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“The K Problem”

● Two things came together:

– Uwe Küster

– The K-Operator

● Hope for new ways of simulating complex non-linear
dynamics problems

● Related or not... Uwe Küster sees upcoming strong
demand for new ways of post-processing

– Correlate outputs in time direction!



Next Generation Post-Processing

● Is a big data problem, much more than it was before
– Problem size: 1 GigaNodes

– Degrees of freedom per node: >10

– Output per time step: > 80GB

– With O(1000) – O(10000) time steps: O(100TB) – O(1PB) Output per job

● Local examples (last year):
Matthias Meinke: 100TB output
Meteo Uni Hohenheim: 330TB output with 3km resolution

– Write once, read multiple. Huge amount of data to be read!

– Can't afford to store entire data forever

– Analyse, “compress” by extracting knowledge, remove output

– Don't forget: this is about processing ALL OUTPUT, not just one time step!



The K - Way

● Treat entire simulation output as a matrix
– Find Eigenvalues

– Spectral analysis, FFTs

– Matrix multiply, Transpose

– Big data analysis with HPC methods

● Challenges

– Size: 100TB - 1PB of data!

– With 100GB/s bandwidth filesystem:
1000 - 10000s to read data in once.

– Dense matrix operations! Bandwidth!
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Postprocessing: State of the Art

● Following figures taken from:
“HPC I/O for Computational Scientists”: Rob Latham et al,
Course at Argonne National Lab.



Postprocessing: State of the Art (continued)

● Attempts to deal with huge amounts of data:

Nice, but only suited for analysis of one time step!



Approaches



Target Space

● Learn & start with lower end: 100TB output cases

● ~ 12 nodes for post-processing in parallel

– ~100GB RAM / node, ~1.2TB RAM in total

● Dedicated for limited time for one user to post-process his job

● Output data is on a parallel file system, but needs to be 
deleted after post-processing

● POSIX is irrelevant

● Post-processing software has to be written or adapted to IO



Traditional Approach

● Post-processing cluster connected to 
parallel file system
– Simplest setup
– Bandwidth to PFS is limited

● Parallel FS
● Post-processing nodes

– On post-processing nodes side:
12 post-processing nodes:
12 * 3-5GB/s, total 36-60GB/s

– Loading 100TB: min. 2000-3000s
● Will be loaded many times!
● Lost in IO

Infiniband

Parallel FS

Post-processing cluster



Burst Buffers and Parallel File System

Infiniband

Parallel FS

Post-processing cluster

Infiniband

● Post-processing cluster connected to burst buffers 
connected to parallel file system
– More expensive than traditional approach
– Bandwidth to burst buffer nodes could  be sufficient

● Caching? How coherent? IME alike?
● Another parallel FS over burst buffers?
● Entire data set should fit into burst buffers

– Challenging
● Say ... 5 burst buffer nodes
● 5 * 20GB/s towards post-processing cluster
● 5 * O(5GB/s) bandwidth BB nodes to PFS
● > 5 * 20TB NVMe / SSDs

– BB nodes dedicated to this post processing instance
– Loading 100TB:

● O(3-4000s) to BB nodes, once
● O(1000s) from BB nodes to post-processing

– A faster “traditional approach”.

Burst Buffer
SSDNVMe

Burst Buffer
SSDNVMe



“Inverse Virtualization”: vSMP

● Create vSMP node with ScaleMP SW
– eg. San Diego Supercomputer Center

● GORDON

– Aggregate post-processing nodes
to one vSMP node using COMA

● Use NVMe and SSDs on any of the
nodes as if they were local

● Still possible to access parallel FS
– What is the impact of COMA?

– VSMP “cache” coherency network
is limiting factor

– Nevertheless: interesting approach!

vSMP Infiniband

Parallel FS

Post-processing COMA „node“

SSDNVMe SSDNVMe

Infiniband

„local“ file system
made of SSDs



“No Global File System” Approach

● Post-processing nodes with NVM
and fat IB connectivity
– Actually “burst buffer” nodes

● But software makes the difference

● >10TB in non-volatile memory / node

● No parallel file system for storing output
matrix

● 2 * EDR/OPA: ~20GB/s IB connectivity

– MPI bandwidth between nodes: ~20GB/s,
>240GB/s aggregated.

