Spectral structures for nonlinear operators towards applications

 24^{th} Workshop of Sustained Simulation Performance 5. - 6. December 2016 Stuttgart

Uwe Küster, Andreas Ruopp, Ralf Schneider

Outline

Motivation

the decomposition of a signal

Alternative Matrices

Conclusions

Bibliography

Motivation: blood flow in aorta

- simulation of bloodflow in an aorta
- courtesy http://www.mevis.de, Andreas Ruopp / HLRS

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日</p>

Motivation: blood flow in aorta

signals [u,v,w] for aortic-blood-flow shown for every 164 step 1:10 / 51

- 3 velocity components at different locations of the aorta in a sequence of time steps
- 3dim signals at 2735 nodes in total
- ▶ 2301 time steps
- signals 1–10 are shown
- understood as a vector of signals
- signals have a common timewise behaviour
- data from simulation

 courtesy http://www.mevis.de/ Andreas Ruopp / HLRS

1

decomposing sequences

• Given is a bounded sequence $k \mapsto g_k$

 $\begin{bmatrix} g_0 & g_1 & \cdots & g_k & \cdots & g_n \end{bmatrix}$

of states, measurements, iterations or discretization steps. These are typically produced by a nonlinear (discretization) operator, which should produce stable results in a compact domain.

• The target is to find an **approximating** sequence \tilde{g}_k of the g_k of the type

$$\tilde{g}_k = \sum_{l=0}^n v_l \ \lambda_l^k \quad \forall \ k \in \mathbb{N}_0$$
⁽¹⁾

for some complex values λ_l and the time step k.

- this is the sum of vector valued coefficients multiplied by powers given by the timestep k of \u03c6_l, e.g. vectors in the (finite dimensional) state space of a discretization of a partial differential equation.
- Even if all g_k might be real vectors, λ_l and v_l are complex. But for all exist conjugate complex counterparts as part of the sum. The terms v_l λ_l^k + v_l λ_l^k are relevant.
- Some of these λ_l may approximate eigenvalues of the Koopman-operator. Therefore we name these eigenvalues. The vectors v_l are named Koopman-modes.

properties of eigenvalues

- The eigenvalues are properties of the (discretization) operator and not simple properties of the iteration sequence.
 - \Rightarrow for a stable operator the eigenvalues are restricted to $|\lambda_l| \leq 1$.
- We found a numerical procedure resulting in approximations of the eigenvalues forcing the modulus of the eigenvalues not to exceed 1.
- There are other eigenvalues with |λ_l| ≪ 1. These eigenvalues are typically inaccurate in the numerical approximation and depend on different parameters. A member vector v_lλ^k_l will disappear exponentially for k → ∞ if |λ_l| < 1 even if ||v_l|| is large.
- Important is to find the correct elements $v_l \lambda_l^k$ for $|\lambda_l| = 1$. These Koopman-modes will survive with increasing time step k. They deliver the long term instationary behaviour of the iteration sequence.
- If the error of the procedure is small, the future iterations of the sequence can be predicted.

what is to be solved

We determine a vector c with the property

$$G_{j:p+j} c = \begin{bmatrix} g_{0+j} & g_{1+j} & g_{2+j} & \dots & g_{p+j} \end{bmatrix} \begin{bmatrix} c_0 \\ c_1 \\ c_2 \\ \vdots \\ c_p \end{bmatrix} \approx 0$$
(2)

for $j = 0, 1, \cdots, n - p$ (generalizing DMD by Peter Schmidt). The vector c is not unique.

- Understood as the coefficient vector of a polynom c will have a polynom degree p smaller than the number of measurements n.
- We will not discuss here, what ≈ 0 means. This question leads to the approximation by \tilde{g}_k for g_k .

meaning and significance of vector c

- Essential for the whole procedure is the determination of the vector *c* defining the eigenvalues as roots of the associated polynom.
- > The Koopman-modes v_l can be calculated by knowledge solely of the eigenvalues λ_l and the iteration sequence G.
- The larger the degree $p \le n$ of the approximating polynom c is, the smaller the approximation error. But it can be shown, that the quality of being a Koopman-eigenvalue is getting worse.
- ▶ We can show how Koopman-eigenfunctions can be derived from the representation.

how to get the Koopman-modes?

