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Motivation: blood flow in aorta

I simulation of
bloodflow in an
aorta

I courtesy
http://www.mevis.de/
Andreas Ruopp /
HLRS
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Motivation: blood flow in aorta

I 3 velocity components at different
locations of the aorta in a sequence of
time steps

I 3dim signals at 2735 nodes in total

I 2301 time steps

I signals 1–10 are shown

I understood as a vector of signals

I signals have a common timewise
behaviour

I data from simulation

I courtesy http://www.mevis.de/
Andreas Ruopp / HLRS

4/24 :: Spectral structures for nonlinear operators , towards applications :: Stuttgart December 5th-6th 2016 ::



:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

decomposing sequences

I Given is a bounded sequence k 7→ gk[
g0 g1 · · · gk · · · gn

]
of states, measurements, iterations or discretization steps. These are typically
produced by a nonlinear (discretization) operator, which should produce stable
results in a compact domain.

I The target is to find an approximating sequence g̃k of the gk of the type

g̃k =

n∑
l=0

vl λ
k
l ∀ k ∈ N0 (1)

for some complex values λl and the time step k.
I this is the sum of vector valued coefficients multiplied by powers given by the

timestep k of λl, e.g. vectors in the (finite dimensional) state space of a
discretization of a partial differential equation.

I Even if all gk might be real vectors, λl and vl are complex. But for all exist conjugate

complex counterparts as part of the sum. The terms vl λ
k
l + vl λl

k
are relevant.

I Some of these λl may approximate eigenvalues of the Koopman-operator. Therefore
we name these eigenvalues. The vectors vl are named Koopman-modes.

5/24 :: Spectral structures for nonlinear operators , towards applications :: Stuttgart December 5th-6th 2016 ::



:::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::   :::::

properties of eigenvalues

I The eigenvalues are properties of the (discretization) operator and not simple
properties of the iteration sequence.
⇒ for a stable operator the eigenvalues are restricted to |λl| ≤ 1 .

I We found a numerical procedure resulting in approximations of the eigenvalues
forcing the modulus of the eigenvalues not to exceed 1.

I There are other eigenvalues with |λl| � 1 . These eigenvalues are typically
inaccurate in the numerical approximation and depend on different parameters.
A member vector vlλ

k
l will disappear exponentially for k −→∞ if |λl| < 1 even if

‖vl‖ is large.

I Important is to find the correct elements vlλ
k
l for |λl| = 1. These Koopman-modes

will survive with increasing time step k. They deliver the long term instationary
behaviour of the iteration sequence.

I If the error of the procedure is small, the future iterations of the sequence can be
predicted.
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what is to be solved

I We determine a vector c with the property

Gj:p+j c =
[
g0+j g1+j g2+j . . . gp+j

]

c0
c1
c2
...
cp

 ≈ 0 (2)

for j = 0, 1, · · · , n− p (generalizing DMD by Peter Schmidt). The vector c is not
unique.

I Understood as the coefficient vector of a polynom c will have a polynom degree p
smaller than the number of measurements n.

I We will not discuss here, what ≈ 0 means. This question leads to the approximation
by g̃k for gk.
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meaning and significance of vector c

I Essential for the whole procedure is the determination of the vector c defining the
eigenvalues as roots of the associated polynom.

I The Koopman-modes vl can be calculated by knowledge solely of the eigenvalues λl
and the iteration sequence G.

I The larger the degree p ≤ n of the approximating polynom c is, the smaller the
approximation error. But it can be shown, that the quality of being a
Koopman-eigenvalue is getting worse.

I We can show how Koopman-eigenfunctions can be derived from the representation.
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how to get the Koopman-modes?

I For the root λl divide the polynom c by the linear factor

[
−λl
1

]

c = wl ∗
[
−λl
1

]
∀ l = 1, · · · , p (3)

I Use the polynom coefficient vector wl to build the vectors vl

vl = G̃0:p−1
wl

wl (λl)
(4)

I The Koopman-modes vl define the sum

[
g̃0 g̃1 . . . g̃n

]
=

p∑
l=1

vl
[
1, λl, λ

2
l , . . . , λ

n
l

]
(5)

I The matrix of measurements G̃0:p−1 could even be replaced by a matrix of other
measurements related to the problem.
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matrices to be investigated

I Determine a polynom coefficient vector c by

Ĝ c =


g0+0 g4+0 g8+0 . . . g4q+0

g0+1 g4+1 g8+1 . . . g4q+1

g0+2 g4+2 g8+2 . . . g4q+2

g0+3 g4+3 g8+3 . . . g4q+3

 c
?
≈ 0 (6)

I The polynom coefficient vector c =
[
c0 c1 . . . cq

]
defines a polynom

c (λ) =

q∑
k=0

ck
(
λ4
)k

(7)

This polynom has q coefficients and q primary roots µl each defining 4 different
roots by solving µlj = λ4lj for j = 1, 2, 3, 4.

I This approach reduces the number of involved roots and the size of the polynom by
a factor of (here) 4.

I We have still to take the 4-th root of the calculated root and the related mode.

