
The Slow NVM (R)evolution
in the context of
Next Generation Postprocessing

5. December 2016, Stuttgart
Workshop on Sustained Simulation Performance
Erich Focht
NEC HPC Europe

“The K Problem”

● Two things came together:

– Uwe Küster

– The K-Operator

● Hope for new ways of simulating complex non-linear
dynamics problems

● Related or not... Uwe Küster sees upcoming strong
demand for new ways of post-processing

– Correlate outputs in time direction!

Next Generation Post-Processing

● Is a big data problem, much more than it was before
– Problem size: 1 GigaNodes

– Degrees of freedom per node: >10

– Output per time step: > 80GB

– With O(1000) – O(10000) time steps: O(100TB) – O(1PB) Output per job

● Local examples (last year):
Matthias Meinke: 100TB output
Meteo Uni Hohenheim: 330TB output with 3km resolution

– Write once, read multiple. Huge amount of data to be read!

– Can't afford to store entire data forever

– Analyse, “compress” by extracting knowledge, remove output

– Don't forget: this is about processing ALL OUTPUT, not just one time step!

The K - Way

● Treat entire simulation output as a matrix
– Find Eigenvalues

– Spectral analysis, FFTs

– Matrix multiply, Transpose

– Big data analysis with HPC methods

● Challenges

– Size: 100TB - 1PB of data!

– With 100GB/s bandwidth filesystem:
1000 - 10000s to read data in once.

– Dense matrix operations! Bandwidth!

O(10000)
time steps

O
(1

G
)

no
de

s
w

ith
 >

10
 d

.o
.f.

Output
of one

time step

Output of
entire

simulation

Postprocessing: State of the Art

● Following figures taken from:
“HPC I/O for Computational Scientists”: Rob Latham et al,
Course at Argonne National Lab.

Postprocessing: State of the Art (continued)

● Attempts to deal with huge amounts of data:

Nice, but only suited for analysis of one time step!

Approaches

Target Space

● Learn & start with lower end: 100TB output cases

● ~ 12 nodes for post-processing in parallel

– ~100GB RAM / node, ~1.2TB RAM in total

● Dedicated for limited time for one user to post-process his job

● Output data is on a parallel file system, but needs to be
deleted after post-processing

● POSIX is irrelevant

● Post-processing software has to be written or adapted to IO

Traditional Approach

● Post-processing cluster connected to
parallel file system
– Simplest setup
– Bandwidth to PFS is limited

● Parallel FS
● Post-processing nodes

– On post-processing nodes side:
12 post-processing nodes:
12 * 3-5GB/s, total 36-60GB/s

– Loading 100TB: min. 2000-3000s
● Will be loaded many times!
● Lost in IO

Infiniband

Parallel FS

Post-processing cluster

Burst Buffers and Parallel File System

Infiniband

Parallel FS

Post-processing cluster

Infiniband

● Post-processing cluster connected to burst buffers
connected to parallel file system
– More expensive than traditional approach
– Bandwidth to burst buffer nodes could be sufficient

● Caching? How coherent? IME alike?
● Another parallel FS over burst buffers?
● Entire data set should fit into burst buffers

– Challenging
● Say ... 5 burst buffer nodes
● 5 * 20GB/s towards post-processing cluster
● 5 * O(5GB/s) bandwidth BB nodes to PFS
● > 5 * 20TB NVMe / SSDs

– BB nodes dedicated to this post processing instance
– Loading 100TB:

● O(3-4000s) to BB nodes, once
● O(1000s) from BB nodes to post-processing

– A faster “traditional approach”.

Burst Buffer
SSDNVMe

Burst Buffer
SSDNVMe

“Inverse Virtualization”: vSMP

● Create vSMP node with ScaleMP SW
– eg. San Diego Supercomputer Center

● GORDON

– Aggregate post-processing nodes
to one vSMP node using COMA

● Use NVMe and SSDs on any of the
nodes as if they were local

● Still possible to access parallel FS
– What is the impact of COMA?

– VSMP “cache” coherency network
is limiting factor

– Nevertheless: interesting approach!

vSMP Infiniband

Parallel FS

Post-processing COMA „node“

SSDNVMe SSDNVMe

Infiniband

„local“ file system
made of SSDs

“No Global File System” Approach

● Post-processing nodes with NVM
and fat IB connectivity
– Actually “burst buffer” nodes

● But software makes the difference

● >10TB in non-volatile memory / node

● No parallel file system for storing output
matrix

● 2 * EDR/OPA: ~20GB/s IB connectivity

– MPI bandwidth between nodes: ~20GB/s,
>240GB/s aggregated.

● Usable for transfer of submatrices between nodes.

– Use data “in place”, compute directly from NVM/PMEM!

Parallel FS

Post-processing cluster

NVM

Infiniband

NVM NVM NVM NVM

“No Global File System” Approach

● Post-processing nodes with NVM
and fat IB connectivity
– Actually “burst buffer” nodes

● But software makes the difference

● >10TB in non-volatile memory / node

● No parallel file system for storing output
matrix

● 2 * EDR/OPA: ~20GB/s IB connectivity

– MPI bandwidth between nodes: ~20GB/s,
>240GB/s aggregated.

