



# Development of a massive parallel and optimized phase-field solver for the sinter process

<u>J. Hötzer</u>, H. Hierl, F. Hafner, M. Seiz, L. Promberger, C. Seer, M. Kellner, W. Rheinheimer, M. Berghoff, B. Nestler

INSTITUTE OF APPLIED MATERIALS - COMPUTATIONAL MATERIALS SCIENCE



#### Contents:

- Motivation
- Phase-field model
- Code Optimization
- Performance results
- Simulation results

# Group - High Performance Materials Computing and Data Science





**Overview** 





### **Overview**



Reality/Experiments

**Physical Parameter** 

Mathematical Model

Numerical Scheme

**Application Program** 

Parallel Programming Models (OpenMP, MPI, OpenCI)

Hardware Architecture

# **Applications of ceramics**



- everyday items (e.g. plates, cups) are "simple" to produce
- however high performance materials
  - sensors (e.g oxygen)
  - spark plugs
  - artificial hip joint
  - batteries
  - electronics
  - **.**..



- require a tailored microstructure with defined properties
- microstructure is directly influenced by various process and material properties



https://upload.wikimedia.org/wikipedia/commons/6/6a/Sparkplug.jpg https://upload.wikimedia.org/wikipedia/commons/f/fd/Stsheat.jpg

### Initial structure - Green body



#### Experiment

Generated



Sintering process





### Sintering process in experiments



#### Video: Experiment of the sinter process

# Simulation setting



- solid state sintering
- coupled phase-field and concentration model
- different diffusion paths
- number of grains/particles N >> 1000 with size distribution
- large domain sizes (> 500<sup>3</sup> cells)
- large parameter matrices (N<sup>2</sup>, N<sup>3</sup>)
- parallel PACE3D framework (MPI)





total system energy (Laypounov functional)

$$\mathcal{L}(\boldsymbol{s}_{1},\boldsymbol{s}_{2},...) = \sum_{\substack{\beta=1\\\alpha<\beta}}^{N} \int_{\partial V_{\alpha}} \gamma_{\alpha\beta}(\vec{n}) d\boldsymbol{A}_{\alpha\beta} + \sum_{\alpha=1}^{N} \int_{V_{\alpha}} f_{\text{bulk}}(\boldsymbol{s}_{1},\boldsymbol{s}_{2},...) dV_{\alpha}$$

surface energy γ<sub>αβ</sub> in direction n

 bulk energy of a "phase"





total system energy (Laypounov functional)

$$\mathcal{L}(\mathbf{s}_{1}, \mathbf{s}_{2}, ...) = \sum_{\substack{\beta=1\\\alpha<\beta}}^{N} \int_{\partial V_{\alpha}} \gamma_{\alpha\beta}(\vec{n}) dA_{\alpha\beta} + \sum_{\alpha=1}^{N} \int_{V_{\alpha}} f_{\text{bulk}}(\mathbf{s}_{1}, \mathbf{s}_{2}, ...) dV_{\alpha}$$
  
surface energy  $\gamma_{\alpha\beta}$  in direction  $\vec{n}$ )  
bulk energy of a "phase"



total system energy (Laypounov functional)

$$\mathcal{L}(s_1, s_2, ...) = \sum_{\substack{\beta=1\\\alpha<\beta}}^{N} \int_{\partial V_{\alpha}} \gamma_{\alpha\beta}(\vec{n}) dA_{\alpha\beta} + \sum_{\alpha=1}^{N} \int_{V_{\alpha}} f_{\text{bulk}}(s_1, s_2, ...) dV_{\alpha}$$
  
surface energy  $\gamma_{\alpha\beta}$  in direction  $\vec{n}$   
bulk energy of a "phase"



Grand chemical potential functional:

$$\Psi(\phi, \mu, T) = \int_{\Omega} \underbrace{\left( \epsilon a(\phi, \nabla \phi) + \frac{1}{\epsilon} \omega(\phi) \right)}_{\text{surface energy}} + \underbrace{\psi(\phi, \mu, T)}_{\text{bulk potential}} d\Omega$$