For the root λ_l divide the polynom c by the linear factor $\begin{vmatrix} -\lambda_l \\ 1 \end{vmatrix}$

$$c = w_l * \begin{bmatrix} -\lambda_l \\ 1 \end{bmatrix} \quad \forall \ l = 1, \cdots, p \tag{3}$$

• Use the polynom coefficient vector w_l to build the vectors v_l

$$v_l = \tilde{G}_{0:p-1} \frac{w_l}{w_l(\lambda_l)} \tag{4}$$

The Koopman-modes v_l define the sum

$$\begin{bmatrix} \tilde{g}_0 & \tilde{g}_1 & \dots & \tilde{g}_n \end{bmatrix} = \sum_{l=1}^{\mathbf{p}} v_l \begin{bmatrix} 1, \lambda_l, \lambda_l^2, \dots, \lambda_l^{\mathbf{n}} \end{bmatrix}$$
(5)

> The matrix of measurements $\tilde{G}_{0:p-1}$ could even be replaced by a matrix of other measurements related to the problem.

500

matrices to be investigated

Determine a polynom coefficient vector c by

$$\widehat{G} c = \begin{bmatrix} g_{0+0} & g_{4+0} & g_{8+0} & \dots & g_{4q+0} \\ g_{0+1} & g_{4+1} & g_{8+1} & \dots & g_{4q+1} \\ g_{0+2} & g_{4+2} & g_{8+2} & \dots & g_{4q+2} \\ g_{0+3} & g_{4+3} & g_{8+3} & \dots & g_{4q+3} \end{bmatrix} c \stackrel{?}{\approx} 0$$
(6)

▶ The polynom coefficient vector $c = \begin{bmatrix} c_0 & c_1 & \dots & c_q \end{bmatrix}$ defines a polynom

$$c\left(\lambda\right) = \sum_{k=0}^{q} c_k \left(\lambda^4\right)^k \tag{7}$$

This polynom has q coefficients and q primary roots μ_l each defining 4 different roots by solving $\mu_{lj} = \lambda_{lj}^4$ for j = 1, 2, 3, 4.

- This approach reduces the number of involved roots and the size of the polynom by a factor of (here) 4.
- We have still to take the 4-th root of the calculated root and the related mode.
- Using instead of 4 another number allows for handling of a large number of time steps.

An example of Koopman modes in the flow across an aorta

- An approximation of the complete unsteady trajectory is given by $k \mapsto Re \sum_l v_l \lambda_l^k$.
- \blacktriangleright Shown are animations the time behaviour of the Koopman-modes $k\mapsto {\rm Re}\,v_l\lambda_l^k$ for $k=0,\cdots,130$
- ▶ The selected 8 Koopman-modes have maximal value for $\|v_l \lambda_l^{k_{max}}\|$ at the last (!) time step k_{max} .
- They are ordered by the angle of the complex number λ_l given by $arg(\lambda_l) = \text{Im} \log \lambda_l \ l = 1, 2, \cdots, 8$
- All the animations show smooth fields.
- > The different Koopman-modes are obviously related to different domains.
- As the frequency $arg(\lambda_l)$ is getting larger, the movement is faster.
- It can be seen, that $arg(\lambda_l) \ l = 2, \cdots, 8$ are multiples of $arg(\lambda_6)$. The theory of the Koopman-operator is suggesting this.
- The first case for λ_6 is constant, because it is related to $\lambda = 1$.

Other remarks for the pictures

- The region shown is only a part of the simulated domain of the aorta.
- The vector fields $\operatorname{Re} v_l \lambda_l^k$ have no common scaling in the pictures.
- Not all time steps are shown to limit the size of the PDF-file.

500

47 ▶ <

most important eigenvalues and Koopman-modes

- A fraction of the unit circle is shown.
- Eigenvalues \(\lambda_l\) near 1 with weights \|\vee v_l\| of the Koopman modes proportional to diameter of the blue circles.
- the values λ_l l = 1, 2, · · · , 8 ordered with respect to the size of their modes at the last defined step.
- The relative weights are given by in $\lambda(\cdots)$

 5 4 E 5 4 E

200

Spectral structures for nonlinear operators,

norm of modes $||v_l \lambda_l^k||$ decreasing with time k

- The animation shows how modes $||v_l \lambda_l^k||$ behave in dependency on $|\lambda_l|$.
- ▶ Modes with |λ_l| < 1 disappear along the trajectory.
- ► Modes with |λ_l| = 1 remain. They are important for the long term behaviour.
- ► Modes with |λ_l| > 1 would be unstable. They would indicate an unstable iteration operator.

