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Introduction

Numerics Research Group IAG, Uni Stuttgart, Prof. Munz
Primary Focus: High Order Discontinuous Galerkin Methods
OpenSource HPC solver for the compressible Navier-Stokes equations

www.flexi-project.org

Andrea Beck, Institute of Aerodynamics and Gas Dynamics (IAG): ML Turb



Framework

HOPR Parallel

Mesh curving HDFS 10

SFC domain decomposition
Unstructured/nonconforming

A

Mesh Generation
CGNS, ANSA, ICEM, GMSH

e FLEXI: Designed for solving unsteady compressible flows using the Discontinuous Galerkin Spectral

Element Method (DGSEM)
e Very high orders possible (016+)
e Use explicit RK global time-stepping approach

e FLEXI comes with a variety of flux functions, RK schemes, Lifting procedures and boundary conditions

implemented

e Support for relatively complex geometries using unstructured, non-conforming grids

e Shock capturing based on finite volume sub cells

e Highly parallel and scalable due to compact operator: DG is “embarrassingly paralle

Andrea Beck, Institute of Aerodynamics and Gas Dynamics (IAG): ML Turb



Applications: DNS, LES, high Mach flows, direct aeroacustics, particle-laden flows...
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Parallel Efficiency

e Communication based on MPI
e Compact stencil in combination with latency hiding and optimized communication patters allow for strong
scaling down to O(10%) DOFs per core
e Efficiency still intact for combined FV/DG calculations
® Proven efficiency up to 100.000 cores
e Parallel I/0O based on HDF5
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Rationale for Machine Learning

“It is very hard to write programs that solve problems like recognizing a

three-dimensional object from a novel viewpoint in new lighting conditions in a
cluttered scene.

e We don’t know what program to write because we don’t know how its done in
our brain.

e Even if we had a good idea about how to do it, the program might be
horrendously complicated.”

Geoffrey Hinton, computer scientist and cognitive psychologist (h-index:131)
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Definitions and Concepts

An attempt at a definition:

Machine learning describes algorithms and techniques that progressively improve performance on a specific task
through data without being explicitly programmed.

Learning Concepts Artificial Neural Networks
e Unuspervised Learning e General Function Approximators
e Supervised Learning e AlphaGo, Self-Driving Cars, Face recognition, NLP
e Reinforcement Learning * Incomplete Theory, models difficult to interpret
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Neural Networks

e Artificial Neural Network (ANN): A non-linear mapping from inputs to ouputs: M : XY
An ANN is nesting of linear and non-linear functions arranged in a directed acyclic graph:

YARY=MX)=0p (WL (ULfl (WLfl (UL—2 (Wl(X)))))) , (1)
e with W being an affine mapping and o a non-linear function
The entries of the mapping matrices W are the parameters or weights of the network: improved by training
e Cost function C as a measure for |Y — Y|, (MSE/ L5 error) convex w.r.t to Y, but not w.r.t W: =
non-convex optimization problem requires a lot of data

X H,y Hy
X () —A
A

I K RS .
ISR 7
N\ LRALKS
<A ' IO
1 SAAN

.‘.

Andrea Beck, Institute of Aerodynamics and Gas Dynamics (IAG): ML Turb



Advanced Architectures

e Convolutional Neural Networks

e Local connectivity, multidimensional trainable filter kernels, discrete convolution, shift invariance

e Current State of the Art for multi-D data
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What does a CNN learn?

* Hierarchical representation

ASKIEF

from: H. Lee, R. Grosse, R. Ranganath, and A. Y. Ng. “Convolutional deep belief networks for scalable unsupervised learning of
hierarchical representations.” In ICML 2009.
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Turbulence Closure

e Turbulent fluid motion is prevalent in engineering applications: multiscale problem in space and time

e Navier-Stokes equations: system of non-linear PDEs (hyp. / parab.)

e Fullscale resolution (DNS) rarely feasible: Coarse scale formulation of NSE is necessary

e Filtering the NSE: Evolution equations for the coarse scale quantities, but with a closure term dependent on
the filtered full scale solution = Model depending on the coarse scale data needed!

40+ years of research in Turbulence Modeling:
"All models are wrong, some models are useful”

e Filtered NSE: o
U ———

— F = 2
5 T RED) =0 (2)
e Imperfect closure with U #U:
v~ . ~
ot ——
imperfect closure model
e Perfect closure with U .
o  ~, ~ = ——
5+ REO) = RF(D)) - RED)). @

perfect closure model
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Turbulence Closure

e Turbulen
* Navier-Stj
e Fullscale
* Filtering

the filtere

e Filtered
(2)
e Imperfec
(3)
e Perfect cl
+ R(F(U)) = R(F(U)) = R(F(U)) . (4)

ot

perfect closure model
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Turbulence Closure

e Turbulent fluid motion
* Navier-Stokes equation|
e Fullscale resolution (D

lem in space and time

Ecessary

e Filtering the NSE: Evol closure term dependent on
the filtered full scale so| ded!

e Filtered NSE:

(2)
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perfect closure model
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Turbulence Closure

e Turbulent fluid motion |
* Navier-Stokes equation
e Fullscale resolution (DN
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Idea

® Approximating an unknown, non-linear and possibly hierarchical mapping from high-dimensional input
data to an output = ANN
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Idea

® Approximating an unknown, non-linear and possibly hierarchical mapping from high-dimensional input

data to an output = LES closure

Coarse Grid Data U

DNS

Closure Terms R(F(U))
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Data Acquisition: Decaying Homogeneous Isotropic Turbulence

e DNS of decaying homogeneous isotropic turbulence (DHIT) with initial spectrum defined by Chasnov

