
1

Autotuning meets Code Transformations

-- A case study of Xevolver framework --

24th Workshop on Sustained Simulation Performance

December 6, 2016@HLRS

Hiroyuki TAKIZAWA

Tohoku University

2

Project Background

• HPC application development

= team work of programmers with different concerns
– Application developers (= computational scientists)

• write a program so as to get correct results

Main concern: relationship between simulation models and programs.

– Performance engineers (= computer scientists/engineers)

• write a program so as to get high performance

Main concern: relationship between programs and computing systems.

simulation codemodel system

Application requirements System requirements

3

Goal = Appropriate Division of Labor

Separation of system-awareness from application programs

There are many approaches to abstraction of system-awareness
• System-aware implementations with a common interface = Numerical libraries
• Standardized programming models and languages = MPI, OpenMP, OpenACC …

Simulation code

System-aware implementations and optimizations

+

In reality, we still need to modify a code to achieve high performance

for application-specific and/or system-specific reasons.

 How can we abstract such code modifications?

4

……………….
……………….
……………….
……………….
……………….
……………….

Xevolver Framework

Various transformations are required for replacing arbitrary code modifications.
= cannot be expressed by combining predefined transformations.
 Xevolver : a framework for custom code transformations

……………….
……………….
……………….
……………….
……………….
……………….

s2s

translator

……………….
……………….
……………….
……………….
……………….
……………….

Optimized
for System A

Translation rules

• Define the code transformation of each annotation

• Different systems can use different rules

• Users can define their own code transformations

Predefined or user-defined annotations

App code

Optimized
for System B

……………….
……………….
……………….
……………….
……………….
……………….

5

How to Describe Transformation Rules
program nt_opt
!$xev tgen var(i1,i2,i3,i4,i5,i6,if) stmt
!$xev tgen list(body) stmt
!$xev tgen var(lstart,lend,II2,IIF) exp
!$xev tgen condef(has_doi) contains stmt begin
DO I=II2,IIF

!$xev tgen stmt(if)
!$xev tgen stmt(body)
END DO

!$xev tgen end
!$xev tgen list(stmt_with_doi) stmt cond(has_doi)
!$xev tgen src begin
DO L=lstart,lend

!$xev tgen stmt(stmt_with_doi)
END DO

!$xev end tgen src
!$xev tgen dst begin
DO I=1,inum

DO L = lstart, lend
IF (I .GE. IS(L) .AND. I .LE. IT(L)) THEN

EXIT
END IF

!$xev tgen stmt(if)
!$xev tgen stmt(body)

END DO
END DO

!$xev end tgen dst
end program nt_opt

Numerical Turbine (Yamamoto et al.)
• A real-world application written in Fortran

• Long history of development

• Optimized for NEC SX-9 system
• Maximizing innermost loop parallelism

• 44 kernel loops have almost the same
structure
• OpenACC compiler cannot exploit the

loop parallelism

 44 loops must be modified in the same way.

Code Pattern before Transformation

Code Pattern after Transformation

Suda et al@IJNC.

OpenACC-friendly version

6

Your feedbacks are welcome!

• Xevolver is online available

– Visit http://xev.arch.is.tohoku.ac.jp for more details.

6

http://xev.arch.is.tohoku.ac.jp/

7

Legacy Code

• We have a lot of legacy HPC applications…
Those applications may or may not work on a future HPC system.
Anyway, we will be unable to expect high performance of them.

– Low-level languages (e.g. C and Fortran)
• The code has mostly been written by application developers.
• There is no chance for performance engineers to select languages unless

the code is rewritten.

– Long development history
• A lot of programmers have been involved in the development.

– No one has a holistic understanding of the code.
– Performance-sensitive code fragments are scattered over the whole code.

– “Legacy” means “important”! -- reliable and useful apps
• This is why the code has been maintained for a long time.
• It has been proven to produce correct results.

 Application developers want to avoid drastic modifications.

8

Importance of Autotuning

• Performance Tuning for Future HPC Systems
– The complexity and diversity of HPC system architectures are increasing.

