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A two-year experience with  SX-ACE since 2015 

Lessons Learned from SX-ACE Operations snd Applications 
Developments 

Some thoughts for design and development of the next 
generation vector system 

Design Constraints 

Domain-Specific Architecture Design in the Era of End-of-
Moore’s Law
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Tohoku Univ.’s Supercomputer System
(2015.2.20~)
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Operation Statistics of SX-ACE
(Normalized by SX-9 Data)

グラフ 1
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Applications
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Power Consumption of the Cooling System
Effect of Fresh-Air Cooling
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Node-Core Activity: 
Effect of Automatic Core-Node Activation/Deactivation Control
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Features of the SX-ACE Vector Processor
4 Core Configuration, each with High-Performance Vector-Processing Unit and Scalar Processing Unit

272Gflop/s of  VPU + 4Gflop/s of SPU per socket

• 68Gflop/s + 1Gflop/s per core

1MB private ADB per core (4MB per socket)

• Software-controlled on-chip memory for vector load/store

• 4x compared with SX-9

• 4-way set-associative

• MSHR with 512 entries (address+data)

• 256GB/s to/from Vec. Reg.

• 4B/F for Multiply-Add operations

256 GB/s memory bandwidth, Shared with 4 cores

• 1B/F in 4-core Multiply-Add operations

～ 4B/F in 1-core Multiply-Add operations

• 128 memory banks per socket

• 128B-Block access to the memory (16B of SX-9)

Other improvement and new mechanisms to enhance vector processing capability, especially for efficient handling of short 
vectors operations and indirect memory accesses

Dynamically and Statically reordering execution of vector gather/scatter operations
Advanced data forwarding in vector pipes chaining 

Shorter memory latency than SX-9

SX-ACE Processor Architecture
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Dynamically and Statically Reordering Execution of Vector 
Gather/Scatter Operations

Vectorization  

NODEP: Load & Store  operations of each element of a list-vector are executed in 
parallel.

• Vectorization Possible

Giving Priority to Vector Gather(Loads) over Scatter(Vector) Stores 

GTHREORDER

• Compiler statically reschedules vector gather/scatter operations to give the priority 
to Loads over Stores

NOCONFLICT

• Assign a flag that there are no data hazard between loads and stores to access 
different arrays, and dynamic reordering becomes possible by hardware to give the 
priority to VLD and VGT (gather) over VST and VSC (scatter)

VOVERTAKE

• Assign a flag that there is no data hazard between loads and stores within the same 
array, and dynamic reordering become possible by hardware to give the priority to 
VLD and VGT over VST and VSC

926th WSSP October 10-11, 2017
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Rescheduling vector gather/scatter operations by Compiler
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【NODEP Only】

① VLD IND(I) 

② VLD X(I) 

③ VGT A(IND(I)) 

④ VSC A(IND(I)) 

⑤ VGT A(IND(I)+1) 

⑥ VSC A(IND(I)+1) 

!CDIR NODEP
!CDIR GTHREORDER
DO I = 1, N
 A(IND(I)) = A(IND(I)) + X(I)
 A(IND(I)+1) = A(IND(I)+1) + X(I)
ENDDO

Time
① VLD 

② VLD
③ VGT

④ VSC

⑤ VGT
⑥ VSC

【NODEP and GTHREORDER】 

① VLD IND(I) 

② VLD X(I) 

③ VGT A(IND(I)) 

④ VGT A(IND(I)+1) 

⑤ VSC A(IND(I)) 

⑥ VSC A(IND(I)+1) 

① VLD
② VLD

③ VGT

④ VGT

⑤ VSC

⑥ VSC

GTHREORDER
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Out of Order execution for vector load&gather/
store&scatter operations across iterations by hardware
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①-1 
②-1 

③-1 
④-1 

①-2 
②-2 

③-2 
④-2 

NODEP only

①-1 
②-1 

①-2 
②-2 

③-1 

③-2 

④-2 
④-1 

NODEP & NOCONFLICT

hardware dynamically 
reorders Load instructions

I=1~256

①-1 VLD IND(I) 

② -1 VLD X(I) 

③-1 VGT Y(IND(I)) 

④-1 VSC A(IND(I)) 

I=257~512 
①-2 VLD IND(I) 

② -2 VLD X(I) 

③-2 VGT Y(IND(I)) 

④-2 VSC A(IND(I)) 

!CDIR NODEP
!CDIR NOCONFLICT
DO I = 1, 512
 A(IND(I)) = Y(IND(I)) + X(I)
ENDDO

26th WSSP October 10-11, 2017
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Out of Order execution for vector load&gather/
store&scatter operations across iterations by hardware
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NODEP & VOVERTAKE

hardware dynamically 
reorders Load instructions

I=1~256

①-1 VLD IND(I) 

② -1 VLD X(I) 

③-1 VGT A(IND(I)) 

④-1 VSC A(IND(I)) 

I=257~512 
①-2 VLD IND(I) 

② -2 VLD X(I) 

③-2 VGT A(IND(I)) 

④-2 VSC A(IND(I)) 

