Convection permitting seasonal latitude-belt simulation using the Weather Research and Forecasting (WRF) model

T. Schwitalla, K. Warrach-Sagi, and V. Wulfmeyer
Institute of Physics and Meteorology
University of Hohenheim
Usually, limited area models (LAM) are used for current numerical weather prediction. External boundary conditions are not always favorable – they may lead to a distortion due to model imbalance.
Background

100km mesh size

3km mesh size
First solution: Run a channel domain with 0.03° resolution
Experimental setup

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP resolution of 0.03° (3.3 km) with 12000150057 grid cells</td>
<td></td>
</tr>
<tr>
<td>Model top 10 hPa with 14 levels up to 1500 m above ground</td>
<td></td>
</tr>
<tr>
<td>Forcing data from ECMWF analysis every 6 h at the north/south</td>
<td></td>
</tr>
<tr>
<td>2-moment microphysics including ice, snow and graupel</td>
<td></td>
</tr>
<tr>
<td>YSU Planetary boundary layer parameterization (non-local)</td>
<td></td>
</tr>
<tr>
<td>NOAH Land surface model (4 soil layers, single layer snow model)</td>
<td></td>
</tr>
<tr>
<td>Sea surface temperature data @6 km resolution (OSTIA project of UK Met Office)</td>
<td></td>
</tr>
<tr>
<td>Simulation period July and August 2013</td>
<td></td>
</tr>
<tr>
<td>No data assimilation</td>
<td></td>
</tr>
</tbody>
</table>
Technical aspects

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>3500 nodes of Cray XC40@HLRS (84000 cores in total)</td>
<td></td>
</tr>
<tr>
<td>MPI/OpenMP hybrid mode</td>
<td></td>
</tr>
<tr>
<td>Parallel NetCDF with LUSTRE file striping (set to 96)</td>
<td></td>
</tr>
<tr>
<td>Output frequency was 30min for 3D data</td>
<td></td>
</tr>
<tr>
<td>Output frequency of 15min for additional diagnostic files</td>
<td></td>
</tr>
<tr>
<td>128 restart files with 440GB each</td>
<td></td>
</tr>
<tr>
<td>Including auxiliary files total data amount ~450TB</td>
<td></td>
</tr>
<tr>
<td>Simulation without I/O takes about 1.5 days</td>
<td></td>
</tr>
<tr>
<td>Total required time was 3.5 days</td>
<td></td>
</tr>
</tbody>
</table>
Results

Accumulated precipitation @12km

CMORPH analysis

WRF 0.12°
Results

Accumulated precipitation @ 3km

CMORPH analysis

WRF 0.03°
Accumulated precipitation

LOWRES vs. CMORPH

HIRES vs. CMORPH

Observed Precipitation [mm]

Simulated Precipitation [mm]
Summary

• First longer-term CP latitude belt simulation of the Northern hemisphere using the WRF model.
• Overestimation of storms in the Pacific Ocean
• Precipitation is overestimated at both resolutions

It’s the way to go
Moving forward...
Larger system -> larger domain!

Before:

Now:
Experimental setup (2)

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>CP resolution of 0.03° (3.3 km) with 12000406057 grid cells</td>
<td></td>
</tr>
<tr>
<td>Model top 10 hPa with 14 levels up to 1500 m above ground</td>
<td></td>
</tr>
<tr>
<td>Forcing data from ECMWF analysis every 6 h at the north/south</td>
<td></td>
</tr>
<tr>
<td>2-moment microphysics including ice, snow and graupel</td>
<td></td>
</tr>
<tr>
<td>YSU Planetary boundary layer parameterization (non-local)</td>
<td></td>
</tr>
<tr>
<td>NOAH-MP Land surface model (4 soil layers, 3-layer snow model)</td>
<td></td>
</tr>
<tr>
<td>SST data @6 km resolution from UK Met Office+ SST data from ECMWF</td>
<td></td>
</tr>
<tr>
<td>Simulation period February to June 2015</td>
<td></td>
</tr>
</tbody>
</table>
Technical aspects (2)

<table>
<thead>
<tr>
<th>Description</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>4096 nodes of Cray XC40@HLRS (98304 cores in total)</td>
<td></td>
</tr>
<tr>
<td>MPI/OpenMP hybrid mode (6 OMP threads/node)</td>
<td></td>
</tr>
<tr>
<td>Simulation will run on ws9 (currently 26 large OSTs)</td>
<td></td>
</tr>
<tr>
<td>Parallel NetCDF with LUSTRE file striping (set to 26)</td>
<td></td>
</tr>
<tr>
<td>Output frequency was 6h for 3D data</td>
<td></td>
</tr>
<tr>
<td>Output frequency of 30min for additional diagnostic files</td>
<td></td>
</tr>
<tr>
<td>20 restart files with 1.2TB each</td>
<td></td>
</tr>
<tr>
<td>Simulation output is expected to be around 190TB</td>
<td></td>
</tr>
<tr>
<td>Required input data is around 100TB</td>
<td></td>
</tr>
<tr>
<td>Total required time is expected to be around 14 days</td>
<td></td>
</tr>
</tbody>
</table>
When you start to prepare your simulation

You wonder why you receive NetCDF error messages:

`ERROR: Error in ext_pkg_write_field`

This is because of a limitation of serial NetCDF

Solution: Each MPI tasks needs to write its own file
➢ This means $840 \times 4 \times 150 = 504000$ files 100MB each.
Of course you wait for the next pitfall

You know that you have to use Parallel NetCDF.....

