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Introduction

Numerics Research Group IAG, Uni Stuttgart, Prof. Munz

Primary Focus: High Order Discontinuous Galerkin Methods

OpenSource HPC solver for the compressible Navier-Stokes equations

www.flexi-project.org
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Framework

HOPR
Mesh curving

SFC domain decomposition
Unstructured/nonconforming

Parallel 
HDF5 IO

FLEXI
DGSEM Solver

High-order accurate
Parallelized with MPI

Parallel
HDF5 IO

Server-client
based

POSTI
Prepare visualization

Data analysis
Parallelized with MPI

Visualization
Paraview + POSTI interface

Mesh Generation
CGNS, ANSA, ICEM, GMSH

FLEXI: Designed for solving unsteady compressible flows using the Discontinuous Galerkin Spectral

Element Method (DGSEM)

Very high orders possible (O16+)

Use explicit RK global time-stepping approach

FLEXI comes with a variety of flux functions, RK schemes, Lifting procedures and boundary conditions

implemented

Support for relatively complex geometries using unstructured, non-conforming grids

Shock capturing based on finite volume sub cells

Highly parallel and scalable due to compact operator: DG is ”embarrassingly parallel”
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Applications: DNS, LES, high Mach flows, direct aeroacustics, particle-laden flows...
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Parallel Efficiency

Communication based on MPI

Compact stencil in combination with latency hiding and optimized communication patters allow for strong

scaling down to O(103) DOFs per core
Efficiency still intact for combined FV/DG calculations

Proven efficiency up to 100.000 cores

Parallel I/O based on HDF5
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Rationale for Machine Learning

‘‘It is very hard to write programs that solve problems like recognizing a

three-dimensional object from a novel viewpoint in new lighting conditions in a

cluttered scene.

We don’t know what program to write because we don’t know how its done in

our brain.

Even if we had a good idea about how to do it, the program might be

horrendously complicated.’’

Geoffrey Hinton, computer scientist and cognitive psychologist (h-index:131)
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Definitions and Concepts
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An attempt at a definition:

Machine learning describes algorithms and techniques that progressively improve performance on a specific task

through data without being explicitly programmed.

Learning Concepts

Unuspervised Learning

Supervised Learning

Reinforcement Learning

Artificial Neural Networks

General Function Approximators

AlphaGo, Self-Driving Cars, Face recognition, NLP

Incomplete Theory, models difficult to interpret



Neural Networks

Artificial Neural Network (ANN): A non-linear mapping from inputs to ouputs: M : X̂ → Ŷ
An ANN is nesting of linear and non-linear functions arranged in a directed acyclic graph:

Ŷ ≈ Y = M(X̂) = σL

(
WL

(
σL−1

(
WL−1

(
σL−2

(
...W1(X̂)

)))))
, (1)

with W being an affine mapping and σ a non-linear function

The entries of the mapping matrices W are the parameters or weights of the network: improved by training

Cost function C as a measure for
∣∣Ŷ − Y

∣∣, (MSE / L2 error) convex w.r.t to Y , but not w.r.t W : ⇒
non-convex optimization problem requires a lot of data
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Advanced Architectures

Convolutional Neural Networks

Local connectivity, multidimensional trainable filter kernels, discrete convolution, shift invariance

Current State of the Art for multi-D data

Andrea Beck, Institute of Aerodynamics and Gas Dynamics (IAG): ML Turb 11



What does a CNN learn?

Hierarchical representation

from: H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. “Convolutional deep belief networks for scalable unsupervised learning of

hierarchical representations.” In ICML 2009.

Andrea Beck, Institute of Aerodynamics and Gas Dynamics (IAG): ML Turb 12



Turbulence

Models from

Data

3



Turbulence Closure

Turbulent fluid motion is prevalent in engineering applications: multiscale problem in space and time

Navier-Stokes equations: system of non-linear PDEs (hyp. / parab.)

Fullscale resolution (DNS) rarely feasible: Coarse scale formulation of NSE is necessary

Filtering the NSE: Evolution equations for the coarse scale quantities, but with a closure term dependent on

the filtered full scale solution ⇒ Model depending on the coarse scale data needed!

40+ years of research in Turbulence Modeling:

”All models are wrong, some models are useful”

Filtered NSE:

∂U

∂t
+ R(F (U)) = 0 (2)

Imperfect closure with Û 6= U :

∂Û

∂t
+ R̃(F (Û)) = M̃(Û , Ck)︸ ︷︷ ︸

imperfect closure model

, (3)

Perfect closure with U
∂U

∂t
+ R̃(F (U)) = R̃(F (U)) − R(F (U))︸ ︷︷ ︸

perfect closure model

. (4)
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∂Û

∂t
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Idea

Approximating an unknown, non-linear and possibly hierarchical mapping from high-dimensional input

data to an output ⇒ ANN
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Idea

Approximating an unknown, non-linear and possibly hierarchical mapping from high-dimensional input

data to an output ⇒ LES closure
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Data Acquisition: Decaying Homogeneous Isotropic Turbulence

DNS of decaying homogeneous isotropic turbulence (DHIT) with initial spectrum defined by Chasnov

(1995) initialized by Rogallo (1981) procedure

Data collection in the range of exponential energy decay: 25 DHIT realizations with 134 Mio DOF each

computed on Hazel Hen (approx. 400,000 CPUh, 8200 cores)

Compute coarse grid terms on LES grid with filter definition
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Features and Labels

