

24th WSSP Dec. 5-6, 2016

Coupled Multi-Physics Simulation Framework on Octree Data Structures

Kannan Masilamani, Verena Krupp, Sabine Roller Email: kannan.masilamani@uni-siegen.de

Outline

- Introduction to Multiphysics Applications
- Coupling Requirements
- APES Simulation Framework
- APESmate: Integrated Coupling Environment
- Results:
 - Load Balancing
 - Strong scaling
 - Coupled Simulations
- Conclusion and Current Work

Introduction: Application with Multi-physics

3-field surface coupling largest domain - acoustic far field

 \rightarrow large grid cells, higher order

(a) Clotting process inside an aneurysm

2-field volume coupling

12/7/2016

Introduction: Application with Multi-physics

Coupling Requirements

- Exchange of data from simulations in the space time domain between domains/solvers
- Coordinated execution of involved solvers
- Data exchange in the volume or the surface at common points in time or not coinciding points in time
 - Interpolation in space
 - For not coinciding time intervals, interpolate also in time
- Mesh independent
- Exploiting advantages of numerical solver to interpolate spatial values
- Individual numerical solver must be efficient and scalable in supercomputers
- Coupling should be scalable too
 - Load balancing of domains
 - Distribution of domains over nProcs_tot

APES framework

- Simulation framework for large scale parallel computations
- Based on Octree meshes
- End-to-end distributed memory parallel (MPI)
- Allows coupling of solvers
- Musubi:
 - Lattice Boltzmann Method
 - Multi-component LBM
 - Passive scalar
 - Ateles:
 - High order discontinuous Galerkin solver
 - Euler equations
 - Linear-euler equations
 - Navier-Stokes equations
 - Maxwell equations

Octree data structure

- 8 Byte Integer: TreeID
- 8 Byte Integer: Property
- Distributed IO straight forward

12/7/2016

APESmate: Integrated Coupling Environment

- Software to couple APES solvers via TreElm
- Single executable
- Communication between domains is via global MPI communicator
- Communication within a domain is via its local MPI sub-communicator
- Configurable domain distribution with different process counts per domain
- Minimal access to solver routines enables to create dummy modules to build APESmate only with required solvers

APESmate: Integrated Coupling Environment

- Exchange point values -> Tree independent
- Coupling via space-time function point data needed to be stored directly in ST-fun for Apesmate to access
 - Surface as boundary condition
 - Volume as source terms
- Easy to configure
- Evaluate point values using derive interface from variable system
- Uses solver data structure to evaluate variable requested by remote domain
- Limitations:
 - Supports only APES solvers
 - Time stepping domains with different time steps works but without time interpolation

APESmate Algorithm

12/7/2016

APESmate Algorithm

12/7/2016

Domain Distribution

Nr. Ranks fraction: D1=2/5, D2=2/5, D3=1/5

12	17	120	116	
12/	· / /	20	10	

Domain Distribution

Nr. Ranks fraction: D1=2/5, D2=3/5, D3=2/5

12/	7	/20)16

Initialize coupling

- Exchange points and varNames between domains using round robin communication
 - Store requested points and varNames in linked list since we do not know how many request before hand
- Identify points
 - Requires offset_bit for surface coupling
- Check if requested varNames exist in local domain varSys
- Exchange point ranks
- Build point data communication buffer to send point data to correct process
- Exchange point data and varNames by point-point communication
 - Store requested point data and varNames in linked list

Surface Coupling

Offset bit?

Link based

Face normal

Offset bit

- Required to identify point in local domain
- Points are shifted along offset direction
- Offset direction is converted to character for communication
- Transforming offset direction into character:
 offset_bit = achar((coord(1)+1) + (coord(2)+1)*4 + (coord(3)+1)*16)
- Backward transformation from character to direction
 - coordX = mod(ichar(offset_bit),4) 1
 - coordY = mod(ichar(offset_bit),16)/4 1
 - coordZ = ichar(offset_bit)/16 1

Initialize coupling: 3-Domains

Synchronize Domains

- At every synchronize time steps:
 - Evaluate variables on requested points with solver data structure
 - Exchange evaluated values to corresponding domains via global MPI-communicator using point-point communication

Ideal Load balancing

Performance of Academic Testcase Coupling Euler - Linearized Euler

• monolithic (euler)	Туре	Number of MPI-ranks			Total computation time $[s]$
ranks					
• matching flow: dx=1,8000,O(6) acoustic: dx=1,208.000, O(6) \rightarrow save 20% compute time • non-matching flow: dx=1,8000, O(6) acoustic:	matching coupling	256 128 112 96 80 64 80 64 82 32 16	256 384 400 416 432 448 464 480 496	decrease of work per	1336 886.65 845.573 824.695 847.923 832.06 838.607 902.342 1535
dx=5, 1664, O(12) 12/7/2016	Coupled Mult Framewor <u>k on O</u>	i-Physics Simulation			25

24th WSSP 2016

Strong Scaling: SuperMUC

Euler-Euler coupling Order: O(20) nElems: 4096 / domain

- Subsonic Jet in 2D
- Inflow condition: expanded jet •
- Re = 23 (mu = 1e-6, d=1e-4, v= 0.23)
- Ma = 0.2
- Ramping of initial shock from over first 10s
- Sponge zone in Navier and Euler domain

Coupled Simulation for 2D Jet

____¥

Pipe flow in 3D

- Incompressible flow (D3Q19) + Passive scalar species transport (D3Q7)
- 1-way coupling Species driven by velocity from flow field

Coupled Simulation for 3D Species Transport

Conclusion and Current Work

- APESmate implementation is working
- Tested with simple test cases for both surface and volume coupling
- Currently work:
 - Production test cases like electrodialysis process, 3field acoustic and 2D jet are under testing phase
 - Scaling analysis
- Future work: Run production test cases

Thanks for your attention ©

Questions?