- Individual systems may potentially require different parallelization
methods, programming models, languages, etc.

– The complexity and scale of practical applications are also increasing.
- Individual applications may potentially require different algorithms,

performance tuning and/or maintenance strategies, etc.

It is difficult to estimate performance without executing the code.
= various options need to be examined in a try-and-error fashion.

 Automation of such an empirical tuning process = Autotuning

9

The idea of AT is simple

1. Assume the target code has some parameters

 The performance of the code changes by adjusting the

parameters.

2. Tune the parameters

3. Evaluate the performance

4. Repeat Steps 2 and 3 until an acceptable

parameter configuration is found

 A key is how to adjust parameters so as to quickly reach an

optimal or suboptimal configuration.
Can we assume a legacy code has such parameters? No, at all…

We have to make a legacy code auto-tunable for auto-tuning the code.

10

Auto-tunable Code

DO i=0,n
DO j=0,n
sum = c(j,i)
DO k=0,n
sum = sum+a(k,i)*b(j,k)

END DO
c(j,i) = sum

END DO
END DO

DO i1=0,n,BLOCK_SIZE1
DO j1=0,n,BLOCK_SIZE2
DO k1=0,n,BLOCK_SIZE3
DO i=i1,n+BLOCK_SIZE1
DO j=j1,j1+BLOCK_SIZE2
sum = c(j,i)
DO k=k1,k1+BLOCK_SIZE3
sum = sum+a(k,i)*b(j,k)

DO END
c(j,i) = sum

END DO
END DO

END DO
END DO

END DO

Optimize!

maintain the original code.

Auto-tuning is used to efficiently determine BLOCK_SIZE*.

 Application developers need to maintain the complex auto-tunable version.

 A custom code modification on a case-by-case basis is needed

because there is no universal way to make a code auto-tunable.

11

AT meets Code Transformations

[1] Ansel et al.@PACT2014

[2] Takizawa et

al.@HiPC2014• OpenTuner[1] = Autotuning framework

– Performance engineers can efficiently explore a huge

parameter space, and quickly find an appropriate parameter

configuration, only if the target code is auto-tunable.

• Xevolver[2] = Code transformation framework

– Performance engineers can make a legacy code auto-tunable

without messing it up.

Their combination enables auto-tuning of a legacy code

while keeping it maintainable.

12

Reduction in Tuning Time

• The benefit of auto-tuning is clear
– Auto-tuning Himeno benchmark

0

10

20

30

40

50

0 1000 2000 3000

K
e
rn

e
l
E
xe

cu
ti

o
n

 T
im

e
 [

se
c]

Tuning Time [sec]

OpenTuner Full search
Experimental Setup

System
⁻ CPU : Intel(R) Xeon(R) CPU E5-2630@2.30GHz
⁻ Mem : 8 Gbytes
⁻ OS : CentOS 6.4
⁻ Compiler: GNU Fortran 4.7

Tuning parameters
- Loop blocking, loop collapse, or no loop optimization (original).

 For loop blocking, the block size is also determined.
- Discrete arrays (original) or an array of structures.
- 426 compiler options

 -O0/-O1/-O2/-O3
 -fexpections, -fwrapv, -funsafe-math-optimizations
 -funroll-loops, … etc

While full search takes 71,944 sec., OpenTuner can achieve

almost the same performance in about 3,000 sec. (4.2%).

13

20

25

30

35

40

45

50

0 5000 10000 15000 20000 25000 30000

Original
gfortran -O1
gfortran -O2
gfortran -O3

Autotuning

Tuning Time (seconds)

Ex
ec

u
ti

o
n

Ti
m

e
(s

ec
o

n
d

s)

Achieved Performance

8

10

12

14

16

18

20

22

0 5000 10000 15000 20000

Original
Best

Autotuning

Tuning Time (seconds)
Ex

ec
u

ti
o

n
Ti

m
e

(s
ec

o
n

d
s)

Himeno Parallel 1D FFT

1.6x higher performance for Himeno benchmark.
 The autotuned version outperforms the Himeno code compiled with –O2 and –O3 options.