● Usable for transfer of submatrices between nodes.

– Use data “in place”, compute directly from NVM/PMEM!

Parallel FS

Post-processing cluster

NVM

Infiniband

NVM NVM NVM NVM

Actually…
 we want at least 100TB of RAM

(or something similar)
in a small and cheap system.

„in-memory“ - „out-of-core“

Actually…
 we want at least 100TB of RAM

(or something similar)
in a small and cheap system.

„in-memory“ - „out-of-core“

“No Global File System” Approach

● Post-processing nodes with NVM
and fat IB connectivity
– Actually “burst buffer” nodes

● But software makes the difference

● >10TB in non-volatile memory / node

● No file system for storing output matrix

● 2 * EDR/OPA: ~20GB/s IB connectivity

– Parallel FS access with up to 200GB/s
● O(500s) for loading the full output data

– MPI bandwidth between nodes:
~24GB/s, >240GB/s aggregated.

Parallel FS

Post-processing cluster

SSD

NVMe

Infiniband

SSD

NVMe

SSD

NVMe

SSD

NVMe

SSD

NVMe

POSIX semantics & consistency not needed over the entire
name-space of a data center. Only needed within the
name-space spanned by a job. Even there we can work around
it.
Best example: DAOS container.

 Domain specific IO: NetCDF, HDF5, ...
Other approaches: BatchFS, DeltaFS, MarFS...

 Metadata only within job, preferably managed by job nodes
 Use object storage as back end

Matrix Representation

O(10000)
time steps

Output of
entire

simulation

0 1

● SCALAPACK & BLACS!
– Two-dimensional block-cyclic distribution

● Decompose output matrix into sub-
matrices of same size

● Each submatrix is stored contiguously
in NVM

– mmaped
– Byte addressable (!)

– Persistent: flush or msync needed
● Byte address of each submatrix recon-

structable with metadata block MD
– Locate & reconstruct matrix after

node failure or reboot

0 1 2 3

4 5 6 7

8 9 10 11

BLACS
processor

grid

2 3

4 5 6 7

8 9 10 11

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3

4 5 6 7

8 9 10 11

0 1 2 3

4 5 6 7

8 9 10 11

0 1

4 5

8 9

0 1

4 5

8 9

0 1 2 3

4 5 6 7

0 1 2 3

4 5 6 7

0 1

4 5

Matrix Representation

Node 1● For example:
– Each submatrix is a file

– Or: all submatrices owned by a node
are in one file. One mmap for each
submatrix.

● TODO: Replace initialization of local block submatrix usually
done in PXELSET()

CALL DESCINIT(DESCA, M, N, MB, NB, RSRC, CSRC, CONTEXT, LLD, IERR)
...
CALL PDELSET(A, IA, JA, DESCA, ALPHA)
...

● TODO: import/export matrices from/to parallel FS

MDNVMe

NVMe

NVMe

Software and API
● PMEM: Persistent Memory

– Persistent Memory project, SNIA
– Mapped, byte addressable
– Mechanisms for finding own data in PMEM after reboot

● Matrices stored in distributed PMEM
– Compute from there, transfer from there, recover from there

– Effective virtual memory of size of PMEM

● SCALAPACK / BLACS
– Small modifications, transfer submatrices from PMEM through RDMA

● MPI multirail Infiniband

● Lustre / Parallel FS client for loading the output (once)

Issues, Today
● NVM: byte addressable

– Persystent memory PMEM ... not yet here (though big promisses were
made)

– NVMe great (also price-wise) but not exactly what we need

● Might need multiple layouts of the matrix, i.e.
different distributions (eg. Transpose).

– Increase NVM space or number of servers

● 2 x EDR bandwidth, able to use 20-24GB/s?

– NUMA challenges, zero copy wherever possible

● Latency!

NVM in Memory Hierarchy

CPU

Cache
SRAM

DRAM

Harddisk

NVM
read: 80μs,

write: 200-500μs

>60 ns

1-20 ns

NAND
10-100 μs (DRAM buffers!)

>1-10 ms

PCM

RRAM
...

read: 100-300ns,
write: 150-600ns

SAS
SATA

NVMe

NVDIMM
 1000x 10x faster (3dXPOINT)

30ns ?

B
lo

ck
 a

dd
re

ss
ab

le

B
yt

e
ad

dr
es

sa
bl

e

Available Today: NVMe

● Efficient and streamlined command set

● Huge parallelity (64k command queues)

● One IO register write for one cmd issue

● Jump in IOPS and BW!

