
1

Autotuning meets Code Transformations

-- A case study of Xevolver framework --

24th Workshop on Sustained Simulation Performance

December 6, 2016@HLRS

Hiroyuki TAKIZAWA

Tohoku University

2

Project Background

• HPC application development

= team work of programmers with different concerns
– Application developers (= computational scientists)

• write a program so as to get correct results

Main concern: relationship between simulation models and programs.

– Performance engineers (= computer scientists/engineers)

• write a program so as to get high performance

Main concern: relationship between programs and computing systems.

simulation codemodel system

Application requirements System requirements

3

Goal = Appropriate Division of Labor

Separation of system-awareness from application programs

There are many approaches to abstraction of system-awareness
• System-aware implementations with a common interface = Numerical libraries
• Standardized programming models and languages = MPI, OpenMP, OpenACC …

Simulation code

System-aware implementations and optimizations

+

In reality, we still need to modify a code to achieve high performance

for application-specific and/or system-specific reasons.

 How can we abstract such code modifications?

4

……………….
……………….
……………….
……………….
……………….
……………….

Xevolver Framework

Various transformations are required for replacing arbitrary code modifications.
= cannot be expressed by combining predefined transformations.
 Xevolver : a framework for custom code transformations

……………….
……………….
……………….
……………….
……………….
……………….

s2s

translator

……………….
……………….
……………….
……………….
……………….
……………….

Optimized
for System A

Translation rules

• Define the code transformation of each annotation

• Different systems can use different rules

• Users can define their own code transformations

Predefined or user-defined annotations

App code

Optimized
for System B

……………….
……………….
……………….
……………….
……………….
……………….

5

How to Describe Transformation Rules
program nt_opt
!$xev tgen var(i1,i2,i3,i4,i5,i6,if) stmt
!$xev tgen list(body) stmt
!$xev tgen var(lstart,lend,II2,IIF) exp
!$xev tgen condef(has_doi) contains stmt begin
DO I=II2,IIF

!$xev tgen stmt(if)
!$xev tgen stmt(body)
END DO

!$xev tgen end
!$xev tgen list(stmt_with_doi) stmt cond(has_doi)
!$xev tgen src begin
DO L=lstart,lend

!$xev tgen stmt(stmt_with_doi)
END DO

!$xev end tgen src
!$xev tgen dst begin
DO I=1,inum

DO L = lstart, lend
IF (I .GE. IS(L) .AND. I .LE. IT(L)) THEN

EXIT
END IF

!$xev tgen stmt(if)
!$xev tgen stmt(body)

END DO
END DO

!$xev end tgen dst
end program nt_opt

Numerical Turbine (Yamamoto et al.)
• A real-world application written in Fortran

• Long history of development

• Optimized for NEC SX-9 system
• Maximizing innermost loop parallelism

• 44 kernel loops have almost the same
structure
• OpenACC compiler cannot exploit the

loop parallelism

 44 loops must be modified in the same way.

Code Pattern before Transformation

Code Pattern after Transformation

Suda et al@IJNC.

OpenACC-friendly version

6

Your feedbacks are welcome!

• Xevolver is online available

– Visit http://xev.arch.is.tohoku.ac.jp for more details.

6

http://xev.arch.is.tohoku.ac.jp/

7

Legacy Code

• We have a lot of legacy HPC applications…
Those applications may or may not work on a future HPC system.
Anyway, we will be unable to expect high performance of them.

– Low-level languages (e.g. C and Fortran)
• The code has mostly been written by application developers.
• There is no chance for performance engineers to select languages unless

the code is rewritten.

– Long development history
• A lot of programmers have been involved in the development.

– No one has a holistic understanding of the code.
– Performance-sensitive code fragments are scattered over the whole code.

– “Legacy” means “important”! -- reliable and useful apps
• This is why the code has been maintained for a long time.
• It has been proven to produce correct results.

 Application developers want to avoid drastic modifications.

8

Importance of Autotuning

• Performance Tuning for Future HPC Systems
– The complexity and diversity of HPC system architectures are increasing.

