
  

Automated derivation and parallel execution of finite 
difference models on CPUs, GPUs and Intel Xeon 

Phi processors using code generation

Christian T. Jacobs, Satya P. Jammy,
David J. Lusher, Neil D. Sandham

University of Southampton

11 October 2017



  

Background

● SBLI: CFD code developed at Soton. Written in F95.

● Solves compressible N-S equations:

– Multi-block

– 2D & 3D curvilinear grids

– 4th order central differencing

– 3rd & 4th order explicit Runge-Kutta timestepping

– DNS, LES, shock capturing, filtering

– ~60K lines of code

● Currently capable of running on CPU clusters

– Scaling to 200,000+ cores (Yao et al., 2009)



  

Motivation

● Existing archs: multicore CPUs, GPUs, Intel Xeon Phi.

– Future energy efficient systems from ARM and friends

● Newer hardware has the potential to reduce runtime, but…

● Most models not in a position to readily exploit such architectures to 
their full potential.

– Porting SBLI requires non-trivial rewrite.

– Burden on model devs to not only be domain specialists, but also 
experts in numerial methods, parallel computing paradigms, and 
their efficient implementation.

– Newer architecture might arrive during porting.

– How do we future-proof codes?



  

Approach

● Key components of numerical solution are

– Problem description

– Numerical method

– Model code (discretisation, solver, etc) for various 
architectures

Problem
+

Numerical method

Code for 
various architectures

Is this possible?



  

Future-proofing with OPS

● OPS: Oxford Parallel library for Structured-mesh computations

● Multi-block structured applications

● Source-to-source translation for parallel implementations on 
various architectures

● Very little overhead with the automation process for similar 
applications (CloverLeaf mini app - Mudalige et al. 2014)

Example for simple stencil averaging 
ops_par_loop:

int range[4] = {imin,imax,jmin,jmax};
ops_par_loop(calc, block, 2, range,
ops_arg_dat(a,S2D_0,”double”,OPS_WRITE),ops_arg_dat(b,S2D_1,”double”,OPS_READ));

Kernel:
void calc(double *a, const double *b) {
 a[OPS_ACC0(0,0)] = 0.5*(b[OPS_ACC1(1,0)] + b[OPS_ACC1(-1,0)];)
}



  

Future-proofing with OPS

Model code 
in OPS API

OpenMP

CUDA

OpenCL

OpenACC

Translator

Parses the OPS calls
Generates optimised 
versions for various 
architectures

Source code remains unchanged

 ???

Newer architectures backend 
translator needs to be written

 MPI



  

Proof of concept: Shu-Osher case

7

CPU GPU Speedup

Grid Size
(Millions)

12 MPI 12 
OpenMP

OpenCL on 
GPU

CUDA CPU/GPU

0.0025 2.92 4.61 3.75 3.37 0.89

0.05 33.75 52.89 10.81 9.34 3.61

0.1 66.05 76.47 16.69 16.13 4.09

0.2 136.79 167.13 30.09 29.15 4.69

2 1738.8 2429.44 271.51 264.59 6.57

GPU: NVIDIA Tesla K20c
2946 CUDA cores 5GB 
memory

CPU: Intel® Xeon® 
E5-2640 @2.5GHz  12 cores



  

OPS

● OPS is verbose in nature.

● Error prone.

● No flexibility of numerical method or equations to be solved.

Problem
+

Numerical method

Code for 
various architectures

Model code 



  

OpenSBLI

● User describes the problem at a higher level.

● Numerical analyst develops the numerical algorithm which 
generates a sequential model code in OPS-compliant C.

● Computer scientist handles parallel backend implementation.

OpenSBLI

OPS Library

Problem +
Numerical 

Method high 
level

Mathematical model

Separation of concerns.



  

OpenSBLI: Design

● Written in Python and uses SymPy as building blocks

● User specifies problem in a Python ‘problem spec. file’

– PDEs in Einstein/index notation

– Spatial scheme and order of accuracy (finite difference)

– Time-stepping scheme (RK3)

– Boundary conditions

– I/O and other parameters for the simulation



  

OpenSBLI: Design

● Finds and expands the summation indices of PDEs

– Applies spatial, temporal and boundary schemes

● Creates computational kernels.

● Generates model code. Translation to different arch. with OPS.

● Outputs LaTeX files of the computational kernels for debugging.



  

OpenSBLI: Design

Computing

USER

Problem

Einstein 
expansion

Grid

Spatial
Disc

Temporal
Disc

Boundary 
conditions

Initial 
conditions

Kernel

I/O

OPSC

MPI/
OpenMP

CUDA

OPS

New

Latex



  

Example
● 50 line high-level problem definition for the 3D 
compressible Navier-Stokes equations
● 2000 line generated sequential OPS C code
● 20K lines of generated code for MPI and CUDA



  

Example

Example of 
auto-generated 
kernel for computing 
RHS of 
compressible Navier-
Stokes equation.