● Usable for transfer of submatrices between nodes.

– Use data “in place”, compute directly from NVM/PMEM!
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Post-processing cluster
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Actually…
 we want at least 100TB of RAM

(or something similar) 
in a small and cheap system.
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“No Global File System” Approach

● Post-processing nodes with NVM
and fat IB connectivity
– Actually “burst buffer” nodes

● But software makes the difference

● >10TB in non-volatile memory / node

● No file system for storing output matrix

● 2 * EDR/OPA: ~20GB/s IB connectivity

– Parallel FS access with up to 200GB/s
● O(500s) for loading the full output data

– MPI bandwidth between nodes:
~24GB/s, >240GB/s aggregated.
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POSIX semantics & consistency not needed over the entire 
name-space of a data center. Only needed within the 
name-space spanned by a job. Even there we can work around 
it.
Best example: DAOS container.

 Domain specific IO: NetCDF, HDF5, ...
Other approaches: BatchFS, DeltaFS, MarFS...

 Metadata only within job, preferably managed by job nodes
 Use object storage as back end



Matrix Representation
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● SCALAPACK & BLACS!
– Two-dimensional block-cyclic distribution

● Decompose output matrix into sub-
matrices of same size

● Each submatrix is stored contiguously
in NVM

– mmaped
– Byte addressable (!)

– Persistent: flush or msync needed
● Byte address of each submatrix recon-

structable with metadata block MD
– Locate & reconstruct matrix after

node failure or reboot
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Matrix Representation

Node 1● For example:
– Each submatrix is a file

– Or: all submatrices owned by a node
are in one file. One mmap for each
submatrix.

● TODO: Replace initialization of local block submatrix usually
done in PXELSET()

CALL DESCINIT(DESCA, M, N, MB, NB, RSRC, CSRC, CONTEXT, LLD, IERR)
...
CALL PDELSET( A, IA, JA, DESCA, ALPHA )
...

● TODO: import/export matrices from/to parallel FS

MDNVMe

NVMe

NVMe



Software and API
● PMEM: Persistent Memory

– Persistent Memory project, SNIA
– Mapped, byte addressable
– Mechanisms for finding own data in PMEM after reboot 

● Matrices stored in distributed PMEM
– Compute from there, transfer from there, recover from there

– Effective virtual memory of size of PMEM

● SCALAPACK / BLACS
– Small modifications, transfer submatrices from PMEM through RDMA

● MPI multirail Infiniband

● Lustre / Parallel FS client for loading the output (once)



Issues, Today
● NVM: byte addressable

– Persystent memory PMEM ... not yet here (though big promisses were
made)

– NVMe great (also price-wise) but not exactly what we need

● Might need multiple layouts of the matrix, i.e.
different distributions (eg. Transpose).

– Increase NVM space or number of servers

● 2 x EDR bandwidth, able to use 20-24GB/s?

– NUMA challenges, zero copy wherever possible

● Latency!



NVM in Memory Hierarchy

CPU
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Harddisk
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read: 80μs,

write: 200-500μs

>60 ns
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NAND
10-100 μs (DRAM buffers!)

>1-10 ms

PCM
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...

read: 100-300ns,
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Available Today: NVMe

● Efficient and streamlined command set

● Huge parallelity (64k command queues)

● One IO register write for one cmd issue

● Jump in IOPS and BW!