- Individual systems may potentially require different parallelization
methods, programming models, languages, etc.

– The complexity and scale of practical applications are also increasing.
- Individual applications may potentially require different algorithms,

performance tuning and/or maintenance strategies, etc.

It is difficult to estimate performance without executing the code.
= various options need to be examined in a try-and-error fashion.

 Automation of such an empirical tuning process = Autotuning

9

The idea of AT is simple

1. Assume the target code has some parameters

 The performance of the code changes by adjusting the

parameters.

2. Tune the parameters

3. Evaluate the performance

4. Repeat Steps 2 and 3 until an acceptable

parameter configuration is found

 A key is how to adjust parameters so as to quickly reach an

optimal or suboptimal configuration.
Can we assume a legacy code has such parameters? No, at all…

We have to make a legacy code auto-tunable for auto-tuning the code.

10

Auto-tunable Code

DO i=0,n
DO j=0,n
sum = c(j,i)
DO k=0,n
sum = sum+a(k,i)*b(j,k)

END DO
c(j,i) = sum

END DO
END DO

DO i1=0,n,BLOCK_SIZE1
DO j1=0,n,BLOCK_SIZE2
DO k1=0,n,BLOCK_SIZE3
DO i=i1,n+BLOCK_SIZE1
DO j=j1,j1+BLOCK_SIZE2
sum = c(j,i)
DO k=k1,k1+BLOCK_SIZE3
sum = sum+a(k,i)*b(j,k)

DO END
c(j,i) = sum

END DO
END DO

END DO
END DO

END DO

Optimize!

maintain the original code.

Auto-tuning is used to efficiently determine BLOCK_SIZE*.

 Application developers need to maintain the complex auto-tunable version.

 A custom code modification on a case-by-case basis is needed

because there is no universal way to make a code auto-tunable.

11

AT meets Code Transformations

[1] Ansel et al.@PACT2014

[2] Takizawa et

al.@HiPC2014• OpenTuner[1] = Autotuning framework

– Performance engineers can efficiently explore a huge

parameter space, and quickly find an appropriate parameter

configuration, only if the target code is auto-tunable.

• Xevolver[2] = Code transformation framework

– Performance engineers can make a legacy code auto-tunable

without messing it up.

Their combination enables auto-tuning of a legacy code

while keeping it maintainable.

12

Reduction in Tuning Time

• The benefit of auto-tuning is clear
– Auto-tuning Himeno benchmark

0

10

20

30

40

50

0 1000 2000 3000

K
e
rn

e
l
E
xe

cu
ti

o
n

 T
im

e
 [

se
c]

Tuning Time [sec]

OpenTuner Full search
Experimental Setup

System
⁻ CPU : Intel(R) Xeon(R) CPU E5-2630@2.30GHz
⁻ Mem : 8 Gbytes
⁻ OS : CentOS 6.4
⁻ Compiler: GNU Fortran 4.7

Tuning parameters
- Loop blocking, loop collapse, or no loop optimization (original).

 For loop blocking, the block size is also determined.
- Discrete arrays (original) or an array of structures.
- 426 compiler options

 -O0/-O1/-O2/-O3
 -fexpections, -fwrapv, -funsafe-math-optimizations
 -funroll-loops, … etc

While full search takes 71,944 sec., OpenTuner can achieve

almost the same performance in about 3,000 sec. (4.2%).

13

20

25

30

35

40

45

50

0 5000 10000 15000 20000 25000 30000

Original
gfortran -O1
gfortran -O2
gfortran -O3

Autotuning

Tuning Time (seconds)

Ex
ec

u
ti

o
n

Ti
m

e
(s

ec
o

n
d

s)

Achieved Performance

8

10

12

14

16

18

20

22

0 5000 10000 15000 20000

Original
Best

Autotuning

Tuning Time (seconds)
Ex

ec
u

ti
o

n
Ti

m
e

(s
ec

o
n

d
s)

Himeno Parallel 1D FFT

1.6x higher performance for Himeno benchmark.
 The autotuned version outperforms the Himeno code compiled with –O2 and –O3 options.