  

OpenSBLI: Advantages

● Flexible choice of equations

● Spatial order can be easily varied

● Implementing new numerical method requires symbolic 
represetation 

– To generate a Fortran or code in another language, only a 
new OPS backend need be written.



  

Verification & Validation

Solution convergence for the 2D advection-diffusion equation (method of 
manufactured solutions).
Image by Jacobs et al. (2017). Used under CC-BY licence.



  

Verification & Validation
● 3D Taylor-Green vortex 
problem N-S Equations
● Up to 1 billion grid points,
● Re = 1600
● CPU(ARCHER), GPU(K40c)

 Images by Jacobs et al. (2017). Used 
under CC-BY licence.



  

Flexibility of algorithms

● Future HPC machines expected to deliver exascale capabilities

● Theoretical flops of many-core processors (e.g. GPUs, Xeon 
Phi cards) have increased but RAM is limited.

● Requires novel algorithmic changes to exploit the flops

● Reducing memory usage also reduces the amount of data to be 
transferred between CPU and GPU.

● A detailed study of the algorithm’s performance in the context 
of compressible Navier-Stokes equations is important because 
of the uncertainty of these architectures.



  

Flexibility of algorithms

Using the OpenSBLI framework we can compare different 
algorithmic choices without need to rewrite the code

● Baseline (BL) – all the derivatives are stored in work arrays

● Recompute All (RA) – all continuous derivatives in the governing 
equations are replaced by their discretised formula

● Recompute Some (RS) – only the first derivatives of velocity are 
stored and the rest recomputed

● Store None (SN) – all the derivatives are evaluated as 
thread/process local variables

● Store Some (SS) – only the first derivatives of velocity are stored and 
the rest are evaluated as thread/process local variables



  

Algorithmic performance

CUDA Tesla K40c, runtime (s)

Grid Size
(Millions)

Baseline Recompute 
All

Recompute 
Some

Store None Store 
Some

0.2 9 6 6 6 5

2.09 57 35 35 41 33

16.77 495 259 256 302 246

ARCHER node (24 MPI processes), runtime (s)

Grid Size
(Millions)

Baseline Recompute 
All

Recompute 
Some

Store None Store 
Some

0.2 16 9 11 8 10

2.09 183 98 97 91 89

16.77 1562 765 803 694 685



  

Parallel scaling

Weak scaling, 643 grid 
points per process

Strong scaling, 10243 grid 
points per process

 Images by Jammy et al. (In Press). Used under CC-BY licence.



  

CPU to GPU speed-up

1 ARCHER CPU node NVIDIA Tesla K40c

CPU to GPU speed up 2.7~3.15

 Images by Jammy et al. (In Press). Used under CC-BY licence.



  

Intel Xeon Phi (KNL) performance

Intel KNL (64 MPI processes), runtime (s)

Grid Size
(Millions)

Baseline Recompute 
All

Recompute 
Some

Store None Store 
Some

0.2 20 13 14 13 13

2.09 148 92 107 87 102

16.77 688 675 647 610 562

ARCHER node (24 MPI processes), runtime (s)

Grid Size
(Millions)

Baseline Recompute 
All

Recompute 
Some

Store None Store 
Some

0.2 16 9 11 8 10

2.09 183 98 97 91 89

16.77 1562 765 803 694 685



  

Advantages and limitations

● New DSLs can be readily integrated in OpenSBLI to aid future-
proofing

● Flexibility of algorithms, methods and equations.

● Use of external libraries like FFTW & implementation of implicit 
solvers needs to be done at OpenSBLI and the backend OPS level.

● Debugging for errors at different levels (partly helped by the 
OpenSBLI LaTeX debugging).



  

Conclusions & Acknowledgements

• New framework for the automated solution of finite difference 
methods on various architectures is developed and validated.

• Separation of concerns enables better model maintainability, and 
future-proofs the code as newer architectures arrive.

• Storing the first derivatives of velocity in the context of compressible 
Navier-Stokes solution is optimal across architectures.

• Funded by EPSRC grants EP/K038567/1 and EP/L000261/1, and 
European Commission H2020 grant 671571 “ExaFLOW: Enabling 
Exascale Fluid Dynamics Simulations”



  

Resources

• OpenSBLI released under GNU GPL: https://opensbli.github.io

• C. T. Jacobs, S. P. Jammy, N. D. Sandham (2017). OpenSBLI: A 
framework for the automated derivation and parallel execution of 
finite difference solvers on a range of computer architectures. 
Journal of Computational Science. DOI: 10.1016/j.jocs.2016.11.001

• S. P. Jammy, C. T. Jacobs, N. D. Sandham (In Press). Performance 
evaluation of explicit finite difference algorithms with varying 
amounts of computational and memory intensity. Journal of 
Computational Science. DOI: 10.1016/j.jocs.2016.10.015

https://opensbli.github.io/

