
Simulation Techniques &
Scientific Computing

Organizing MPI parallel
Simulations

Harald Klimach
harald.klimach@uni-siegen.de

Thanks to Rolf Rabenseifner

28th WSSP 9.-10.10. Stuttgart

mailto:harald.klimach@uni-siegen.de

Simulation Techniques &
Scientific Computing

• Getting configuration parameters from the user

• Informing the user about progress and what is being done
(logging)

• Reacting to errors that the application detects, and reporting
them to the user

Interacting with the User in MPI-Parallel Applications

09.10.18 Simulation Organization and Infrastructure 1

Simulation Techniques &
Scientific Computing

• Implemented in a library: SOIL
– Simulation Organization and Infrastructure Library

• Utilization of Fypp for pre-processing

• Utilization of waf for configuration and building

Fundamental Common Tasks

09.10.18 Simulation Organization and Infrastructure 2

Simulation Techniques &
Scientific Computing

• Getting configuration parameters from the user

• Informing the user about progress and what is being done
(logging)

• Reacting to errors that the application detects, and reporting
them to the user

Interacting with the User in MPI-Parallel Applications

09.10.18 Simulation Organization and Infrastructure 3

Simulation Techniques &
Scientific Computing

• We use Lua scripts as input
– Aotus
– User defines required parameters as variables in the script
– Allows usage of arithmetic and loops in definitions

• Lua scripts might “require“ other script files
– Lua will search for “required“ files in various places
– Will stress Meta-Data server, if done by all processes

User Input: Lua Scripts

09.10.18 Simulation Organization and Infrastructure 4

Simulation Techniques &
Scientific Computing

• Avoiding massive overload of filesystem:

• Root process executes the script and loads all „required“ files
into memory
– uses function overwrites to keep track of required code chunks

• Broadcast all the Lua code to remaining processes

• Non-root process can execute the Lua script without accessing
the filesystem at all

Reading the Input Just Once and Then Broadcasting

09.10.18 Simulation Organization and Infrastructure 5

Simulation Techniques &
Scientific Computing

• Before reading the Lua script from file some Lua code is
executed to replace the require command

• This new require keeps track of „required“ files in a table,
takes care of nested requires

• Table then contains module name and code of required file

Lua Require on Root Process

09.10.18 Simulation Organization and Infrastructure 6

Simulation Techniques &
Scientific Computing

• On all other processes require is replaced by a function that
does not look for files but in a table with module names and
code instead

Lua Require on Other Processes

09.10.18 Simulation Organization and Infrastructure 7

Simulation Techniques &
Scientific Computing

• Opening Lua script on root not only executes it in the root
process but also returns the binary representation of it in a
character variable

• After it was loaded by root, all required files with their
content broadcasted to fill their respective tables of the
special require function

• Finally broadcast the main script and execute it on all
processes (will execute requires but get the code from
memory instead of from the file system)

Broadcasting Configuration

09.10.18 Simulation Organization and Infrastructure 8

Simulation Techniques &
Scientific Computing

• With this approach the Lua script is executed by all processes
and the same configuration state becomes available for all of
them

• Encapsulated in the soi_config_module with the
soi_config_open routine

soi_config_module

09.10.18 Simulation Organization and Infrastructure 9

Simulation Techniques &
Scientific Computing

• Getting configuration parameters from the user

• Informing the user about progress and what is being done
(logging)

• Reacting to errors that the application detects, and reporting
them to the user

Interacting with the User in MPI-Parallel Applications

09.10.18 Simulation Organization and Infrastructure 10

Simulation Techniques &
Scientific Computing

• User needs feedback
– Whether configuration settings are all correctly received by

application
– How far the simulation progressed

• Helping developers to identify problems

• Feedback might be required with different levels of detail

• Usually not required by all processes

Writing Log Information

09.10.18 Simulation Organization and Infrastructure 11

Simulation Techniques &
Scientific Computing

• Need to filter out log messages from most processes

• Still provide possibility to obtain loggings from multiple
processes for debugging

• Separation of logs from multiple processes

Log Information in Parallel

09.10.18 Simulation Organization and Infrastructure 12

Simulation Techniques &

Scientific Computing

• Different levels of detail:

– Provide an array of file unit numbers to write to

– Level of detail equivalent to index in the array of file units

– Higher levels indicate less importance of the message

• Application verbosity can be limited at compile-time by

setting a maximal logging level to consider

• Log command provided by a Fypp macro

Soi_log_module

09.10.18 Simulation Organization and Infrastructure 13

Simulation Techniques &

Scientific Computing

• Level of detail is configurable at runtime

– (up to maximal level of the compiled executable)

• Number of processes that will write a log can be configured

– Only root (MPI_COMM_WORLD rank 0) will write to stdout, but may

be configured to write to a file instead

– Other processes only will write a log to a file if accordingly configured

• Formatting: Line length of log messages will be limited, limit

can be set by user at runtime

Soi_log_module Configuration

09.10.18 Simulation Organization and Infrastructure 14

Simulation Techniques &
Scientific Computing

• The file-unit array of the logger is filled with a unit connected
to an appropriate file (stdout or configured filename) up to
the level configured by the user all higher units are connected
to the null device (/dev/null)
– Example level=3: funit=[stdout, stdout, stdout, null,
null, null, …]

– funit filled at runtime after reading user settings
– On processes that are not to write logs, all entries point to null

• The log macro will write to the unit found in the funit array
– Example: log(4, message) -> write(funit(4),*) message

Discarding Undesired Log Messages

09.10.18 Simulation Organization and Infrastructure 15

Simulation Techniques &
Scientific Computing

@:log(1, 'This application does not really do anything.')
@:log(1, 'But it shows how the basic configuration is loaded')
@:log(1, 'by soi_world_init.')
$:log_blank(1)
@:warn('Warnings will be colored!')
@:warn('They are always written on log level 1.')
$:log_blank(1)
$:log_sep(1)
$:log_indent()
@:log(1, 'Math constants:')
$:log(1, "'e = ', exp(1.0)", log_fmt="'(a,f16.10)'")
$:log(1, "'Pi = ', acos(-1.0)", log_fmt="'(a,en16.9)'")
$:log_unindent()
@:log(2, 'A less important message, put on logging level 2.')