2.3x higher performance for parallel 1-D FFT.

14

Auto-tunable Himeno Kernel

• Auto-tunable code is likely to be messy
– Even a simple loop nest becomes very complicated if

various optimizations are taken into account.

do loop=1、nn
gosa= 0.0
do k=2、kmax-1

do j=2、jmax-1
do i=2、imax-1

s0=a(I、J、K、1)*p(I+1、J、K) &
+a(I、J、K、2)*p(I、J+1、K) &
+a(I、J、K、3)*p(I、J、K+1) &
+b(I、J、K、1)*(p(I+1、J+1、K)-p(I+1、J-1、K) &

-p(I-1、J+1、K)+p(I-1、J-1、K)) &
+b(I、J、K、2)*(p(I、J+1、K+1)-p(I、J-1、K+1) &

-p(I、J+1、K-1)+p(I、J-1、K-1)) &
+b(I、J、K、3)*(p(I+1、J、K+1)-p(I-1、J、K+1) &

-p(I+1、J、K-1)+p(I-1、J、K-1)) &
+c(I、J、K、1)*p(I-1、J、K) &
+c(I、J、K、2)*p(I、J-1、K) &
+c(I、J、K、3)*p(I、J、K-1)+wrk1(I、J、K)

ss=(s0*a(I、J、K、4)-p(I、J、K))*bnd(I、J、K)
GOSA=GOSA+SS*SS
wrk2(I、J、K)=p(I、J、K)+OMEGA *SS

enddo
enddo

enddo

Original

Auto-tunable

15

Discussions

• Productivity

– Code transformation rules : 102 lines in total
• One rule file of 51 lines for loop transformation
• Another rule file of 51 lines for data layout optimization

– Auto-tunable Himeno code : 185 lines in total
• The kernel becomes 6.5x longer than the original one.

• Benefits from the combination
– We can use AT while keeping the original code unchanged
– Even for a small benchmark, the total number of transformed code

lines is larger than that of lines for transformation rules
• Generally, a practical application has more kernel loops.

Both maintainability and autotunability are achieved.

16

Summary

• Happy Marriage of Autotuning and Code

Transformation

– Autotuning can adapt one code to individual systems.
• The number of code transformation rules can be reduced because

similar systems can share some rules.

– Code transformation can avoid degrading the code
maintainability.
• Application developers need to care about only the original code.

17

Future Work

• An interface is needed for effective collaboration

of autotuning and code transformation.

– They have been so far developed independently.

• Every parameter needs to be described in two different

configuration files. redundant and error-prone

class UserDefinedTuner(MeasurementInterface):
def manipulator(self):

manipulator = ConfigurationManipulator()
manipulator.add_parameter(
PowerOfTwoParameter(‘BLOCK_SIZE’, 1, 128))

manipulator.add_parameter(
IntegerParameter('VARIANT', 0, 5))

return manipulator

def run(self, desired_result, input, limit):
cfg = desired_result.configuration.data
gcc_cmd = 'gfortran himenoBMT.f90 -o ./tmp.bin'
gcc_cmd += '-Dvariant[0]'.format(cfg['VARIANT'])
gcc_cmd += '-DBLOCK_SIZE=[0]'.format(cfg['BLOCK_SIZE'])
compile_result = self.call_program(gcc_cmd)
assert compile_result['returncode'] == 0
run_cmd = './tmp.bin'
run_result = self.call_program(run_cmd)
assert run_result['returncode'] == 0
return Result(time=run_result['time'])

A part of autotuning scenario file for auto-tunable Himeno code

18

Danke!

• Acknowledgements

– This work was supported by JST Post-Peta CREST.

Xevolver with some sample translation rules is online available at

http://xev.arch.is.tohoku.ac.jp.

Your feedbacks (and bug reports) are welcome!

Xevolver SEARCH

