A dynamic load-balancing strategy for large scale CFD-applications

Philipp Offenhéuser H L R | S

10.10.2017

Outline

Motivation and Background
Load-Balancing strategy
Results

Further Challenges

Conclusion

Motivation - Top500 from 1993 to 2017

10° F=

—— Rmax Rank 1
[|—=— Rmax Rank 10

10%

107

109

10°

Cores

104 -

10°

Performance [GFlop/s)

10?

10!

100 1

I I I I I I I I I
1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016

! ! 10°

Year

(Source: top500.0rg)

Motivation

» HPC systems generate their power by
facilitating hundreds of thousands of
cores

» Massive parallel algorithms are
implemented

» Computational effort must be
distributed evenly across all cores

» Initial domain decomposition
techniques are well know

» Well balanced applications for scientific
use-cases are developed

Performance [GFlop/s)

1994 1996 1998 2000 2002 2004 2006 2008 2010 2012 2014 2016
Year

(Source: top500.0rg)

Definitions

Element-weight:
Specific computational effort of an element.

Definitions

Element-weight:
Specific computational effort of an element.

Load of a MPI-domain:
Sum of the element-weights of a MPI-domain.

Definitions

Element-weight:
Specific computational effort of an element.

Load of a MPI-domain:
Sum of the element-weights of a MPI-domain.

Load-imbalance:

maximum load

average load

maximum computation time
average computation time

Load-imbalance; =

Load-imbalancer =

Example 1 - Finite-Volume-Code FS3D

References:
Institute of Aerospace Thermodynamics - University of Stuttgart

http://www.uni-stuttgart.de/itlr/forschung/tropfen/fs3d/index.php?lang=en&lang=en:w

http://www.uni-stuttgart.de/itlr/forschung/tropfen/fs3d/index.php?lang=en&lang=en:w

HLR|S

Examples for load-imbalance - Volume of Fluid Method

Source: ITLR

Treatment of multiple phases

0 liquid
f(x,t) =< (0;1) interface
1 solid

» Reconstruction of the interface

» Additional computational effort for the
interface elements

HLR|S

Examples for load-imbalance - Volume of Fluid Method

Source: ITLR

Treatment of multiple phases

0 liquid
f(x,t) =< (0;1) interface
1 solid

» Reconstruction of the interface

» Additional computational effort for the
interface elements

Example 2 - Discontinuous Galerkin Spectral Element
Method (DG SEM) based code FLEXI

References:
Institute of Aerodynamics and Gas Dynamics - University of Stuttgart
Numerical research group https://nrg.iag.uni-stuttgart.de/

FLEXI on github: https://github.com/flexi-framework/flexi

https://nrg.iag.uni-stuttgart.de/
https://github.com/flexi-framework/flexi

FLEXI - a high-order numerical framework

» Hight-order numerical approach
» Massively parallel CFD-code
designed for HPC-systems

» DG SEM enables efficient
communication-pattern
(communication hiding)

» FLEXI tested on different
HPC-systems: Hornet, HazelHen,
JUQueen, Marconi

» FLEXI is used for very large
academic use-cases

Example - gas injection

» Numerical approach was
extended to simulate complex
fluid-flow

» The FV-Sub-Cell-Method is
used for shock capturing

» Code is used for industrial use
cases

» Depending on the local
solution the
FV-Sub-Cell-Method is turned
on/off

» FV-Sub-Cell-Method adds
local computational effort

Local computational effort

T = 0,00 ms T =0,25ms T =0,50ms

HLR|S

Motivation for dynamic load-balancing

1.30
1.25 -

1.20

load / average load
=
ot
&

10 20 30 40 50 60 70 80 90

core id

Load distribution of a test-case on 96 cores.
» Small number of cores are over-loaded
» Huge number of cores are under-loaded
» Performance of the application suffers from the overload on a small number of cores

A dynamic load-balancing strategy

Step 1: Calculate a new optimized load Step 2: Distribute the load between
distribution MPI-processes

A dynamic load-balancing strategy

Step 1: Calculate a new optimized load Step 2: Distribute the load between
distribution MPI-processes

Challenges:
» Global optimization problem

» Simple and fast calculation of the
optimized load distribution

» Keep the communication overhead
small

A dynamic load-balancing strategy

Step 1: Calculate a new optimized load Step 2: Distribute the load between
distribution MPI-processes

Challenges:
» Communication-structure originates
during run-time
» Communication-structure changes
during run-time

