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Hybrid Parallel Programming

Motivation

• Efficient programming of clusters 
of shared memory (SMP) nodes

• Hierarchical system layout 

• Hybrid programming seems natural

• MPI between the nodes

• Shared memory programming inside of each SMP node

– OpenMP

– MPI-3 shared memory programming

– Accelerator support in OpenMP 4.0 and OpenACC

Node Interconnect

SMP nodes

cores

shared
memory

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes

new

new
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Motivation

• Which programming model 
is fastest?

• MPI everywhere?

• Fully hybrid 
MPI & OpenMP?

• Something between?
(Mixed model)

?
• Often hybrid programming 

slower than pure MPI
– Examples, Reasons, …
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Hybrid Parallel Programming

Goals of this tutorial

• Sensitize to problems on clusters of SMP nodes

see sections � Case studies
� Mismatch problems 

• Technical aspects of hybrid programming

see sections � Programming models on clusters 
� Examples on hybrid programming

• Opportunities with hybrid programming

see section � Opportunities: Application categories 
that can benefit from hybrid paralleliz.

• Issues and their Solutions 

with sections � Thread-safety quality of MPI libraries 
� Tools for debugging and profiling 

for MPI+OpenMP

•Less
frustration
& 

•More
success

with your 
parallel 
program on 
clusters of 
SMP nodes
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Outline
slide number

• Introduction  /  Motivation 2

• Programming models on clusters of SMP nodes 6

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP 28

• Practical “How-To” on hybrid programming 55

• Mismatch Problems 91

• Opportunities: Application categories that can 109

benefit from hybrid parallelization

• Other options on clusters of SMP nodes 118

– Accelerators 135

• Summary 151

• Appendix 158

• Content (detailed) 174

08:30 – 10:00

10:30 – 12:00

Includes additional 

slides, marked as

— skipped —
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Hybrid Parallel Programming

Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Other options on clusters of SMP nodes

• Summary
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Major Programming models on hybrid systems

some_serial_code

#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized

again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential 
program on 
each core

Explicit Message Passing
by calling MPI_Send & MPI_Recv

Node Interconnect

OpenMP inside of the 
SMP nodes

MPI between the nodes
via node interconnect

new

• Pure MPI (one MPI process on each core)

• Hybrid:  MPI + OpenMP

– shared memory OpenMP

– distributed memory MPI 

• Hybrid:  MPI message passing + MPI-3.0 shared memory programming

• Other: PGAS (UPC, Coarray Fortran, ….)  /  together with MPI

• Often hybrid programming (MPI+OpenMP) slower than pure MPI

– why?
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Parallel Programming Models on Hybrid Platforms

No overlap of 
Comm. + Comp.
MPI only outside of 

parallel regions
of the numerical 
application code

Overlapping
Comm. + Comp.

MPI communication by 
one or a few threads

while other threads are 
computing

pure MPI
one MPI 
process

on each core

hybrid MPI+OpenMP
MPI: inter-node 
communication

OpenMP: inside of each 
SMP node

OpenMP only

distributed virtual 
shared memory

Masteronly
MPI only outside
of parallel regions

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming

Within shared 
memory nodes:
Halo updates 
through direct 

data copy

Within shared 
memory nodes:

No halo updates, 
direct access to 
neighbor data

new

new new
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Pure MPI

Advantages

– No modifications on existing MPI codes

– MPI library need not to support multiple threads

Major problems

– Does MPI library uses internally different protocols?
• Shared memory inside of the SMP nodes

• Network communication between the nodes

– Does application topology fit on hardware topology?

– Unnecessary MPI-communication inside of SMP nodes!

pure MPI
one MPI process

on each core

Discussed 
in detail later on 

in the section 
Mismatch 
Problems
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Hybrid MPI+OpenMP Masteronly Style

Advantages

– No message passing inside of the SMP nodes

– No topology problem

for (iteration ….)

