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Motivation - Top500 from 1993 to 2017
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Motivation

» HPC systems generate their power by
facilitating hundreds of thousands of
cores

» Massive parallel algorithms are
implemented

» Computational effort must be
distributed evenly across all cores

» Initial domain decomposition
techniques are well know

» Well balanced applications for scientific
use-cases are developed
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Definitions

Element-weight:
Specific computational effort of an element.

Load of a MPI-domain:
Sum of the element-weights of a MPI-domain.

Load-imbalance:

maximum load

average load

maximum computation time
average computation time

Load-imbalance; =

Load-imbalancer =



Example 1 - Finite-Volume-Code FS3D

References:
Institute of Aerospace Thermodynamics - University of Stuttgart

http://www.uni-stuttgart.de/itlr/forschung/tropfen/fs3d/index.php?lang=en&amp;lang=en:w



http://www.uni-stuttgart.de/itlr/forschung/tropfen/fs3d/index.php?lang=en&amp;lang=en:w
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Examples for load-imbalance - Volume of Fluid Method

Source: ITLR

Treatment of multiple phases

0 liquid
f(x,t) =< (0;1) interface
1 solid

» Reconstruction of the interface

» Additional computational effort for the
interface elements
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Example 2 - Discontinuous Galerkin Spectral Element
Method (DG SEM) based code FLEXI

References:
Institute of Aerodynamics and Gas Dynamics - University of Stuttgart
Numerical research group https://nrg.iag.uni-stuttgart.de/

FLEXI on github: https://github.com/flexi-framework/flexi


https://nrg.iag.uni-stuttgart.de/
https://github.com/flexi-framework/flexi

FLEXI - a high-order numerical framework

» Hight-order numerical approach
» Massively parallel CFD-code
designed for HPC-systems

» DG SEM enables efficient
communication-pattern
(communication hiding)

» FLEXI tested on different
HPC-systems: Hornet, HazelHen,
JUQueen, Marconi

» FLEXI is used for very large
academic use-cases



Example - gas injection

» Numerical approach was
extended to simulate complex
fluid-flow

» The FV-Sub-Cell-Method is
used for shock capturing

» Code is used for industrial use
cases

» Depending on the local
solution the
FV-Sub-Cell-Method is turned
on/off

» FV-Sub-Cell-Method adds
local computational effort



Local computational effort

T = 0,00 ms T =0,25ms T =0,50ms
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Motivation for dynamic load-balancing
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Load distribution of a test-case on 96 cores.
» Small number of cores are over-loaded
» Huge number of cores are under-loaded
» Performance of the application suffers from the overload on a small number of cores



A dynamic load-balancing strategy

Step 1: Calculate a new optimized load Step 2: Distribute the load between
distribution MPI-processes
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» Global optimization problem

» Simple and fast calculation of the
optimized load distribution

» Keep the communication overhead
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A dynamic load-balancing strategy

Step 1: Calculate a new optimized load Step 2: Distribute the load between
distribution MPI-processes

Challenges:
» Communication-structure originates
during run-time
» Communication-structure changes
during run-time

» Keep the communication overhead
small

Challenges:
» Global optimization problem

» Simple and fast calculation of the
optimized load distribution

» Keep the communication overhead
small
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» Using a space-filling-curve for the domain-decomposition
» Mapping the 3D-problem to a 1D-problem
» Minimal communication (only one time)
» Simple communication pattern



1. Calculate a new optimized load distribution

An optimization algorithm based on the element specific computational effort is used for the
load-distribution.

. P,_ P,_
Achh = min(|Aacyhy '+ AP |Acyht + Ab))
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Load distribution of a test-case on 96 cores.
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Step 2: Distributing the load between MPI-processes

Shared Memorv Shared-Memory

Node n+2
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Shared-Memory
Node n+1

Node n-2 Mode n+2
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Using again the 1D-structure of the space-filling-curve
Intra-node-communication via MPI-Shared-Memory-Window

Shared-Memory used for communication and to store the results during the
load-balancing

MPI-communication only between nodes
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Results - Element distribution

MPI-Rank
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» Element distribution depends on the computational effort
» Redistrubution of the elements every 1,000 timesteps
» 10% reduction of the wall-time
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Further Challenges - detection of load-imbalance at run-time

Master mreaa: 1>
Master thread:196.
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Master thread:201
Master thread:202
Master thread:203
Master thread:204.
Master thread:205
Master thread:206

State of the art:

» Different powerful performance measuring tools are available
All tools need an instrumentation and produce overhead
Results of the measurement only available after simulation
No feedback loop to the application

v
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State of the art:
» Different powerful performance measuring tools are available
All tools need an instrumentation and produce overhead
» Results of the measurement only available after simulation
» No feedback loop to the application

v

Challenges:
» Measurement has to be integrated in the application
» Feedback loop to the application
» Measurement of the load-imbalance with a minimal overhead



Conclusion

» HPC systems generate their power by facilitating hundreds of thousands of cores

> Massively parallel CFD-codes are implemented
> Initial domain decomposition techniques are well know
> Well balanced CFD-applications

» Simulation of complex fluid flow

> varying load distribution during run-time
> occurrence of the load distribution hard to predict spatially and chronologically
> simulation specific load-imbalance occurs

» For efficient application execution dynamic load-balance strategies are indispensable

» Efficient redistribution of the computational load
> Detection of load-imbalance with a very low overhead



Thank you for your attention!




