

Konstantin Fröhlich, Lennart Schneiders, Matthias Meinke, Wolfgang Schröder

k.froehlich@aia.rwth-aachen.de

Institute of Aerodynamics RWTH Aachen University Germany

24th Workshop on Sustained Simulation Stuttgart, Germany, December 5, 2016

Research projects involing turbulent particle-laden flow

Models verified and improved via particle-resolved simulations

Precipitation modeling

extremeinstability.com

Coal/biomass combust.

oxyflame.com LEAT, RU Bochum,

edm-huber de

Aotivation

Motivation

Research projects involing turbulent particle-laden flow

Models verified and improved via particle-resolved simulations

Outline

Motivation

- Sharp-interface Cartesian method Multiple level-set/cut-cell boundary representation Dynamic mesh refinement Dynamic load balancing
- 3 Application to particulate turbulent flow Modulation of isotropic turbulence by spherical particles Quantification of particle-induced dissipation

Turbulent flow

Laminar-turbulent transition in a round jet

B. O. Andersen, TU Denmark

Governing equations

Fluid motion:
$$\frac{d}{dt} \int_{V(t)} \boldsymbol{Q} \, dV + \oint_{\partial V(t)} \underline{\boldsymbol{H}} \cdot \boldsymbol{n} \, dA = \boldsymbol{0}, \quad \boldsymbol{Q} = [\rho, \rho \boldsymbol{u}, \rho E]$$

Governing equations

Rigid body acceleration:
$$m \frac{d \mathbf{v}}{dt} = \mathbf{F}$$

Angular acceleration: $\underline{\widetilde{\mathcal{I}}} \frac{d\widetilde{\omega}}{dt} + \widetilde{\omega} \times (\underline{\widetilde{\mathcal{I}}}\widetilde{\omega}) = \widetilde{\mathcal{T}}$

Governing equations

Surface force:
$$\mathbf{F}_{p} = \oint_{\Gamma_{p}} (-p\mathbf{n} + \underline{\tau} \cdot \mathbf{n}) dA$$
,
Surface torque: $\mathcal{T}_{p} = \oint_{\Gamma_{p}} (\mathbf{x} - \mathbf{r}_{p}) \times (-p\mathbf{n} + \underline{\tau} \cdot \mathbf{n}) dA$

Particle phase representation

- $d < \eta$: Lagrangian "point-mass" approach justified
- ▶ $d \sim \eta$: need extra resolution for particles boundary layers
- $d > \eta$: DNS grid is sufficient to resolve particles

Cut-cell discretization

Sharp resolution of complex particles shapes - cut-cell method

- Intersection of Cartesian mesh with zero level set gives discrete boundary
- Enables sharp and conservative resolution of immersed boundaries
- Complex geometries by multiple level-set/multi cut cell
- Stabilization of small cut cells neccessary

Schneiders et al., An accurate moving boundary formulation in cut-cell methods, J. Comput. Phys. 235 (2013)

Strong scaling cut cells

Solution 3D Navier-Stokes equations including cut cells:

- ▶ 5-stage explicit Runge-Kutta time stepping method, $O(\Delta t^2)$
- Advective terms: AUSM (Advection Upstream Splitting Method) with modified pressure splitting, O(Δx²)
- Viscous terms: central differences, $\mathcal{O}(\Delta x^2)$

A. Pogorelov et al., Cut-cell method based large-eddy simulation of tip-leakage flow, Physics of Fluids 27 (2015)

Examples

Particle-particle collisions

- Sharp resolution of the gap in between colliding particles
- Conservation: no loss of mass pushed out of the gap

Technical flows

- Accurate and robust handling of sharp geometric features
- No mass leaks by moving parts

Sharp-interface Cartesian method

Combustion engine

Combustion engine

Sharp-interface Cartesian method

Adaptive mesh refinement

Hartmann at al., An adaptive multilevel multigrid formulation for Cartesian hierarchical grid methods, Comput. Fluids 37 (2008)

Elastically mounted sphere

Elastically mounted sphere, 3 DOF, $Re_D = 300$, $U_{red} = 7$

0

0.5

Lucci, Ferrante, Elghobashi: J. Fluid Mech. (2010). Gao, Li, Wang: Comp. Math. App. (2013) Simulation of Turbulent Particulate Flow on HPC Systems | 24th Workshop for Sustained Simulation

2

1.5

0

0

0.5

 $t\epsilon_0/u_0^2$

1.5

 $t\epsilon_0/u_0^2$

Weak scaling (unbalanced)

uniform mesh, $256^3 \rightarrow 1024^3$ cells $128 \rightarrow 8192$ cores $131\,072$ cells per core

Schneiders, Günther, Meinke, Schröder, An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows, J. Comput. Phys. 311 (2016)

uniform mesh, $256^3 \rightarrow 1024^3$ cells $128 \rightarrow 8192$ cores $131\,072$ cells per core