I Using instead of 4 another number allows for handling of a large number of time
steps.
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An example of Koopman modes in the flow across an aorta

I An approximation of the complete unsteady trajectory is given by k 7→ Re
∑

l vlλ
k
l .

I Shown are animations the time behaviour of the Koopman-modes k 7→ Re vlλ
k
l for

k = 0, · · · , 130
I The selected 8 Koopman-modes have maximal value for ‖vlλkmax

l ‖ at the last (!)
time step kmax.

I They are ordered by the angle of the complex number λl given by
arg(λl) = Im log λl l = 1, 2, · · · , 8

I All the animations show smooth fields.

I The different Koopman-modes are obviously related to different domains.

I As the frequency arg(λl) is getting larger, the movement is faster.

I It can be seen, that arg(λl) l = 2, · · · , 8 are multiples of arg(λ6). The theory of the
Koopman-operator is suggesting this.

I The first case for λ6 is constant, because it is related to λ = 1.

Other remarks for the pictures

I The region shown is only a part of the simulated domain of the aorta.

I The vector fields Re vlλ
k
l have no common scaling in the pictures.

I Not all time steps are shown to limit the size of the PDF-file.
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most important eigenvalues and Koopman-modes

I A fraction of the unit circle is
shown.

I Eigenvalues λl near 1 with weights
‖vl‖ of the Koopman modes
proportional to diameter of the
blue circles.

I the values λl l = 1, 2, · · · , 8
ordered with respect to the size of
their modes at the last defined
step.

I The relative weights are given by in
λ(· · · )
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norm of modes ‖vlλkl ‖ decreasing with time k

I The animation shows how modes
‖vlλkl ‖ behave in dependency on
|λl|.

I Modes with |λl| < 1 disappear
along the trajectory.

I Modes with |λl| = 1 remain. They
are important for the long term
behaviour.

I Modes with |λl| > 1 would be
unstable. They would indicate an
unstable iteration operator.
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1- constant Koopman-mode 6
|λ6| = 1.0000 arg(λ6) = 0.0000 rel.norm = 0.369
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2- Koopman-mode 1
|λ1| = 1.0000 arg(λ1) = 2.2765 ≈ 1 x arg(λ6) rel.norm = 1.00
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3- Koopman-mode 7
|λ7| = 0.99999 arg(λ7) = 4.5522 ≈ 2 x arg(λ6) rel.norm = 0.364
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4- Koopman-mode 4
|λ4| = 0.99969 arg(λ4) = 6.8267 ≈ 3 x arg(λ6) rel.norm = 0.477
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5- Koopman-mode 8
|λ8| = 0.99631 arg(λ8) = 11.362 ≈ 5 x arg(λ6) rel.norm = 0.185
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6- Koopman-mode 2
|λ2| = 0.99830 arg(λ2) = 13.685 ≈ 6 x arg(λ6) rel.norm = 0.586
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7- Koopman-mode 3
|λ3| = 0.99856 arg(λ3) = 15.950 ≈ 7 x arg(λ6) rel.norm = 0.568
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8- Koopman-mode 5
|λ5| = 0.99786 arg(λ5) = 18.235 ≈ 8 x arg(λ6) rel.norm = 0.429
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Performance aspects

The procedure uses the following operations

I matrix x matrix multiplication for small and large dense matrices.

I calculation of symmetric eigenproblems

I calculation of generalized symmetric eigenproblems

I roots of large polynomials in 1D to be found

I If for most of the vectors we have vl ≈ 0 the method can be used as problem
adapted data compression method.

The matrix of measurements G might be very large (number of DOFs at all nodes for the
number of time steps ).

I IO is very important because of the potentially large data size

I see the talk of Erich Focht
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Conclusions

I An unsteady nonlinear problem with an quasiperiodic characteristic may be
approximately decomposed in a sum of complex stationary modes muliplied by terms
λkl repesenting the time behaviour.

I Ensembles of trajectories with different initial states can be analysed together leading
to common eigenvalues.

I The method allow for the analysis of measurements governed by hidden operators.

I The Koopman-vectors vl have a regular behaviour. What is their physical meaning?
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”Applied Koopmanism”;
Chaos 22, 047510 (2012); doi: 10.1063/1.4772195;
http://dx.doi.org/10.1063/1.4772195

B. O. Koopman, ”Hamiltonian systems and transformations in Hilbert space,” Proc. Natl. Acad. Sci. U.S.A. 17(5), 315–318 (1931).

K. K. Chen, J. H. Tu, and C. W. Rowley.

”Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyse”.
J. Nonlinear Sci. 22(6):887–915, 2012.

V. V. Peller, ”An excursion into the theory of Hankel operators, in Holomorphic spaces” (Berkeley, CA, 1995), vol. 33 of Math. Sci.

Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 1998, pp. 65–120.

P. J. Schmid,

”Dynamic mode decomposition of numerical and experimental data,”
J. Fluid Mech. 656, 24 (2010).

K. K. Chen, J. H. Tu, and C. W. Rowley. ”Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier

analyse”. J. Nonlinear Sci. 22(6):887–915, 2012.

Kari Küster,
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Thank you for your attention

Kuester[at]hlrs.de
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