Each sample: A single LES grid cell with 63 solution points

Input features: velocities and LES operator: ui, R̃(F (U))
Output labels: DNS closure terms on the LES grid R(F (U))
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Networks and Training

CNNs with skip connections (RNN), batch normalization, ADAM optimizer, data augmentation

Different network depths (no. of residual blocks)

Implementation in Python / Tensorflow, Training on K40c and P100 at HLRS

Split in training, semi-blind validation and blind test DHIT runs

Andrea Beck, Institute of Aerodynamics and Gas Dynamics (IAG): ML Turb 18



Training Results I: Costs

Cost function for different network depths

RNNs outperform MLP, deeper networks learn better

The approach is data-limited! NNs are very data-hungry!
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Training Results II: Correlation

Network a, b CC(a, b) CCinner(a, b) CCsurf (a, b)

RNN0 R(F (U))1, R(F (U))1ANN
0.347676 0.712184 0.149090

R(F (U))2, R(F (U))2ANN
0.319793 0.663664 0.134267

R(F (U))3, R(F (U))3ANN
0.326906 0.669931 0.101801

RNN4 R(F (U))1, R(F (U))1ANN
0.470610 0.766688 0.253925

R(F (U))2, R(F (U))2ANN
0.450476 0.729371 0.337032

R(F (U))3, R(F (U))3ANN
0.449879 0.730491 0.269407
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Training Results III: Visualization

”Blind” application of the trained network to unknown test data
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Training Results IV: Feature Sensitivity

Set Features CC1 CC2 CC3

1 ui, R̃(F (U i)), i = 1, 2, 3 0.4706 0.4505 0.4499

2 ui, i = 1, 2, 3 0.3665 0.3825 0.3840

3 R̃(F (U i)), i = 1, 2, 3 0.3358 0.3066 0.3031

4 ρ, p, e, ui, R̃(F (U i)), i = 1, 2, 3 0.4764 0.4609 0.4580

5 u1, R̃(F (U1)) 0.3913

Feature sets and resulting test correlations. CCi
with i = 1, 2, 3 denotes the cross correlation between the targets and network

outputs CC(R(F (U)i), R(F (U))i
ANN

). Set 1 corresponds to the original feature choice; Set 5 corresponds to the RNN4

architecture, but with features and labels for the u−momentum component only.

Both the coarse grid primitive quantities as well as the coarse grid operator contribute strongly to the

learning success

Better learning for full 3D data than 1D data only
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LES with NN-trained model I

Perfect LES is possible (see above), but the NN-learned mappings are approximate ⇒ Direct application in

the sense of Eqn. 4 not long-term stable!

Short term stability and dissipation only
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LES with NN-trained model II

Simplest model: Eddy viscosity approach with µANN from

R̃(F (U i)) − R(F (U i)) ≈ µANN R̃(F visc(U i, ∇U i)) (5)

Limit: −µ0 ≤ µANN ≤ 20µ0
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Summary

Learning the exact closure terms from data is possible

Deeper RNNs learn better

Our process is data-limited, i.e. learning can be improved with more data

Achievable CC ≈ 45%, with up to ≈ 75% for inner points

Both the coarse grid velocities and the coarse grid operator contribute strongly to learning (backup slides)

The resulting ANN models are dissipative (not shown)

No long term stability due to approximate model

Simplest way to construct a stable model: Data-informed, local eddy-viscosity

Other approaches to construct models from prediction of closure terms under investigation
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Discussion
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Some thoughts on data-informed models, engineering and HPC

Machine Learning is not a silver bullet

First successes: ML can help build subscale models from data, not just for turbulence

A lot of representative data is needed... maybe we already have the data? Computations, experiments...

In this work, the computational times were: DNS: O(105) CPUh, data preparation O(103), Training the

RNN: O(101 − 102): Is it worth it?

Incorporating physical constraints (e.g. realizability, positivity) field of research

Self-learning algorithms: Reinforcement learning

”Philosophical aspects”: Interpretability of the models and ”who should learn what?”

HPC: Training has to done on GPUs (easy for supervised learning, bit more complicated for reinforcement

learning), but ...

What about model deployment? GPU (native) or CPU (export model)?

Coupling of CFD solver (Fortran) to Neural Network (python): In our case, f2py is a very cumbersome

solution

Hybrid CPU/GPU codes, or rewrite it all for the GPU?
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flexi-project.org

Thank you for your attention!

https://www.flexi-project.org/


History of ANNs

Some important publications:

McCulloch-Pitts (1943): First compute a weighted sum of the inputs from other neurons plus a bias:

the perceptron

Rosenblatt (1958): First to generate MLP from perceptrons

Rosenblatt (1962): Perceptron Convergence Theorem

Minsky and Papert (1969): Limitations of perceptrons

Rumelhart and Hinton (1986): Backpropagation by gradient descent

LeCun (1995): ‘‘LeNet’’, convolutional networks

Hinton (2006): Speed-up of backpropagation

Krizhevsky (2012): Convolutional networks for image classification

Ioffe (2015): Batch normalization

He et al. (2016): Residual networks

AlphaGo, DeepMind...
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Closure Terms for LES

For grid dependent LES: coarse grid operator is part of the closure

Dual role of closure: cancel operator effects and model unknown term

DNS grid: 643 elements, N = 7; LES grid: 83 elements, N = 5;

Figure: Left to right: a) DNS, b) filtered DNS, c) computed perfect LES d) LES with Smagorinsky model Cs = 0.17
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