Schneiders, Günther, Meinke, Schröder, An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows, J. Comput. Phys. 311 (2016)

Dynamic mesh refinement

Taylor-Green vortex; Re = 1600; showing 100 particles in z-plane

Dynamic load balancing

Taylor-Green vortex; 4000 particles; $\mathcal{O}(10^9)$ cells; 20,000 cores

- Mesh adaptation every 50th time step ightarrow overhead $\sim 8\%$
- Out of memory and performance drop due to particle clustering

Dynamic load balancing

Parallel domain decomposition

- Hilbert curve on background mesh weighted by number of offsprings
- Depth-first ordering on hierarchical octree data structure
- Fully automated
- Recompute domain boundaries and redistribute cells if imbalance too high

Lintermann et al., Massively parallel grid generation on HPC systems, Comput. Meth. Appl. Mech. Eng. (2014)

Dynamic load balancing

Parallel domain decomposition

- Hilbert curve on background mesh weighted by number of offsprings
- Depth-first ordering on hierarchical octree data structure
- Fully automated
- Recompute domain boundaries and redistribute cells if imbalance too high

Lintermann et al., Massively parallel grid generation on HPC systems, Comput. Meth. Appl. Mech. Eng. (2014)

Dynamic load balancing

Parallel domain decomposition

- Hilbert curve on background mesh weighted by number of offsprings
- Depth-first ordering on hierarchical octree data structure
- Fully automated
- Recompute domain boundaries and redistribute cells if imbalance too high

Lintermann et al., Massively parallel grid generation on HPC systems, Comput. Meth. Appl. Mech. Eng. (2014)

Dynamic load balancing

Strategy 1

- Adapt mesh to reach specified target number of cells
- Redistribute cells to keep load approx. constant
- Con: target cell number case-dependent parameter

Strategy 2

- Adapt mesh as needed (number of cells free param.)
- Redistribute cells to balance load
- Restart using more cores if average load too high
- Domain decomposition fully automatic, MPI I/O

Dynamic load balancing

Strategy 1

- Adapt mesh to reach specified target number of cells
- Redistribute cells to keep load approx. constant
- Con: target cell number case-dependent parameter

Strategy 2

- Adapt mesh as needed (number of cells free param.)
- Redistribute cells to balance load
- Restart using more cores if average load too high
- Domain decomposition fully automatic, MPI I/O

7 domains 352 cells

- Mesh adaptation every 50th time step ightarrow overhead $\sim 8\%$
- \blacktriangleright Load balancing every 250th time step ightarrow overhead $\sim 6\%$

Application to particulate turbulent flow

Simulation details: $N_p = 45\,000~(d_p \sim \eta);~2\cdot 10^9$ cells; 48\,000 cores at Hazel Hen (HLRS)

Application to particulate torbulent flow

Near-particle statistics

Schneiders, Meinke, Schröder, Interaction of isotropic turbulence with particles of Kolmogorov-length scale size, submitted to Journal of Fluid Mechanics (2016)

Application to particulate turbulent flow

Particle-induced dissipation

Schneiders, Meinke, Schröder, Interaction of isotropic turbulence with particles of Kolmogorov-length scale size, submitted to Journal of Fluid Mechanics (2016)

Summary and outlook

Summary

- Strictly conservative cut-cell method for complex moving geometries
- Dynamic load balancing to enable dynamic mesh refinement
- Novel results for turbulence modulation by particles at $d_{
 m p} \sim \eta$

Performance issues

- ► I/O overhead since dynamic mesh has to be stored
- Load-balancing does not anticipate the future
- Computations highly memory-bound, low peak performance
- Large data sets for sampling, on-the-fly statistics expensive

Direct numerical simulation (DNS): $\Delta x \sim \eta$ Particle-resolved simulation (PRS): $\Delta x \sim \delta_p$ ($\ll \eta$ if $d_p \sim \eta$) Literally no studies for the case $d_p \sim \eta$ due to enormous comp. costs

DNS mesh

RWITHAACHEN UNIVERSITY

Near-boundary discretization

Boundary conditions

- Interpolation of primitive variables at image points (2nd order WLSQ)
- Extrapolation to mirror points/ghost cells

Small-cell treatment

- $\blacktriangleright \widetilde{\mathbf{Q}} = \mathbf{Q} + (1 \kappa)(\mathbf{Q}^i \mathbf{Q}) + \mathbf{E}$
- Interpolated update Qⁱ provides stability
- Conservation defect $D = (1 \kappa)(Q Q^i)$
- Flux echange term $\mathbf{E}_c = \sum_{I \in N_c} \sigma_{I,c} V_I \mathbf{D}_I / V_c$

• κ continuously differentiable, $\kappa \rightarrow 0$ as $V \rightarrow 0$

L. Schneiders, D. Hartmann, M. Meinke, W. Schröder, An accurate moving boundary formulation in cut-cell methods, J. Comput. Phys. 235 (2013) 786–809.

