

vTorque - Introducing virtualization capabilities to Torque

Nico Struckmann

Workbench on Sustained Simulation Performance (WSSP), Stuttgart, Oct 10th-11th 2017

Agenda

- Motivation
- Clouds
- Torque
- vTorque
 - Overview
 - Features
 - Deployment
 - Workflow
 - Security and Data Privacy
 - Optional Components
 - Overall HPC Software Stack
- Conclusions
- Future Work
- Q&A

Motivation

- Today's HPC infrastructures are static
 - no choice to pick the most appropriate kernel
- High effort required to satisfy different user needs
 - i.e. modules system (different versions of a lib)
- Increasing complexity
 - maintaining many different combinations of modules (i.e. applying security patches)
- High effort for maintenance
 - to built a new image for compute nodes and to ensure it works as desired
- No fault tolerance
 - a single bad node can cause a (huge and long lasting) job to crash anytime

Motivation (2)

- Users/developers need to adapt their code to each HPC environment, i.e.
 - Mount paths
 - Workspace mechanisms
 - Batch system support
 - CPU and other hardware properties
- Developers cannot develop on commodity hardware and then run it without further adaptation in HPC environments

Agenda

- Motivation
- Clouds
- Torque
- vTorque
 - Overview
 - Features
 - Deployment
 - Workflow
 - Security and Data Privacy
 - Optional Components
 - Overall HPC Software Stack
- Conclusions
- Future Work
- Q&A

Clouds

- Flexibility
 - Guest is independent of host's kernel and libraries
 - Applications packaged as ready to run images
 - Contextualization for further customization
 - Built once, run everywhere (as long as the CPU arch matches)
- Fault Tolerance
 - Live migration
 - Suspend and resume
 - Checkpointing

Copyright Nico Struckmann

Clouds (2)

- Less administration effort for maintenance of host systems required
 - No user related software installed on the host
- Performance
 - Computation is optimized (kvm kernel module)
 - Overhead is mostly due to I/O
 - No opensource virtual RDMA

Copyright Nico Struckmann

Agenda

- Motivation
- Clouds
- Torque
- vTorque
 - Overview
 - Features
 - Deployment
 - Workflow
 - Security and Data Privacy
 - Optional Components
 - Overall HPC Software Stack
- Conclusions
- Future Work
- Q&A

Torque

- Widely spread HPC batch system (resource manager and simple job scheduler)
- OpenSoure, derived from OpenPBS, developed by Adaptive Computing
- Provides control over batch jobs and distributed computing resources
- Supports sophisticated meta-scheduler

– Moab/Maui

No virtualization support, jobs are executed on bare metal nodes

Torque (2)

- Cli tools
 - qsub: command line job submission tool for users
 - qmgr: queue configuration for admins
- Main Components
 - pbs_server: central component
 - pbs_sched: schedules jobs on resources
 - pbs_mom: compute node daemon

Torque (3)

 Workflow: Users submit their batch jobs, Torque queues, schedules and deploys them on allocated compute nodes

11.10.17

Torque (4)

 Provides capabilities to run preparation and clean up tasks (prologue, epilogue)

:: 11.10.17

Agenda

- Motivation
- Clouds
- Torque
- vTorque
 - Overview
 - Features
 - Deployment
 - Workflow
 - Security and Data Privacy
 - Optional Components
 - Overall HPC Software Stack
- Conclusions
- Future Work
- Q&A

vTorque :: Overview

- Combines the flexibility of virtualization with Torque
- Set of non-intrusive wrapper scripts and templates, written in bash
- Comes with two new CLIs:
 - vsub: counterpart of qsub, for virtualized jobs
 - vmgr: manage and list available VM images
- Admins can define default values (vsub <jobscript>)
- Admins can en/disable features and functionality
- User can override defaults at job submission time
- Enables dual use of computing resources

vTorque :: Features

- Deploys job script transparently in virtual environment
- Abstraction layer for environment specific properties

– i.e. mount points (/home, /workspace)

.....

Administrators define min/max and default values

- i.e. for IOCM, vCPUs

- vCPU pinning supported
 - Custom mapping file or automatic pinning by numad
- Bare metal nodes and virtual guests share (network) filesystems
- Cluster's /opt is available as /opt-hpc in guests to allow applications to make use of proprietary libs (if binary compatible)

vTorque :: Features (2)

- Multiple VMs per node supported
- Supports guest OS
 - standard Linux guests
 - and Unikernel OSv
- Contextualization and costumization via NoCloud metadata
- Root and user level VM pro/epilogue script support (for standard Linux guests)
- Mixed resource requests (coming soon)
- HPC Network abstraction
- Several optional components available
 - i.e. for resource usage monitoring (host to app level) or logging

vTorque :: Deployment

- Requires working Torque installation
- Requires working (s)KVM installation on compute nodes
- Setup script using pdsh available
 - Increase pro/epilogue timeout (default 30 sec)
 - adds vTorque CLIs (vsub,vmgr) to \$PATH
 - Renames root level scripts in
 - /var/spool/torque/mom_priv/
 {pro,epi}logue{.parallel} to *.orig
 - Root level wrapper scripts are put into place as
 /var/spool/torque/mom_priv/
 {pro,epi}logue{.parallel}

vTorque :: Workflow

:::::

.....