(1995) initialized by Rogallo (1981) procedure

e Data collection in the range of exponential energy decay: 25 DHIT realizations with 134 Mio DOF each

computed on Hazel Hen (approx. 400,000 CPUh, 8200 cores)
e Compute coarse grid terms on LES grid with filter definition

10 20 30 40 50 60
Wavenumber k
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Features and Labels

e Each sample: A single LES grid cell with 6 solution points
* Input features: velocities and LES operator: u;, R(F(U))

e Output labels: DNS closure terms on the LES grid R(F(U))

V= {y eR¥*PXPXP | = R(F(U))},, withn=1,...
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Networks and Training

CNNs with skip connections (RNN), batch normalization, ADAM optimizer, data augmentation
Different network depths (no. of residual blocks)

Implementation in Python / Tensorflow, Training on K40c and P100 at HLRS

Split in training, semi-blind validation and blind test DHIT runs

& e RPXPXP

residual block
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Training Results I: Costs

e Cost function for different network depths
* RNNs outperform MLP, deeper networks learn better

® The approach is data-limited! NNs are very data-hungry!

———— RNN2

n 1
40000 60000

0
Iteration
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Training Results II: Correlation

Network ab cc(a,b) ccinner (a, b) ccovr! (a,b)
RNNO RN, RE@NT Y 0.347676 0.712184 0.149090
R(E0)?, RED)?" ANN 0.319793 0.663664 0.134267
REO))?, RE@) 0.326906 0.669931 0.101801
A
RNN4 REONL, RE@))T Y 0.470610 0.766688 0.253925
A
RFQU)Z, RE@))2N 0.450476 0.729371 0.337032
5 =A
RE)S, RE@)E Y 0.449879 0.730491 0.269407
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Training Results lll: Visualization

e "Blind” application of the trained network to unknown test data

Leshbonaomy
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Training Results IV: Feature Sensitivity

Set Features cct ce? ce?
1 ui, ROF(UY)), i =1,2,3 04706  0.4505  0.4499
2 wi,i=1,2,3 03665  0.3825  0.3840
3 R(F(U7)), i =1,2,3 0.3358  0.3066  0.3031
4 ppe,ui, R(F{UY)), i=1,2,3 04764  0.4609  0.4580
5 uy, R(F(UT)) 0.3913

Feature sets and resulting test correlations. CC* with i = 1, 2, 3 denotes the cross correlation between the targets and network

- ~ANN
outputs CC(R(F(U)?%), R(F(U))* ). Set 1 corresponds to the original feature choice; Set 5 corresponds to the RNN4
architecture, but with features and labels for the u—momentum component only.

e Both the coarse grid primitive quantities as well as the coarse grid operator contribute strongly to the
learning success

e Better learning for full 3D data than 1D data only
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LES with NN-trained model |

e Perfect LES is possible (see above), but the NN-learned mappings are approximate = Direct application in
the sense of Egn. 4 not long-term stable!
e Short term stability and dissipation only
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LES with NN-trained model Il

e Simplest model: Eddy viscosity approach with 4 nn from

e Limitt —po < pann < 20p0
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Summary

e |earning the exact closure terms from data is possible

e Deeper RNNs learn better

e Qur process is data-limited, i.e. learning can be improved with more data

e Achievable CC ~ 45%, with up to ~ 75% for inner points

e Both the coarse grid velocities and the coarse grid operator contribute strongly to learning (backup slides)
e The resulting ANN models are dissipative (not shown)

* No long term stability due to approximate model

e Simplest way to construct a stable model: Data-informed, local eddy-viscosity

e Other approaches to construct models from prediction of closure terms under investigation
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Some thoughts on data-informed models, engineering and HPC

® Machine Learning is not a silver bullet
e First successes: ML can help build subscale models from data, not just for turbulence
e A lot of representative data is needed... maybe we already have the data? Computations, experiments...

¢ In this work, the computational times were: DNS: O(10%) CPUh, data preparation O(10%), Training the
RNN: O(10' — 102): Is it worth it?

* Incorporating physical constraints (e.g. realizability, positivity) field of research
e Self-learning algorithms: Reinforcement learning
e "Philosophical aspects”: Interpretability of the models and "who should learn what?”

e HPC: Training has to done on GPUs (easy for supervised learning, bit more complicated for reinforcement
learning), but ...

* What about model deployment? GPU (native) or CPU (export model)?

e Coupling of CFD solver (Fortran) to Neural Network (python): In our case, f2py is a very cumbersome
solution

e Hybrid CPU/GPU codes, or rewrite it all for the GPU?
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flexi-project.org

Thank you for your attention!


https://www.flexi-project.org/

History of ANNs

® Some important publications:

e McCulloch-Pitts (1943): First compute a weighted sum of the inputs from other neurons plus a bias:

the perceptron

Rosenblatt (1958): First to generate MLP from perceptrons
Rosenblatt (1962): Perceptron Convergence Theorem

Minsky and Papert (1969): Limitations of perceptrons

Rumelhart and Hinton (1986): Backpropagation by gradient descent
LeCun (1995): “LeNet”, convolutional networks

Hinton (2006): Speed-up of backpropagation

Krizhevsky (2012): Convolutional networks for image classification
loffe (2015): Batch normalization

He et al. (2016): Residual networks

AlphaGo, DeepMind...
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Closure Terms for LES

e For grid dependent LES: coarse grid operator is part of the closure
e Dual role of closure: cancel operator effects and model unknown term
e DNS grid: 643 elements, N = 7; LES grid: 83 elements, N = 5;

Figure: Left to right: a) DNS, b) filtered DNS, c) computed perfect LES d) LES with Smagorinsky model Cs = 0.17
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