HBM 3 under the assumption of the same chip size of Aurora-TSUBASA
 - ~3TB/s and ~96GB??

★Design targets of 0.5BF (20 cores of 6TF for memory-intensive applications) to 0.25 BF (40 Cores of 12TF for compute-intensive applications)

 be competitive with contemporary HEC systems at that time, such as Post-K (JP), A21 (US), NERSC-9 (USA), Crossroads (US), EU Exa-System (FR/GE), NUDT2020 (Ch)...

What Does the Next Vector System Look Like in Year Around 2020-2021? (Cont'd)

\star How 20~40 cores are integrated and connected.

- Single chip or multi-chip (SIP)?
- If SIP is employed, how multiple chips are connected? ✓ If EMIB available, BW could be increased? ✓ Silicon photonics with WDM becomes available?
- Single SMP or clustered SMP
- crossbar, mesh, ring, etc or their hierarchical and hybrid?
- coherency protocol of ADB (Snoopy or Directory)

Source by IBM

HETEROGENEOUS INTEGRATION OPTIONS

Source by Intel

Hiroaki Kobayashi, Tohoku University

28th WSSP

Quantum Computer: Emerging Domain Specific Architecture

★ Quantum computing is drawing much attention recently as an emerging technology in the era of post-Moore

- In particular, quantum computers for quantum annealing are commercialized by the D-wave systems, and their applications are developed worldwidely.
 - ✓ Google, NASA, Volkswagen, Lockheed, Denso…
- ✓ The base model named the Ising model to design and implement the D-wave machines has been proposed by Prof. Nishimori et al of Tokyo Inst. Tech. In 1998.
- ★ The quantum annealing is a metaheuristic for finding the global minimum of a given objective function over a given set of candidate solutions (candidate states), by a process using quantum fluctuations

An ideal solver for combinatorial problems!

Transverse magnetic field type quantum annealing Chip and System (D-Wave)

Optimal solution

Toward Realization of Quantum Computing-Assisted HPC Infrastructure

- ★ Tohoku University has established an interdisciplinary priority research institute, named Q-HPC, for Quantum Computing-Accelerated HPC in 2018
- ★ As Q-HPC members, we start a new 5-year research program named "R&D of Quantum Annealing-Assisted HPC Infrastructure", supported by MEXT
 - ✓ Becomes an innovative infrastructure to develop next-generation applications in the fields of computational science, data sciences and their fusions
 - ✓ provides transparent accesses to not only classical HPC resources but also Quantum Computing one in a unified fashion.

Team Organization

An Example of Target Application: QA-Enhanced Real-Time Tsunami Inundation Forecasting and Optimal Evacuation Planning

An Example of Target Applications: Digital Twin Numerical Turbine

28th WSSP

Let's Meet together again at the next WSSP at Tohoku Univ.

- ★ 29th Workshop on Sustained Simulation Performance
 - Date: March 19-20, 2019
 - Place: Tohoku University