RWITHAACHEN UNIVERSITY

Near-boundary discretization

Boundary conditions

- Interpolation of primitive variables at image points (2nd order WLSQ)
- Extrapolation to mirror points/ghost cells

Small-cell treatment

- $\blacktriangleright ~\widetilde{\mathbf{Q}} = \mathbf{Q} + (1 \kappa)(\mathbf{Q}^i \mathbf{Q}) + \mathbf{E}$
- Interpolated update Qⁱ provides stability
- Conservation defect $\mathbf{D} = (1 \kappa)(\mathbf{Q} \mathbf{Q}^i)$
- Flux echange term $\mathbf{E}_{c} = \sum_{I \in N_{c}} \sigma_{I,c} V_{I} \mathbf{D}_{I} / V_{c}$
- κ continuously differentiable, $\kappa \to 0$ as $V \to 0$

L. Schneiders, D. Hartmann, M. Meinke, W. Schröder, An accurate moving boundary formulation in cut-cell methods, J. Comput. Phys. 235 (2013) 786–809.

Table : Multi-stage Runge-Kutta scheme (*MS-RK*)

Table : Predictor-corrector Runge-Kutta scheme (*PC-RK*)

Let overhead for solver reinitialization $\sigma := t_{init}/(t_{init} + t_{exec})$ Overall speedup = $1 + (s - 1)\sigma$ Here: s = 5, $\sigma = 0.38$, \rightarrow speedup= 2.5

Near-particle statistics

Schneiders, Meinke, Schröder, Interaction of isotropic turbulence with particles of Kolmogorov-length scale size, submitted to Journal of Fluid Mechanics (2016)

Kinetic energy spectra

particle-laden vs. particle-free flow

Summary

fully-resolved vs. point particle models

Schneiders, Meinke, Schröder, On the accuracy of Lagrangian point-mass models for heavy non-spherical particles in isotropic turbulence, accepted for publication in Fuel (2016)

Kinetic energy spectra

particle-laden vs. particle-free flow

Summary

fully-resolved vs. point particle models

Schneiders, Meinke, Schröder, On the accuracy of Lagrangian point-mass models for heavy non-spherical particles in isotropic turbulence, accepted for publication in Fuel (2016)

Efficient time stepping

Multi-stage Runge-Kutta scheme (MS-RK)

 $(QV)^{(0)} = (QV)^n$, Van der Houwen (1972), Jameson (1983) $(QV)^{(k)} = (QV)^{(0)} - \alpha_k \Delta t \ R(t^n + \alpha_{k-1}\Delta t; \ Q^{(k-1)}), \quad k = 1, \dots, s,$ $(QV)^{n+1} = (QV)^{(s)}.$ e.g. $\alpha = \{1/4, 1/6, 3/8, 1/2, 1\}$

Predictor-corrector Runge-Kutta scheme (*PC-RK*)

$$(QV)^{(0)} = (QV)^{n},$$

$$(QV)^{(1)} = (QV)^{(0)} - \Delta t \ R(t^{n}; Q^{(0)}),$$

$$(QV)^{(k)} = (QV)^{(0)} - \Delta t \left[(1 - \alpha_{k-1})R(t^{n}; Q^{(0)}) + \alpha_{k-1}R(t^{n+1}; Q^{(k-1)}) \right]$$

$$(QV)^{n+1} = (QV)^{(s)}. \qquad k = 2, \dots, s$$

Schneiders et al., An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows, J. Comput. Phys. 311 (2016)

Efficient time stepping

Multi-stage Runge-Kutta scheme (MS-RK)

 $(\mathbf{Q}V)^{(0)} = (\mathbf{Q}V)^n$, Van der Houwen (1972), Jameson (1983) $(\mathbf{Q}V)^{(k)} = (\mathbf{Q}V)^{(0)} - \alpha_k \Delta t \ \mathbf{R}(t^n + \alpha_{k-1}\Delta t; \ \mathbf{Q}^{(k-1)}), \quad k = 1, \dots, s,$ $(\mathbf{Q}V)^{n+1} = (\mathbf{Q}V)^{(s)}.$ e.g. $\alpha = \{1/4, 1/6, 3/8, 1/2, 1\}$

Predictor-corrector Runge-Kutta scheme (PC-RK)

$$(QV)^{(0)} = (QV)^{n},$$

$$(QV)^{(1)} = (QV)^{(0)} - \Delta t \ R(t^{n}; Q^{(0)}),$$

$$(QV)^{(k)} = (QV)^{(0)} - \Delta t \left[(1 - \alpha_{k-1})R(t^{n}; Q^{(0)}) + \alpha_{k-1}R(t^{n+1}; Q^{(k-1)}) \right]$$

$$(QV)^{n+1} = (QV)^{(s)}. \qquad k = 2, \dots, s$$

Schneiders et al., An efficient conservative cut-cell method for rigid bodies interacting with viscous compressible flows, J. Comput. Phys. 311 (2016)