Phase-field vector 
$$\boldsymbol{\phi} = \left(\phi_1, \phi_2, ..., \phi_N\right)^T$$

- order parameter  $\phi_{\alpha}$  represents the volume fraction of each phase
- volumetric interface at the surface
- smooth transition between the order parameters
- Allen-Cahn type variational differentiation of the functional
- $\rightarrow$  no interface tracking needed





Grand chemical potential functional:





Grand chemical potential functional:





Grand chemical potential functional:



# Phase-field algorithm



- lattice fields
  - two AoS for phase-field ( $\phi_{src}, \phi_{dst}$ )
  - two SoA for chemical potential ( $\mu_{src}, \mu_{dst}$ )
- storing new values calculated from src in dst

Algorithm 1 calculation of one time step

1: 
$$\phi_{dst} \leftarrow \phi$$
-kernel  $(\phi_{src}, \mu_{src})$   
2:  $\mu_{dst} \leftarrow \mu$ -kernel  $(\mu_{src}, \phi_{src}, \phi_{dst})$   
3:  $\phi_{dst}$ -boundary conditions  
4:  $\mu_{dst}$ -boundary conditions  
5:  $\phi_{dst}, \mu_{dst}$ -ghost layer exchange  
6: swap  $\phi_{src} \leftrightarrow \phi_{dst}$  and  $\mu_{src} \leftrightarrow \mu_{dst}$ 







- finite differences scheme for space
- explicit Euler scheme for the time discretization
- roofline performance model:

— compute bound

$$\phi(\mathbf{x},t) \xrightarrow{\text{D3C7}} \phi(\mathbf{x},t + \Delta t)$$

$$\mu(\mathbf{x},t) \xrightarrow{\mu(\mathbf{x},t)} \phi(\mathbf{x},t + \Delta t)$$



 $\mu$ -kernel



$$\frac{\partial \boldsymbol{\mu}}{\partial t} = \underbrace{\left[\sum_{\alpha=1}^{N} h_{\alpha}(\vec{\phi}) \left(\frac{\partial \vec{c}^{\alpha}(\boldsymbol{\mu}, T)}{\partial \boldsymbol{\mu}}\right)\right]^{-1}}_{\text{DSC1}} \underbrace{\left(\sum \cdot \left(\boldsymbol{M}(\vec{\phi}, \boldsymbol{\mu}, T) \nabla \boldsymbol{\mu}\right)_{\text{DSC7}}}_{\text{DSC7}} \underbrace{-\sum_{\alpha=1}^{N} \vec{c}^{\alpha}(\boldsymbol{\mu}, T) \frac{\partial h_{\alpha}(\phi)}{\partial t} - \sum_{\alpha=1}^{N} h_{\alpha}(\vec{\phi}) \left(\frac{\partial \vec{c}^{\alpha}(\boldsymbol{\mu}, T)}{\partial T}\right) \frac{\partial T}{\partial t}}_{\text{DSC1}} \underbrace{\right]}_{\text{DSC1}}$$

- finite differences scheme for space
- explicit Euler scheme for the time discretization
- roofline performance model:
- FLOP/*cell* 467 loads & stores 144
- → compute bound





# **Optimizations layer**



Parameter layer

Model layer

Algorithm layer

Hardware layer





#### Parameter layer

- fitting of Gibbs energies with parabolic approach from CALPHAD databases to calculate the driving forces
- reduction of the parameter matrices with the size N × N and N × N × N to a class based concept of 2 × 2 and 2 × 2 × 2



# **Optimizations II**



#### Model layer

- simplifications due to defined setup (e.g. fix number of concentrations)
- classification of cells  $\longrightarrow$  skip terms  $\partial_t \phi = \dots$  needs only calculated in the diffuse interface
- elimination and pre-calculation of common subexpressions (e.g. 1/2 → 0.5)

