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•  Fluid-Dynamic simulations with regions of 
different behavior 

•  Modal DG scheme 
•  Efficient computation 

Motivation 
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Inviscid Flow 

•  Nonlinear Euler equations: 
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•  In vector notation, the Euler equations can be 
written as 

•  F is the flux and nonlinear 
•  With the Jacobian J we can also write 

Vector Notation 
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•  For the linearization we split u into a constant 
mean state u0 and perturbations of that state 
u': 

•  With u0 constant in space and neglecting 
products of perturbations, a linear formulation 
is obtained: 

Linearization 

u = u0 + u0
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•  Mesh discretization 
•  Approximation of the solution by functions 

within elements 
•  Flux exchange between elements 

Discontinuous Galerkin 
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Element-local computation Neighbor dependency 
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•  Orthogonal polynomial basis 
•  First mode = integral mean 
•  Higher dimensions by tensor product -> integral 

mean still in first mode only 

Legendre Polynomials 
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•  State approximated by series of Legendre 
polynomials 

•  The first mode is the integral mean in the 
element, and we use this as u0 in the 
linearization: 

Local Linearization within Elements 
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•  We can now linearize the flux for our numerical 
approximation 

•  u0 now is only spatially constant within the 
element, it varies from element to element and 
over time 

•  Between elements we use the nonlinear flux G 

Locally Linearized Flux 

F (uh) ⇡ F (û0) + J(û0)u
0
h
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•  This partial linearization of the physical flux 
allows us to completely stay in modal space 
within elements 

•  Projection to nodal space only on surfaces 
(reduced dimensionality) 

•  Avoid aliasing 
•  Same data structure as for nonlinear 
•  Degree of linearization depends on order of the 

scheme 

Properties of this Approach 
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Travelling Wave (Higher Orders) 

p	   nElems	  

8	   64	  

12	   29	  

16	   16	  

24	   8	  

32	   4	  

64	   1	  
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Travelling Wave (Low Order) 

p	   nElems	  

2	   1024	  

4	   256	  
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Performance for 8th Order 
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Performance over Scheme Order 
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Spectral Convergence for Linear Problem 
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•  With this local linearization approach it is 
simple to switch to linear flux computations 
dynamically at runtime 

•  Just need an indicator to decide which 
equations to use 
–  For now we just use the variation of energy to 

decide whether to use linearized fluxes is acceptable 

•  Introduces load imbalance 

Adaptive Linearization 
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Adaptive Linearization with Indicator 
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Riemann: Linear, Adaptively Linear, Nonlinear 

5	  Elements,	  
Polynomial	  Degree	  15	  
Riemann	  Problem	  a=er	  some	  >me	  
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Thank you. 
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