» Keep the communication overhead
small

Challenges:
» Global optimization problem

» Simple and fast calculation of the
optimized load distribution

» Keep the communication overhead
small

2] w22 25 e 26, 37 == 38 4] w42 2] 22 25 w26 37 =38 4] w42
[[[[
1 | 111 11 ws
2 23 w24 27 36 39w 40 43 2 23 w24 27 36 39 === 40 43 wy
Element
1Qmefem 18 20 mufem 28 35w 34 45 4 19wt 18 9 8 35 e 34. . A weight
11 [| [
1) 1)
16w 17 30w 3] s 32 sefen 33 46 16w 17 30w 31 e 325 33 46
15 12 mfon 11w 10 53 w52 e 51 4 15 12 wfs 11w 10 53 w52 e 51 4
1 L] 1 1 [|
| 1 1 . | 1 1 7
14 mefe 13 8 mfe O 54 mutem 55 50 14 mefen 13 B O 54 muem 55 50 mupem 49
1 1 1 1
I) 1 1
1 7 g 6 57 wepem 56 61 mpum 62 —— T e 6 57 mmpm 56 61 e 62
1 1] 1] 1 1
| 1 1 (W I T o
0 4 5 58w 50 mstem 60 63 4 5 0 63
Core Core
» Using a space-filling-curve for the domain-decomposition
» Mapping the 3D-problem to a 1D-problem
» Minimal communication (only one time)
» Simple communication pattern

1. Calculate a new optimized load distribution

An optimization algorithm based on the element specific computational effort is used for the
load-distribution.

. P,_ P,_
Achh = min(|Aacyhy '+ AP |Acyht + Ab))

1.30 1.30
1.25 1.25
T 120 T 120
E] E]
% 115 % 115
3 110 5 110
< <
£ 105 £ 105
1.00 1.00
0.95 095
0 2 30 40 50 60 70 80 90 10 20 30 40 50 60 70 8 90
core id core id
Load distribution without load-balancing Load distribution with load-balancing

Load distribution of a test-case on 96 cores.

HLR|S

Step 2: Distributing the load between MPI-processes

Shared Memorv Shared-Memory

Node n+2
1||||||||||||||||||||||||||y+

e P e) T T LI T AT TN T

Shared-Memory
Node n+1

Node n-2 Mode n+2

v

Using again the 1D-structure of the space-filling-curve
Intra-node-communication via MPI-Shared-Memory-Window

Shared-Memory used for communication and to store the results during the
load-balancing

MPI-communication only between nodes

v

v

v

Results - Element distribution

MPI-Rank

MPI-Rank MPI-Rank

2951 ES | S |
| s | s |
97 297 297
498 498 498
299 499 499
- 500 500 500
501 501 501
\ 502 502 \ 502
\ so3f) so3] \ s03]
so4] soaf] so4f
sosf] sos | sos|
Ty = 0,00ms Ty = 0,25ms To = 0,50ms

» Element distribution depends on the computational effort
» Redistrubution of the elements every 1,000 timesteps
» 10% reduction of the wall-time

HLR|S

124
— Average Cost
— Minimum Cost
122, — Maximum Cost
120,
118
8
116,
114,
112
0 50000 100000 150000 200000
Timesteps

Further Challenges - detection of load-imbalance at run-time

Master mreaa: 1>
Master thread:196.
Master thread:197
Master thread:198
Master thread:199
Master thread:200
Master thread:201
Master thread:202
Master thread:203
Master thread:204.
Master thread:205
Master thread:206

State of the art:

» Different powerful performance measuring tools are available
All tools need an instrumentation and produce overhead
Results of the measurement only available after simulation
No feedback loop to the application

v

v

v

Further Challenges - detection of load-imbalance at run-time

Master mreaa: 1>
Master thread:196.
Master thread:197
Master thread:198
Master thread:199
Master thread:200
Master thread:201
Master thread:202
Master thread:203
Master thread:204.
Master thread:205
Master thread:206

State of the art:
» Different powerful performance measuring tools are available
All tools need an instrumentation and produce overhead
» Results of the measurement only available after simulation
» No feedback loop to the application

v

Challenges:
» Measurement has to be integrated in the application
» Feedback loop to the application
» Measurement of the load-imbalance with a minimal overhead

Conclusion

» HPC systems generate their power by facilitating hundreds of thousands of cores

> Massively parallel CFD-codes are implemented
> Initial domain decomposition techniques are well know
> Well balanced CFD-applications

» Simulation of complex fluid flow

> varying load distribution during run-time
> occurrence of the load distribution hard to predict spatially and chronologically
> simulation specific load-imbalance occurs

» For efficient application execution dynamic load-balance strategies are indispensable

» Efficient redistribution of the computational load
> Detection of load-imbalance with a very low overhead

Thank you for your attention!

