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• Getting configuration parameters from the user

• Informing the user about progress and what is being done
(logging)

• Reacting to errors that the application detects, and reporting
them to the user

Interacting with the User in MPI-Parallel Applications
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• Implemented in a library: SOIL
– Simulation Organization and Infrastructure Library

• Utilization of Fypp for pre-processing

• Utilization of waf for configuration and building

Fundamental Common Tasks
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• We use Lua scripts as input
– Aotus
– User defines required parameters as variables in the script
– Allows usage of arithmetic and loops in definitions

• Lua scripts might “require“ other script files
– Lua will search for “required“ files in various places
– Will stress Meta-Data server, if done by all processes

User Input: Lua Scripts
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• Avoiding massive overload of filesystem:

• Root process executes the script and loads all „required“ files
into memory
– uses function overwrites to keep track of required code chunks

• Broadcast all the Lua code to remaining processes

• Non-root process can execute the Lua script without accessing
the filesystem at all

Reading the Input Just Once and Then Broadcasting
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• Before reading the Lua script from file some Lua code is
executed to replace the require command

• This new require keeps track of „required“ files in a table, 
takes care of nested requires

• Table then contains module name and code of required file

Lua Require on Root Process
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• On all other processes require is replaced by a function that
does not look for files but in a table with module names and
code instead

Lua Require on Other Processes
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• Opening Lua script on root not only executes it in the root
process but also returns the binary representation of it in a 
character variable

• After it was loaded by root, all required files with their
content broadcasted to fill their respective tables of the
special require function

• Finally broadcast the main script and execute it on all 
processes (will execute requires but get the code from
memory instead of from the file system)

Broadcasting Configuration
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• With this approach the Lua script is executed by all processes
and the same configuration state becomes available for all of
them

• Encapsulated in the soi_config_module with the
soi_config_open routine

soi_config_module
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• User needs feedback
– Whether configuration settings are all correctly received by

application
– How far the simulation progressed

• Helping developers to identify problems

• Feedback might be required with different levels of detail

• Usually not required by all processes

Writing Log Information
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• Need to filter out log messages from most processes

• Still provide possibility to obtain loggings from multiple 
processes for debugging

• Separation of logs from multiple processes

Log Information in Parallel
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• Different levels of detail:

– Provide an array of file unit numbers to write to

– Level of detail equivalent to index in the array of file units

– Higher levels indicate less importance of the message

• Application verbosity can be limited at compile-time by

setting a maximal logging level to consider

• Log command provided by a Fypp macro

Soi_log_module
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• Level of detail is configurable at runtime

– (up to maximal level of the compiled executable)

• Number of processes that will write a log can be configured

– Only root (MPI_COMM_WORLD rank 0) will write to stdout, but may

be configured to write to a file instead

– Other processes only will write a log to a file if accordingly configured

• Formatting: Line length of log messages will be limited, limit

can be set by user at runtime

Soi_log_module Configuration
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• The file-unit array of the logger is filled with a unit connected
to an appropriate file (stdout or configured filename) up to
the level configured by the user all higher units are connected
to the null device (/dev/null)
– Example level=3: funit=[stdout, stdout, stdout, null, 
null, null, …]

– funit filled at runtime after reading user settings
– On processes that are not to write logs, all entries point to null

• The log macro will write to the unit found in the funit array
– Example: log(4, message) -> write(funit(4),*) message

Discarding Undesired Log Messages
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@:log(1, 'This application does not really do anything.')
@:log(1, 'But it shows how the basic configuration is loaded')
@:log(1, 'by soi_world_init.')
$:log_blank(1)
@:warn('Warnings will be colored!')
@:warn('They are always written on log level 1.')
$:log_blank(1)
$:log_sep(1)
$:log_indent()
@:log(1, 'Math constants:')
$:log(1, "'e = ', exp(1.0)", log_fmt="'(a,f16.10)'")
$:log(1, "'Pi = ', acos(-1.0)", log_fmt="'(a,en16.9)'")
$:log_unindent()
@:log(2, 'A less important message, put on logging level 2.')

Example Logging Code
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This application does not really do anything.
But it shows how the basic configuration is loaded
by soi_world_init.

Warnings will be colored!
They are always written on log level 1.

************************************************************************
Math constants:
e =     2.7182817459
Pi =  3.141592741E+00

************************************************************************
A less important message, put on logging level 2.

Example Logging Output
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• All writes are local to the processes, no communication

• Two stages:
– Compile time limitation of maximal log level allows minimization of

running time impacts
– Runtime configuration enables the user to set the desired level of

verbosity

• Access to /dev/null by most processes should be fast and
not limit scalability

Remarks on the Approach
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• Many thanks to Rolf Rabenseifner for suggesting the MPI 

strategy

• During parallel execution any process might run into an 

erroneous state

– But not all processes may run into it

• We still want to properly end the simulation

– Provide the user with a proper error notification

– Possibly provide some data dump for inspection

Dealing with Errors
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• Any process may run into an error

• All processes need to be notified of this to coordinate
program termination

• How to deal with this in MPI parallel applications?
– Mainly two options:

• One-sided communication
• Non-blocking collectives

Problem with Errors in Parallel Runs
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• soi_error_module

• Basic idea:
– Conditional raising of error (similar to log macro), in case of error
– Subsequent unconditional checkup on error notification

• To achieve this:
– Need an MPI_Ibcast on a dedicated MPI communicator (duplicate of

MPI_COMM_WORLD)

Handling Errors with Non-Blocking Collectives
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• Startup:

– Process 0 opens MPI_Irecv for MPI_ANY_SOURCE

– All other processes start MPI_Ibcast with rank 0 as root

• In case of error:

– Process with error sends message to rank 0

• Regularly checkup on possibly occured errors (unconditionally

after conditional error raising)

• Finalization in case of error

Soi_error_module
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• Checking for occurred errors involves:
– On process 0

• checking the MPI_Irecv for completion
• if message received, post the MPI_Ibcast to complete it, then wait on it

and afterward start the abort analysis and processing

– On other processes
• Check the MPI_Ibcast for completion
• If MPI_Ibcast completed, enter abort analysis

Check on Errors
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call aot_get_val( L       = lua,          &
&               thandle = thandle,      &
&               val = config%level, &
&               key = 'level',      &
&               default = level,        &
&               ErrCode = iError )

if (btest(iError, aoterr_Fatal)) then
! Conditional error throwing
@:error('Error reading level for logging!')
@:error('Level needs to be an integer, please fix your config.')

end if
…
! Unconditional checking for error
call soi_error_check()

Example for Error Handling in Code
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• If there was an error:
– Gather error messages from all processes if sufficient memory on root

process

– Report messages with the originating MPI rank:
• Collapse contiguous ranks with the same message

– If memory on root process insufficient for messages from all ranks, just 
get and print the longest error message to report

– Finalize MPI and stop application

Abort Analysis
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• Same error on all 4 processes:

Example Output
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An error occurred!
Error messages on processes 0-3:
Error reading level for logging!
Level needs to be an integer, please fix your config.
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• Dealing with minor IO tasks
– Still important to be treated properly for scalable applications

• Dealing with errors in parallel applications to provide concise
and reasonable messages if possible

• Convenience
– For developers
– For users

Summary
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Thank You for Your Kind 
Attention!

Thanks to Rolf Rabenseifner for
his support.

May I take questions?


