

Locally Linearized Euler Equations in Discontinuous Galerkin with Legendre Polynomials

Harald Klimach, Michael Gaida, Sabine Roller <u>harald.klimach@uni-siegen.de</u> 26th WSSP 2017

Motivation

- Fluid-Dynamic simulations with regions of different behavior
- Modal DG scheme
- Efficient computation

Inviscid Flow

• Nonlinear Euler equations:

Vector Notation

- In vector notation, the Euler equations can be written as $\frac{\partial u}{\partial t} + \frac{\partial F(u)}{\partial x} = 0$
- F is the flux and nonlinear
- With the Jacobian J we can also write

$$\frac{\partial u}{\partial t} + J(u)\frac{\partial u}{\partial x} = 0$$

Linearization

- For the linearization we split u into a constant mean state u_0 and perturbations of that state u': $u = u_0 + u'$
- With u_0 constant in space and neglecting products of perturbations, a linear formulation is obtained: $\partial u = \partial u'$

$$\frac{\partial u}{\partial t} + J(u_0)\frac{\partial u'}{\partial x} = 0$$

Discontinuous Galerkin

- Mesh discretization
- Approximation of the solution by functions within elements
- Flux exchange between elements

$$\partial_t \int_{\Omega_i} \mathbf{u} \psi dV - \int_{\Omega_i} \mathbf{F} \cdot \nabla \psi dV + \int_{\partial \Omega_i} \mathbf{G} \psi \cdot \mathbf{n} dS = 0$$

Element-local computation Neighbor dependency

Legendre Polynomials

- Orthogonal polynomial basis
- First mode = integral mean
- Higher dimensions by tensor product -> integral mean still in first mode only

Local Linearization within Elements

State approximated by series of Legendre polynomials

$$u_h = \sum_{i=0} \hat{u}_i L_i(x)$$

• The first mode is the integral mean in the element, and we use this as u_0 in the linearization:

$$\hat{u}_{0_h} + u'_h = \hat{u}_0 + \sum_{i=1} \hat{u}_i L_i(x)$$

Locally Linearized Flux

• We can now linearize the flux for our numerical approximation

$$F(u_h) \approx F(\hat{u}_0) + J(\hat{u}_0)u'_h$$

- u_0 now is only spatially constant within the element, it varies from element to element and over time
- Between elements we use the nonlinear flux G

Properties of this Approach

- This partial linearization of the physical flux allows us to completely stay in modal space within elements
- Projection to nodal space only on surfaces (reduced dimensionality)
- Avoid aliasing
- Same data structure as for nonlinear
- Degree of linearization depends on order of the scheme

Travelling Wave (Higher Orders)

Travelling Wave (Low Order)

Performance for 8th Order

Performance over Scheme Order

Spectral Convergence for Linear Problem

Adaptive Linearization

- With this local linearization approach it is simple to switch to linear flux computations dynamically at runtime
- Just need an indicator to decide which equations to use
 - For now we just use the variation of energy to decide whether to use linearized fluxes is acceptable
- Introduces load imbalance

Adaptive Linearization with Indicator

Riemann: Linear, Adaptively Linear, Nonlinear

Thank you.