2.3x higher performance for parallel 1-D FFT.

14

Auto-tunable Himeno Kernel

• Auto-tunable code is likely to be messy
– Even a simple loop nest becomes very complicated if

various optimizations are taken into account.

do loop=1、nn
gosa= 0.0
do k=2、kmax-1

do j=2、jmax-1
do i=2、imax-1

s0=a(I、J、K、1)*p(I+1、J、K) &
+a(I、J、K、2)*p(I、J+1、K) &
+a(I、J、K、3)*p(I、J、K+1) &
+b(I、J、K、1)*(p(I+1、J+1、K)-p(I+1、J-1、K) &

-p(I-1、J+1、K)+p(I-1、J-1、K)) &
+b(I、J、K、2)*(p(I、J+1、K+1)-p(I、J-1、K+1) &

-p(I、J+1、K-1)+p(I、J-1、K-1)) &
+b(I、J、K、3)*(p(I+1、J、K+1)-p(I-1、J、K+1) &

-p(I+1、J、K-1)+p(I-1、J、K-1)) &
+c(I、J、K、1)*p(I-1、J、K) &
+c(I、J、K、2)*p(I、J-1、K) &
+c(I、J、K、3)*p(I、J、K-1)+wrk1(I、J、K)

ss=(s0*a(I、J、K、4)-p(I、J、K))*bnd(I、J、K)
GOSA=GOSA+SS*SS
wrk2(I、J、K)=p(I、J、K)+OMEGA *SS

enddo
enddo

enddo

Original

Auto-tunable

15

Discussions

• Productivity

– Code transformation rules : 102 lines in total
• One rule file of 51 lines for loop transformation
• Another rule file of 51 lines for data layout optimization

– Auto-tunable Himeno code : 185 lines in total
• The kernel becomes 6.5x longer than the original one.

• Benefits from the combination
– We can use AT while keeping the original code unchanged
– Even for a small benchmark, the total number of transformed code

lines is larger than that of lines for transformation rules
• Generally, a practical application has more kernel loops.

Both maintainability and autotunability are achieved.

16

Summary

• Happy Marriage of Autotuning and Code

Transformation

– Autotuning can adapt one code to individual systems.
• The number of code transformation rules can be reduced because

similar systems can share some rules.

– Code transformation can avoid degrading the code
maintainability.
• Application developers need to care about only the original code.

17

Future Work

• An interface is needed for effective collaboration

of autotuning and code transformation.

– They have been so far developed independently.

• Every parameter needs to be described in two different

configuration files.  redundant and error-prone

class UserDefinedTuner(MeasurementInterface):
def manipulator(self):

manipulator = ConfigurationManipulator()
manipulator.add_parameter(
PowerOfTwoParameter(‘BLOCK_SIZE’, 1, 128))

manipulator.add_parameter(
IntegerParameter('VARIANT', 0, 5))

return manipulator

def run(self, desired_result, input, limit):
cfg = desired_result.configuration.data
gcc_cmd = 'gfortran himenoBMT.f90 -o ./tmp.bin'
gcc_cmd += '-Dvariant[0]'.format(cfg['VARIANT'])
gcc_cmd += '-DBLOCK_SIZE=[0]'.format(cfg['BLOCK_SIZE'])
compile_result = self.call_program(gcc_cmd)
assert compile_result['returncode'] == 0
run_cmd = './tmp.bin'
run_result = self.call_program(run_cmd)
assert run_result['returncode'] == 0
return Result(time=run_result['time'])

A part of autotuning scenario file for auto-tunable Himeno code

18

Danke!

• Acknowledgements

– This work was supported by JST Post-Peta CREST.

Xevolver with some sample translation rules is online available at

http://xev.arch.is.tohoku.ac.jp.

Your feedbacks (and bug reports) are welcome!

Xevolver SEARCH