– 3x SAS IOPS

– 6-8x SATA IOPS

– 3x SAS read BW

– 6x SATA read BW

● Gained 20μs vs. SAS/SATA
due to missing SCSI SW stack

● Not byte addressable :-(

512 1024 2048 4096 8192 16384 32768 65536 131072
0

500

1000

1500

2000

2500

3000

Sustained Random Reads, QD=256

Block Size vs. Bandwidth

Block Size

B
a

n
d

w
id

th
 (

M
B

/s
)

512 1024 2048 4096 8192 16384 32768 65536 131072
0

500

1000

1500

2000

2500

3000

Sustained Random Reads, QD=256

Block Size vs. Bandwidth

Block Size

B
a

n
d

w
id

th
 (

M
B

/s
)

[Intel DC P3700 2TB, PCIe x4]

1 2 4 8 16 32 64 128 256
0

100000
200000
300000
400000
500000
600000

Sustained 4K Random Read

IOPS vs. Queue Depth

Queue Depth

IO
P

S

1 2 4 8 16 32 64 128 256
0

100000
200000
300000
400000
500000
600000

Sustained 4K Random Read

IOPS vs. Queue Depth

Queue Depth

IO
P

S



Scaling NVM (express)
● Various form factors

– M.2, U.2 (x4, 2x x2 dual port)
– PCIe x4, x8, x16 (!)

● x8: >6GB/s read bandwidth

● x16: 10GB/s read bandwidth, 2M IOPS

● 2015
– Scalable at rack level through PCIe switches

● NVMe: EMC DSSD D5: 10M IOPS, 100GB/s, 100μs latency

● (SAS SSD: NetApp EF560: 825k IOPS, 12GB/s, 300-800μs latency)

● 2016
– Scale at data center level

● NVMe over Fabrics
– < 6μs additional latency!

● NVMe over Ethernet (Apeiron/NEC)

– < 3μs additional latency (round-trip)



NVDIMM in 2016?

● NVDIMM-N
– DRAM, backed by flash
– Capacity of a DRAM DIMM (eg. 16GB)

● NVDIMM-F
– NAND flash block device with DDR3/4 interface

● Diablo “Memory1”
– NVDIMM-F, 256(-512)GB, software pushes pages from DRAM into it
– Effectively extends server memory size

● New technology? PCM? MRAM?
– 3d Xpoint... 2017? Capacity? Density? Price?



NVM Programming Model(s)

● NVMe: not really...
– it’s a block device, sector addressable

– ... file system or KV store

● Mnemosyne, NV Heaps (2011!)
– Lightweight persistent memory, consistent updates, persistent regions

● SNIA PMEM.IO
– Storage Networks Industry Association

– Big effort to prepare for PMEM

– Programming model for PMEM 

– NVM Library: optimized for PMEM but behaves reasonably on
other types of NVM like SSDs



PMEM Programming Model
● NVM.PM.FILE

– Simple solution for security &
finding data in PMEM again

– PM-aware filesystem allows direct
access (no page-cache, 
mmaped region is byte addressable)

– Linux DAX support for ext4, xfs, ...

● NVML library
– libpmem: low level PMEM support, basis for all other libs
– libpmemobj: transactional object store, providing memory allocation,

transactions, and general facilities for PMEM programming
– libpmemblk: arrays of same-size blocks, atomically updated,

libpmemlog: PM-resident log file
– libvmem: turns pool of PM into volatile memory pool, own malloc API
– libvmmalloc: transparently converts all dynamic memory allocations into persystent 

memory
– librpmem: remote access to remote persystent memory through RDMA

library
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Libraries:
● We can develop for NVM/PMEM before we have it!
● Any file/filesystem can be used for libpmem pools

(as long as mmap‘able)
● Performance penalty due to page-faults & page cache
● NVMe (& tradeoffs)… best we can get
● libvmem: first steps, if we don‘t care about persistence
● libpmemmobj + librpmem
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Conclusion

● We can build the post-processing cluster for
~100TB outputs!

– Not yet with NVDIMMs with byte addressed access (1-2 years?)

– Use NVMes for now: prices are in free fall (<1$/GB)

– Rough price: ~150k€, in 12-14U 

● Generic, multi-purpose building block:
– 1U server, 2 Intel CPUs, 64 PCIe gen3 lanes,

32 for 8 NVMes, 32 for 2 IB cards

● Is it fast enough?
– Of course not. Bandwidth limited. And that is scalable.
– NVMe over Fabrics not really helpful here. PMEM is the real deal.
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