– 3x SAS IOPS

– 6-8x SATA IOPS

– 3x SAS read BW

– 6x SATA read BW

● Gained 20μs vs. SAS/SATA
due to missing SCSI SW stack

● Not byte addressable :-(

512 1024 2048 4096 8192 16384 32768 65536 131072
0

500

1000

1500

2000

2500

3000

Sustained Random Reads, QD=256

Block Size vs. Bandwidth

Block Size

B
a

n
d

w
id

th
 (

M
B

/s
)

512 1024 2048 4096 8192 16384 32768 65536 131072
0

500

1000

1500

2000

2500

3000

Sustained Random Reads, QD=256

Block Size vs. Bandwidth

Block Size

B
a

n
d

w
id

th
 (

M
B

/s
)

[Intel DC P3700 2TB, PCIe x4]

1 2 4 8 16 32 64 128 256
0

100000
200000
300000
400000
500000
600000

Sustained 4K Random Read

IOPS vs. Queue Depth

Queue Depth

IO
P

S

1 2 4 8 16 32 64 128 256
0

100000
200000
300000
400000
500000
600000

Sustained 4K Random Read

IOPS vs. Queue Depth

Queue Depth

IO
P

S

Scaling NVM (express)
● Various form factors

– M.2, U.2 (x4, 2x x2 dual port)
– PCIe x4, x8, x16 (!)

● x8: >6GB/s read bandwidth

● x16: 10GB/s read bandwidth, 2M IOPS

● 2015
– Scalable at rack level through PCIe switches

● NVMe: EMC DSSD D5: 10M IOPS, 100GB/s, 100μs latency

● (SAS SSD: NetApp EF560: 825k IOPS, 12GB/s, 300-800μs latency)

● 2016
– Scale at data center level

● NVMe over Fabrics
– < 6μs additional latency!

● NVMe over Ethernet (Apeiron/NEC)

– < 3μs additional latency (round-trip)

NVDIMM in 2016?

● NVDIMM-N
– DRAM, backed by flash
– Capacity of a DRAM DIMM (eg. 16GB)

● NVDIMM-F
– NAND flash block device with DDR3/4 interface

● Diablo “Memory1”
– NVDIMM-F, 256(-512)GB, software pushes pages from DRAM into it
– Effectively extends server memory size

● New technology? PCM? MRAM?
– 3d Xpoint... 2017? Capacity? Density? Price?

NVM Programming Model(s)

● NVMe: not really...
– it’s a block device, sector addressable

– ... file system or KV store

● Mnemosyne, NV Heaps (2011!)
– Lightweight persistent memory, consistent updates, persistent regions

● SNIA PMEM.IO
– Storage Networks Industry Association

– Big effort to prepare for PMEM

– Programming model for PMEM

– NVM Library: optimized for PMEM but behaves reasonably on
other types of NVM like SSDs

PMEM Programming Model
● NVM.PM.FILE

– Simple solution for security &
finding data in PMEM again

– PM-aware filesystem allows direct
access (no page-cache,
mmaped region is byte addressable)

– Linux DAX support for ext4, xfs, ...

● NVML library
– libpmem: low level PMEM support, basis for all other libs
– libpmemobj: transactional object store, providing memory allocation,

transactions, and general facilities for PMEM programming
– libpmemblk: arrays of same-size blocks, atomically updated,

libpmemlog: PM-resident log file
– libvmem: turns pool of PM into volatile memory pool, own malloc API
– libvmmalloc: transparently converts all dynamic memory allocations into persystent

memory
– librpmem: remote access to remote persystent memory through RDMA

library

PMEM Programming Model
● NVM.PM.FILE

– Simple solution for security &
finding data in PMEM again

– PM-aware filesystem allows direct
access (no page-cache,
mmaped region is byte addressable)

– Linux DAX support for ext4, xfs, ...

● NVML library
– libpmem: low level PMEM support, basis for all other libs
– libpmemobj: transactional object store, providing memory allocation,

transactions, and general facilities for PMEM programming
– libpmemblk: arrays of same-size blocks, atomically updated,

libpmemlog: PM-resident log file
– libvmem: turns pool of PM into volatile memory pool, own malloc API
– libvmmalloc: transparently converts all dynamic memory allocations into persystent

memory
– librpmem: remote access to remote persystent memory through RDMA

library

Libraries:
● We can develop for NVM/PMEM before we have it!
● Any file/filesystem can be used for libpmem pools

(as long as mmap‘able)
● Performance penalty due to page-faults & page cache
● NVMe (& tradeoffs)… best we can get
● libvmem: first steps, if we don‘t care about persistence
● libpmemmobj + librpmem

Libraries:
● We can develop for NVM/PMEM before we have it!
● Any file/filesystem can be used for libpmem pools

(as long as mmap‘able)
● Performance penalty due to page-faults & page cache
● NVMe (& tradeoffs)… best we can get
● libvmem: first steps, if we don‘t care about persistence
● libpmemmobj + librpmem

Conclusion

● We can build the post-processing cluster for
~100TB outputs!

– Not yet with NVDIMMs with byte addressed access (1-2 years?)

– Use NVMes for now: prices are in free fall (<1$/GB)

– Rough price: ~150k€, in 12-14U

● Generic, multi-purpose building block:
– 1U server, 2 Intel CPUs, 64 PCIe gen3 lanes,

32 for 8 NVMes, 32 for 2 IB cards

● Is it fast enough?
– Of course not. Bandwidth limited. And that is scalable.
– NVMe over Fabrics not really helpful here. PMEM is the real deal.

	Title
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Approaches
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28