# **Optimizations III**



#### Algorithm layer

- access patterns / stencils (streaming)
- domain decomposition (MPI)
- buffering of staggered values point line plane buffer
- local reduction of order parameter (LROP) for  $\phi$



### Local reduced order parameter (LROP)



- in models maximal six phases in one cell enough (Kim, Kim, Kim and Park, (2006), Physical Review E, 74, 061605)
- only storage phase values φ<sub>α</sub> ≠ 0 and their index in the phase-field vector φ instead of all N elements
- other phases are assumed to be zero
  - ----> memory requirements independent from number of phases
  - $\longrightarrow$  reduction of calculation time  $\sum_{\alpha}^{N} ... \rightarrow \sum_{\alpha}^{\max(6)}$



# **Optimizations IV**



#### Hardware layer

- explicit vectorization with SIMD intrinsics
- light weight macro layer to support SSE and AVX
- for  $\partial_t \mu$  classical approach, calculate multiple cells at once
- for  $\partial_t \phi$  the calculation per cell is vectorized
  - → calculate multiple phases at once
  - $\rightarrow$  still possible to use all optimizations (e.g. classification)

 $\longrightarrow$  LROP cells differ between neighboring cells, but for vectorization they need the same structure which results in complex sorting

 $\rightarrow$  good experience with vectorization of four phases (**up to** 25% **peak performance**)

# Vectorization



- many vector matrix multiplications of the form  $\mathbf{y} = \sum \mathbf{A} \mathbf{x}$
- optimized pattern approach to pre-rotate all combinations of x for four and eight phases
- three kernels depending on the number of phases N to calculate in current cell

   13 +
  - vectorized kernel for 4 phases
  - vectorized kernel for 8 phases
  - → scalar kernel for more than eight phases



# Vectorization



#### mapping of LROP cell to SIMD vector

 $\longrightarrow$  all local  $\phi$  vectors of the stencil and matrices need the same order to calculate e.g.  $\nabla\phi$ 

- create mask depending on stencil
- create SSE/AVX vectors from LROP cell based on mask
- depending on size of mask select the optimal kernel



# Optimization results – $\phi$ -kernel 4 / 8 – Hazel Hen





- $60 \times 60 \times 60$  cells per block
- only kernel without mapping from LROP to SSE/AVX vectors

# **Optimization results – LROP-kernel – Hazel Hen**





- preliminary results of LROP-kernel with mapping
- 17.9 % to 52.2 % of single  $\phi$ -kernels

# LROP-kernel analysis of typical simulation





- preliminary results of LROP-kernel with mapping
- mapping from LROP cell to vectors requires 71.75 %
- calculation requires 27.48 %

### Single node scaling – $\phi$ -kernel 4 – Hazel Hen





preliminary results of φ-kernel 4
 60 × 60 × 60 cells per block

### Scaling results – $\phi$ -kernel 4 – Hazel Hen





#### preliminary results for $\phi$ -kernel 4 only

# Validation



- measure parameter: neck radius X
- analytics:

 $X = At^n, n \in [0.14, 0.33]$ 





Asoro et al., Acta Materialia 81 (2014): 173-183.



Benjamin Ehreiser, IAM, KIT/Ceramic Processing and Sintering; Wang et al. 2006 Acta Materialia

### **Diffusion paths**





### Validation: neck radius













# Green body generator



- generation of packings with defined
   density



Hötzer et al., Forschung Aktuell, Hochschule Karlsruhe, 2016

### Simumation of the sinter process



#### Video: Simulation of the sinter process

400<sup>3</sup> cells, 1333 cores, 24h

### Conclusions



#### Preliminary summary

- efficient calculation of multi phase-field models
- connecting of highly optimized and vectorized kernels
- still optimization potential

#### Future work

- optimize mapping of LROP cells to vector cells
- optimize mask creation
- buffering of parameter vectors depending on mask
- communication hiding for MPI



#### Thank you for your attention!

Open questions? Ideas? Improvements?

#### Contact:

Johannes Hötzer

johannes.hoetzer@kit.edu

#### Britta Nestler

britta.nestler@kit.edu