{

#pragma omp parallel 
numerical code

/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas 
in other SMP nodes)

MPI_Recv (halo data 
from the neighbors)

} /*end for loop

Masteronly
MPI only outside 
of parallel regions

Major Problems

– All other threads are sleeping
while master thread communicates!

– Which inter-node bandwidth? 

– MPI-lib must support at least 
MPI_THREAD_FUNNELED

� Section 
Thread-safety 
quality of MPI 

libraries
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MPI rules with OpenMP / 
Automatic SMP-parallelization

• Special MPI-2 Init for multi-threaded MPI processes:

• REQUIRED values (increasing order):
– MPI_THREAD_SINGLE: Only one thread will execute
– THREAD_MASTERONLY: MPI processes may be multi-threaded, 

(virtual value, but  only master thread will make MPI-calls
not part of the standard) AND only while other threads are sleeping

– MPI_THREAD_FUNNELED: Only master thread will make MPI-calls
– MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,

but only one at a time
– MPI_THREAD_MULTIPLE: Multiple threads may call MPI, 

with no restrictions

• returned provided may be less than REQUIRED by the application

int MPI_Init_thread( int * argc, char ** argv[],

int thread_level_required,

int * thead_level_provided);

int MPI_Query_thread( int * thread_level_provided);

int MPI_Is_main_thread(int * flag);
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Calling MPI inside of OMP MASTER

• Inside of a parallel region, with “OMP MASTER”

• Requires MPI_THREAD_FUNNELED,
i.e., only master thread will make MPI-calls

• Caution: There isn’t any synchronization with “OMP MASTER”!
Therefore, “OMP BARRIER” normally necessary to
guarantee, that data or buffer space from/for other 
threads is available before/after the MPI call!

!$OMP BARRIER #pragma omp barrier
!$OMP MASTER #pragma omp master

call MPI_Xxx(...) MPI_Xxx(...);  
!$OMP END MASTER
!$OMP BARRIER #pragma omp barrier

• But this implies that all other threads are sleeping!

• The additional barrier implies also the necessary cache flush!
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… the barrier is necessary  –
example with MPI_Recv

!$OMP PARALLEL
!$OMP DO

do i=1,1000
a(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP MASTER

call MPI_RECV(buf,...)
!$OMP END MASTER
!$OMP BARRIER
!$OMP DO

do i=1,1000
c(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP END PARALLEL

#pragma omp parallel
{
#pragma omp for nowait

for (i=0; i<1000; i++)
a[i] = buf[i];

#pragma omp barrier
#pragma omp master

MPI_Recv(buf,...);
#pragma omp barrier

#pragma omp for nowait
for (i=0; i<1000; i++)

c[i] = buf[i];

}
/* omp end parallel */

No barrier inside

Barriers needed 
to prevent
data races
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Example: Thread support within Open MPI

• In order to enable thread support in Open MPI, configure with:

configure --enable-mpi-threads

• This turns on:

– Support for full MPI_THREAD_MULTIPLE

– internal checks when run with threads (--enable-debug)

configure --enable-mpi-threads --enable-progress-threads

• This (additionally) turns on:

– Progress threads to asynchronously transfer/receive data per 
network BTL.

• Additional Feature:

– Compiling with debugging support, but without threads will 
check for recursive locking 

Courtesy of Rainer Keller, HLRS and ORNL 
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Overlapping communication and computation

if (my_thread_rank < …) {

MPI_Send/Recv…. 
i.e., communicate all halo data

} else {

Execute those parts of the application

that do not need halo data

(on non-communicating threads)

}

Execute those parts of the application

that  need halo data

(on all threads)

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing
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Hybrid MPI + MPI-3 shared memory

Advantages

– No message passing inside of the SMP nodes

– Using only one parallel programming standard

– No OpenMP problems  (e.g., thread-safety isn’t an issue)

Major Problems

– Communicator must be split into shared 
memory islands

– To minimize shared memory communication 
overhead:
Halos (or the data accessed by the neighbors) 
must be stored in 
MPI shared memory windows

– Same work-sharing as with pure MPI 

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming
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MPI-3 shared memory

• Split main communicator into shared memory islands

– MPI_Comm_split_type

• Define a shared memory window on each island

– MPI_Win_allocate_shared

– Result (by default):  

contiguous array, directly accessible by all processes of the island

• Accesses and sychronization

– Normal assignments and expressions

– No MPI_PUT/GET !