“One or more variable sizes violate format constraints”

One of your arrays is larger than $2^{32}-4$ bytes (or 4GB).

Solution: Move from CDF2 standard to CDF5 standard when using PNetCDF
Let’s see what comes next.....

Maybe you want to check your data:

```bash
ncdump -h wrfout_d01_2015-02-01_12_00_00
```

```
ncdump: wrfout_d01_2015-02-01_12_00_00: NetCDF: Unknown file format
```

And your plot program (NCL) tells you:

```
Variable: f
Type: file
(0) File Missing Value : -1
```

Solution: Ask the NCL and Cray developers to build these tools with CDF5 support.
But you never know....
But you never know....

TSK (K)
Hopefully the solution is..

- That you use the high-resolution SST data set from UK MetOffice (OSTIA)
- You also use SST data from the operational ECMWF analysis
- Combine both data sets (first check for OSTIA, then for ECMWF)
- Limit SST and skin temperatures over water surfaces to 34°C
- Limit the numerical time step to 10s due to convection and map scale factors
If all the above is the solution...

Then you eventually get your first result of the simulation:

OLR (W m\(^{-2}\))

[Map of OLR (W m\(^{-2}\)) showing different color-coded regions]
Scaling tests (pure computation, 4096 nodes)
But.....

If you consider Parallel NetCDF I/O:

![Graph showing I/O rate vs. MPI tasks. The graph has a y-axis labeled I/O rate [MB/s] ranging from 0 to 18000 and an x-axis labeled MPI tasks ranging from 10000 to 100000. There is a red circle highlighting a point at 6 OMP threads.]
I/O solutions

- Reduce your domain size
- Further reduce number of MPI tasks
- Use NetCDF4 compression
- Increase number of OST’s
- Try SIONLib from Jülich and LRZ
- Try Cray Data Warp
If you are too optimistic...

0x00002aaada8d7875 in raise () from /lib64/libc.so.6
#1 0x00002aaada8d8e51 in abort () from /lib64/libc.so.6
#2 0x00000000224de9b5 in for__issue_diagnostic ()
#3 0x00000000224e55ea in for__signal_handler ()
#4 <signal handler called>
#5 0x0000000022135f3f in module_sf_sfclayrev_mp_psim_stable ()
#6 0x0000000022131995 in module_sf_sfclayrev_mp_sfclayrev1d ()
#7 0x000000002213103b in module_sf_sfclayrev_mp_sfclayrev ()
#8 0x0000000021a2a729 in module_surface_driver_mp_surface_driver ()
#9 0x00002aaad604cb3 in __kmp_invoke_microtask ()
 from /sw/hazelhen/hlrs/compiler/intel/Compiler/16.0.3.210/compilers_and_libraries_2016.3.210/linux/compiler/lib/intel64_lin/libiom.so
#10 0x00002aaad5d3437 in __kmp_invoke_task_func (gtid=-77391588) at ../../src/kmp_runtime.c:7058
#11 0x00002aaad5d460b in __kmp_fork_call (loc=0x7ffffb63191c, gtid=-77398260, call_context=(unknown: 1185205632),
 argc=174930668, microtask=0x7ffffb62fd8c,
 invoker=0x7ffffb62fc0c, ap=0x7ffffb6429b0) at ../../src/kmp_runtime.c:2397
#12 0x00002aaad5d518 in __kmpc_fork_call (loc=0x7ffffb63191c, argc=-77398260, microtask=0x46a4cd80
<module_sf_sfclayrev_mp_psim_stab>)
 at ../../src/kmp_csupport.c:339
#13 0x0000000021a32378 in module_surface_driver_mp_surface_driver ()
#14 0x0000000021a80bb in module_first_rk_step_part1_mp_first_rk_step_part1 ()
#15 0x0000000020dc9ae1 in solve_em ()
#16 0x0000000020cd91a in solve_interface ()
#17 0x000000002016d001 in module_integrate_mp_integrate ()
#18 0x0000000020085fe7 in module_wrf_top_mp_wrf_run ()
#19 0x0000000020085b7f in MAIN ()
#20 0x0000000020085b7e in main ()