!CDIR NODEP
!CDIR VOVERTAKE(A), VOB
DO I = 1, 512
 A(IND(I)) = A(IND(I)) + X(I)
ENDDO
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Effects of Giving the Priority to LOADs over STOREs
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Future Vector Systems R&D* 

*This work is partially conducted with 
NEC, but the contents do not reflect 

any future products of NEC
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Timeline of the Cyberscience Center HPC System 
Development and R&D For the Future

Year 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Systems & 
Facility

Projects

5-Cluster SX-ACE (707TF)
LX 406Re2(31TF)

Storage Systems (4PB)
3D Tiled DisplayNew HPC Building 

Construction
(1,500m2)

Design and Procurement 
process of the next 

supercomputer system
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Design and Procurement process for 
enhancement of Server, 

Storage&Visualization Systems N
ex

t 
Sy

st
em

??

Feasibility study for future HPC systems

SX-9(29TF)

R&D for the next system
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Scaling may be End, but Silicon is not End!
And Use it Smart and Effective!

We are facing the end of Moore’s low due to the physical limitations, 
and the transistor cost is hard to reduce, however

Silicon is still fundamental constructing material for computing 
platforms such as plastic, steel and concrete for automobiles, buildings 
and home appliances.

16

So,  we have to become much more smart for 
design of Future HEC systems.

It’s time to focus on Domain-Specific Architectures for computation-
intensive, memory-intensive, I/O intensive, low-precision computing… 

etc applications to improve silicon/power efficiency!

Tech
. will 

be st
oppin

g!

Cost
 is in

creas
ing



Hiroaki Kobayashi, Tohoku University

16th WSSP Dec 10-11, 201217

StandardizationCustomization

Shorten time to solution/market

Reduce development cost

Increase operation 
efficiency
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More performance

Less Power/Energy

Standard design 
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Friendly Programming 
Models and API

High B/F. Big Core and 
Large SMP

NEC
 

NEC 

So What to Do 
~NNGV(?) Design Pendulum~

Hiroaki Kobayashi, Tohoku University
Slide at 16th WSSP in 2012
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Aurora: NEC’s Next Vector Product

Source: NEC
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Now “Makimoto”s Wave” also hits the HPC community.

“one fits all” no longer make sense! means, shifting from General Purpose to Special Purpose

19

IEEE Computer Dec. 2013

Makimoto’s Wave  
The cyclical nature of the semiconductor industry 

alternates between standardization and customization
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Domain Specific Balanced Architecture Design Approach: 
Not Peak Performance, Turn Memory-BW into Sustained Performance!

Need balanced improvement 
both in flop/s and BW! for 

high-efficiency in wide 
application areas

Limiting application areas
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Our target:
High B/F oriented design

Flop/s-oriented, memory-limited design
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One Feasible Solution to Future Vector Computing 
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…
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On-chip	ADB HBM(High	Bandwidth	Memory)

DDR	for	Vector	Engine

DDR	for	Vector	Host
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Design Space Exploration of the Next Generation Vector 
Architecture

22

Improving Flop/s-Memory Balance for Vector Operations

• Effects of FMAs instead of traditional SX vector pipes

On-chip-Memory Capacity

• Capacity becomes a help to recover the limited memory bandwidth?

Heterogeneous Memory Subsystem Design for Bandwidth-Capacity 
Tradeoff

• Stacked High-Bandwidth near-memory and DDR-based Far-memory 
Combined.

• A stacked high-bandwidth memory subsystem becomes a backup of 
ADB?
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Design Space Exploration of the Next Generation 
Vector Architecture

23

Effects of FMAｓ instead of using traditional vector pipes
๏Operations of the Himeno benchmark kernel
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Design Space Exploration of the Next Generation 
Vector Architecture

24

Himeno Benchmark
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Increasing ADB Capacity Becomes a Help to 
Recover the Limited Memory Bandwidth?
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Memory Subsystem Design Choice

26

How can we effectively use these under the 
consideration of applications characteristics!?
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HBM: Bandwidth-Oriented

Stacked high-bandwidth memory subsystem

DDR: Capacity-Oriented

DDR-based memory subsystem

HMA: Bandwidth-Capacity Heterogeneous

Stacked High-Bandwidth near-memory and DDR-
based Far-memory Combined for tradeoff between 
BW and capacity.

HBM only

DDR only

HMA: Hybrid
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Memory Management is Not So Easy!
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Summary
SX-ACE shows high sustained performance compared with SX-9 and other modern 
HEC systems

achieved the same single core performance in practical applications even with 60% of 
peak performance of SX-9

No1. computing-efficiency and power-efficiency in the HPCG Benchmark ranking 

Pave the way to a new social infrastructure for homeland safety in Japan

Well balanced HEC systems regarding memory performance is the key to success for 
realizing high productivity and power&silicon efficiency in science and engineering 
simulations

Consider domain-specific architectures with co-design with individual applications 
domains

• One-fits-all does not make sense any more! 

 Think different with Smart Force from Brute Force in HPC design

• Computing Quality is the first, for power-efficient HPC , not Quantity for 
productive HPC!

28

Source: Toyota

topspeed.com