1- constant Koopman-mode 6 $|\lambda_6| = 1.0000 \ arg(\lambda_6) = 0.0000 \ rel.norm = 0.369$

14/24 ::

towards applications

$|\lambda_1| = 1.0000 \ arg(\lambda_1) = 2.2765 \approx 1 \ x \ arg(\lambda_6) \ rel.norm = 1.00$

 $|\lambda_7| = 0.99999 \ arg(\lambda_7) = 4.5522 \approx 2 \ x \ arg(\lambda_6) \ rel.norm = 0.364$

 $|\lambda_4| = 0.99969 \ arg(\lambda_4) = 6.8267 \approx 3 \ x \ arg(\lambda_6) \ rel.norm = 0.477$

 $|\lambda_8| = 0.99631 \ arg(\lambda_8) = 11.362 \approx 5 \ x \ arg(\lambda_6) \ rel.norm = 0.185$

 $|\lambda_2| = 0.99830 \ arg(\lambda_2) = 13.685 \approx 6 \ x \ arg(\lambda_6) \ rel.norm = 0.586$

 $|\lambda_3| = 0.99856 \ arg(\lambda_3) = 15.950 \approx 7 \ x \ arg(\lambda_6) \ rel.norm = 0.568$

 $|\lambda_5| = 0.99786 \ arg(\lambda_5) = 18.235 \approx 8 \ x \ arg(\lambda_6) \ rel.norm = 0.429$

Performance aspects

The procedure uses the following operations

- matrix x matrix multiplication for small and large dense matrices.
- calculation of symmetric eigenproblems
- calculation of generalized symmetric eigenproblems
- roots of large polynomials in 1D to be found
- > If for most of the vectors we have $v_l \approx 0$ the method can be used as problem adapted data compression method.

The matrix of measurements G might be very large (number of DOFs at all nodes for the number of time steps).

- IO is very important because of the potentially large data size
- see the talk of Erich Focht

Conclusions

- An unsteady nonlinear problem with an quasiperiodic characteristic may be approximately decomposed in a sum of complex stationary modes muliplied by terms λ^k_l repesenting the time behaviour.
- Ensembles of trajectories with different initial states can be analysed together leading to common eigenvalues.
- > The method allow for the analysis of measurements governed by hidden operators.
- The Koopman-vectors v_l have a regular behaviour. What is their physical meaning?

Bibliography

T.Eisner, B. Farkas, M.Haase, R.Nagel:

"Operator Theoretic Aspects of Ergodic Theory", Graduate Texts in Mathematics, Springer 2015.

Marko Budišić, Ryan Mohr, and Igor Mezić;

"Applied Koopmanism"; Chaos 22, 047510 (2012); doi: 10.1063/1.4772195; http://dx.doi.org/10.1063/1.4772195

B. O. Koopman, "Hamiltonian systems and transformations in Hilbert space," Proc. Natl. Acad. Sci. U.S.A. 17(5), 315-318 (1931).

K. K. Chen, J. H. Tu, and C. W. Rowley.

"Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyse". J. Nonlinear Sci. 22(6):887–915, 2012.

V. V. Peller, "An excursion into the theory of Hankel operators, in Holomorphic spaces" (Berkeley, CA, 1995), vol. 33 of Math. Sci. Res. Inst. Publ., Cambridge Univ. Press, Cambridge, 1998, pp. 65–120.

P. J. Schmid,

"Dynamic mode decomposition of numerical and experimental data," J. Fluid Mech. 656, 24 (2010).

K. K. Chen, J. H. Tu, and C. W. Rowley. "Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyse". J. Nonlinear Sci. 22(6):887–915, 2012.

Kari Küster,

"The Koopman Linearization of Dynamical Systems",

Diplomarbeit, März 2015, Arbeitsbereich Funktionalanalysis, Mathematisches Institut, Eberhard-Karls-Universität Tübingen_____

towards applications

Thank you for your attention

Kuester[at]hlrs.de