Example Logging Code

09.10.18 Simulation Organization and Infrastructure 16

Simulation Techniques &
Scientific Computing

This application does not really do anything.
But it shows how the basic configuration is loaded
by soi_world_init.

Warnings will be colored!
They are always written on log level 1.

**
Math constants:
e = 2.7182817459
Pi = 3.141592741E+00

**
A less important message, put on logging level 2.

Example Logging Output

09.10.18 Simulation Organization and Infrastructure 17

Simulation Techniques &
Scientific Computing

• All writes are local to the processes, no communication

• Two stages:
– Compile time limitation of maximal log level allows minimization of

running time impacts
– Runtime configuration enables the user to set the desired level of

verbosity

• Access to /dev/null by most processes should be fast and
not limit scalability

Remarks on the Approach

09.10.18 Simulation Organization and Infrastructure 18

Simulation Techniques &
Scientific Computing

• Getting configuration parameters from the user

• Informing the user about progress and what is being done
(logging)

• Reacting to errors that the application detects, and reporting
them to the user

Interacting with the User in MPI-Parallel Applications

09.10.18 Simulation Organization and Infrastructure 19

Simulation Techniques &

Scientific Computing

• Many thanks to Rolf Rabenseifner for suggesting the MPI

strategy

• During parallel execution any process might run into an

erroneous state

– But not all processes may run into it

• We still want to properly end the simulation

– Provide the user with a proper error notification

– Possibly provide some data dump for inspection

Dealing with Errors

09.10.18 Simulation Organization and Infrastructure 20

Simulation Techniques &
Scientific Computing

• Any process may run into an error

• All processes need to be notified of this to coordinate
program termination

• How to deal with this in MPI parallel applications?
– Mainly two options:

• One-sided communication
• Non-blocking collectives

Problem with Errors in Parallel Runs

09.10.18 Simulation Organization and Infrastructure 21

Simulation Techniques &
Scientific Computing

• soi_error_module

• Basic idea:
– Conditional raising of error (similar to log macro), in case of error
– Subsequent unconditional checkup on error notification

• To achieve this:
– Need an MPI_Ibcast on a dedicated MPI communicator (duplicate of

MPI_COMM_WORLD)

Handling Errors with Non-Blocking Collectives

09.10.18 Simulation Organization and Infrastructure 22

Simulation Techniques &

Scientific Computing

• Startup:

– Process 0 opens MPI_Irecv for MPI_ANY_SOURCE

– All other processes start MPI_Ibcast with rank 0 as root

• In case of error:

– Process with error sends message to rank 0

• Regularly checkup on possibly occured errors (unconditionally

after conditional error raising)

• Finalization in case of error

Soi_error_module

09.10.18 Simulation Organization and Infrastructure 23

Simulation Techniques &
Scientific Computing

• Checking for occurred errors involves:
– On process 0

• checking the MPI_Irecv for completion
• if message received, post the MPI_Ibcast to complete it, then wait on it

and afterward start the abort analysis and processing

– On other processes
• Check the MPI_Ibcast for completion
• If MPI_Ibcast completed, enter abort analysis

Check on Errors

09.10.18 Simulation Organization and Infrastructure 24

Simulation Techniques &
Scientific Computing

call aot_get_val(L = lua, &
& thandle = thandle, &
& val = config%level, &
& key = 'level', &
& default = level, &
& ErrCode = iError)

if (btest(iError, aoterr_Fatal)) then
! Conditional error throwing
@:error('Error reading level for logging!')
@:error('Level needs to be an integer, please fix your config.')

end if
…
! Unconditional checking for error
call soi_error_check()

Example for Error Handling in Code

09.10.18 Simulation Organization and Infrastructure 25

Simulation Techniques &
Scientific Computing

• If there was an error:
– Gather error messages from all processes if sufficient memory on root

process

– Report messages with the originating MPI rank:
• Collapse contiguous ranks with the same message

– If memory on root process insufficient for messages from all ranks, just
get and print the longest error message to report

– Finalize MPI and stop application

Abort Analysis

09.10.18 Simulation Organization and Infrastructure 26

Simulation Techniques &
Scientific Computing

• Same error on all 4 processes:

Example Output

09.10.18 Simulation Organization and Infrastructure 27

An error occurred!
Error messages on processes 0-3:
Error reading level for logging!
Level needs to be an integer, please fix your config.

Simulation Techniques &
Scientific Computing

• Dealing with minor IO tasks
– Still important to be treated properly for scalable applications

• Dealing with errors in parallel applications to provide concise
and reasonable messages if possible

• Convenience
– For developers
– For users

Summary

09.10.18 Simulation Organization and Infrastructure 28

Simulation Techniques &
Scientific Computing

Thank You for Your Kind
Attention!

Thanks to Rolf Rabenseifner for
his support.

May I take questions?