:::::

:::::

vsub generates wrappers for user prologue

:::::

:::::

:::::

- qsub -l prologue=<user prologue wrapper>

:::::

:::::

:::::

•••

••

vTorque :: Workflow

¹¹ Nico Struckmann

11.10.17

vTorque :: Security and Data Privacy

• Users cannot be granted to boot VM images directly

- They may upload an image, boot it, gain root, change uid and access other users private data on NFS
- Users cannot be granted to use own images
 - May provide them root access
- Root prologue needs to ensure generated files cannot be modified by the user
 - Users may exploit them, i.e. add root user to metadata file, mount another users home/workspace, install vulnerable packages
 - Achieved by passing on parameters to root prologue to generates the metadata file and keep it readonly
- Virtual Nodes
 - Exclusively allocated for one user per default
 - user's home is mounted (e.g. '/home/user' instead of '/home')

vTorque :: Optional Components

- Snap-Telemetry (INTEL)
 - Open telemetry framework designed to simplify the collection, processing and publishing of system data through a single API
 - Offers plug-ins for diverse metrics
 - Graphana backend for visualization of collected data
- vRDMA (HUAWEI)
 - Open source virtual RDMA functionality
 - Allows to provide one physical IB card to multiple guests
 - Close to bare metal performance
- IOCM (IBM)
 - IO Core Manager
 - virtual I/O performance superior to the vanilla KVM hypervisor
 - Hypervisor schedules I/O processing, instead of Linux thread scheduler, reduces overhead of thread context switching

SN3D the

S

HL

vTorque :: Optional Components (2)

- UNCLOT (XLAB)
 - Shared memory between VMs on same host
- OSv (SCYLLA)
 - Small images
 - Fast boot times
 - Single user
 - Single process
 - No context switches needed
- LEET (XLAB)
 - OSv Application packaging (VM image building)

11.10.17

HLRS

vTorque :: Optional Components (3)

- Scotty (GWDG)
 - Automated experiment execution and CI

- Log4bsh (HLRS)
 - Logging facility for vTorque
 - Formerly part of vTorque, meanwhile separate project
 - Highly configurable (log level, log file, logging behaviour, hooks, ..)
 - Logs beside the msg, log level and timestamp also executing script's name and host

HLRIS

Overall HPC Software Stack

.....

			SCYLLADB/ Cassandra	Spark/Storm/ HDFS	YARN	OpenFOAM			
otty)				Sahara					
) (Scc		mtry	Application Layer						
chmarking	ing (LEET	Snap Tele	Seastar)Sv Gues	st OS (Deb	ndard Linux OS bian/RedHat/)			
sting and ben	Packag	Monitoring (SCAM	vRDMA	UNCLOT VM IOc	m ZeCoRX			
Tes			Host OS (CentOS, Ubuntu)						
			МСМ	OpenStack	Torque	vTorque			
Management Infrastructure									

••

Agenda

- Motivation
- Clouds
- Torque
- vTorque
 - Overview
 - Features
 - Deployment
 - Workflow
 - Security and Data Privacy
 - Optional Components
 - Overall HPC Software Stack
- Conclusions
- Future Work
- Q&A

Conclusions

- Reducing I/O virtualization overhead is crucial for HPC adpotion
 - with sKVM were on a promising way as it seems

- Applications with different workload characteristics may be deployed on the same node (on different Numa domains) to increase overall resource utilization
 - i.e. I/O-bound and CPU-bound may match
- HPC environments can be improved for all stakeholders by introducing flexibility through virtualization and packaged applications
 - Owner: new user groups with conflicting requirements can be served
 - Admin: reduced maintenance effort and increased security (lean host and guest OS), Linux guests can apply automatic security updates at boot time, convenient application packaging
 - Developer: can develop on commodity hardware and built HPC ready applications, ship it with an optimized predefined environment
 - User: more flexibility, no longer restricted by the compute node's kernel and software

Conclusions (2)

- Copying VM images during prologue sequence
 - takes additional time, bandwidth and space
- Waiting for guests to become ready
 - may take some time if the image is outdated and unattended updates are applied during instantiation
- Issues in prologue can render all nodes unavailable
- Additional IP addresses needed for guests
- Suspend and Resume must be supported on higher levels i.e. MPI layer

Agenda

- Motivation
- Clouds
- Torque
- vTorque
 - Overview
 - Deployment
 - Features
 - Workflow
 - Security and Data Privacy
 - Optional Components
 - Overall HPC Software Stack
- Conclusions
- Future Work
- Q&A

Future Work

- Global spare node mgmt for Torque
- Automatic live migration, if nodehealth check indicates degrading state
- Generic PCIe passthrough to support i.e. accelerators
- Stripped down host OS
 - i.e. Tiny Core OS
- Implement PoC wrapper solution as C-patch for Torque
 - Better performance for parsing files, arguments, etc
 - No temp files in user space required
- Suspend and Resume capabilities for MPI
- Interactive VM jobs

Agenda

- Motivation
- Clouds
- Torque
- vTorque
 - Overview
 - Features
 - Deployment
 - Workflow
 - Security and Data Privacy
 - Optional Components
 - Overall HPC Software Stack
- Conclusions
- Future Work
- Q&A

н	L	R	S

Q&A

src: https://pixabay.com/p-1015308 license: CC0 Creative Commons

** Nico Struckmann

Acknoledgements

• vTorque has been developed within project MIKELANGELO

MIcro KErneL virtualizAtioN for hiGh pErformance cLOud and hpc systems

Co-funded by the Horizon 2020 Framework Programme of the European Union

- RIA project no. 645402
 - Started in January 2015
 - Ends in December 2017
 - Co-funded by the European Commission under H2020-ICT- 07-2014: Advanced Cloud Infrastructures and Services program

н	L	R	S

src: https://www.flickr.com/photos/wwworks/4759535950 license: Attribution 2.0 Generic (CC BY 2.0)

•••

••