– Normal MPI one-sided synchronization, e.g., MPI_WIN_FENCE

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming
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Splitting the communicator & 
contiguous shared memory allocation

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming

MPI_Aint /*IN*/ local_window_count; double /*OUT*/  *base_ptr; 

MPI_Comm comm_all,  comm_sm; int my_rank_all,  my_rank_sm,  size_sm,  disp_unit; 

MPI_Comm_rank (comm_all, &my_rank_all);

MPI_Comm_split_type (comm_all, MPI_COMM_TYPE_SHARED, 0,

MPI_INFO_NULL, &comm_sm);

MPI_Comm_rank (comm_sm, &my_rank_sm);  MPI_Comm_size (comm_sm, &size_sm);

disp_unit = sizeof(double);  /* shared memory should contain doubles */

MPI_Win_allocate_shared (local_window_count*disp_unit,  disp_unit,  MPI_INFO_NULL,

comm_sm,  &base_ptr,  &win_sm);  

0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   15  …      my_rank_all

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

…

MPI process

Sub-communicator
comm_sm
for one SMP node

local_window_count
doubles

base_ptr

Contiguous shared memory window within each SMP node

Sequence in comm_sm
as in  comm_all

comm_all

F

F In Fortran, MPI-3.0, page 341, Examples 8.1 (and 8.2) show how to convert buf_ptr into a usable array a.

This mapping is based on a sequential ranking of the SMP nodes in comm_all.

M

M
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Within each SMP node  – Essentials

• The allocated shared memory is contiguous across process ranks,

• i.e., the first byte of rank i starts right after the last byte of rank i-1.

• Processes can calculate remote addresses’ offsets
with local information only.

• Remote accesses through load/store operations,

• i.e., without MPI RMA operations (MPI_GET/PUT, …) 

• Although each process in comm_sm accesses the same physical memory,
the virtual start address of the whole array 
may be different in all processes!
� linked lists only with offsets in a shared array, 

but not with binary pointer addresses!

• Following slides show only the shared memory accesses,
i.e., communication between the SMP nodes is not presented.

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming
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Shared memory access example

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming

MPI_Aint /*IN*/ local_window_count; double /*OUT*/  *base_ptr; 

MPI_Win_allocate_shared (local_window_count*disp_unit,  disp_unit,  MPI_INFO_NULL,

comm_sm,  &base_ptr,  &win_sm); 

MPI_Win_fence (0, win_sm);  /*local store epoch can start*/

for (i=0; i<local_window_count; i++)  base_ptr[i] = … /* fill values into local portion */

MPI_Win_fence (0, win_sm);  /* local stores are finished, remote load epoch can start */

if (my_rank_sm > 0) printf("left neighbor’s rightmost value = %lf \n", base_ptr[-1] );

if (my_rank_sm < size_sm-1) printf("right neighbor’s leftmost value = %lf \n",

base_ptr[local_window_count] );

0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   15  …      my_rank_all

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

…

MPI process

Sub-communicator
for one SMP node

base_ptr

Contiguous shared memory window within each SMP node local_window_count
doubles

Direct load access to 
remote window 

portion

Direct load access to 
remote window 

portion

Synchroni-
zation

Synchroni-
zation

Local stores
F

F

F

F

F In Fortran, before and after the synchronization, on must add:  CALL MPI_F_SYNC_REG (buffer)

to guarantee that register copies of buffer are written back to memory, respectively read again from memory. 
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Establish comm_sm, comm_nodes, comm_all,
if SMPs are not contiguous within comm_orig

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming

0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   15  …      my_rank_all

0     1     2     3     
my_rank_sm

…
Sub-communicator
for one SMP node:

comm_sm

MPI_Comm_split_type (comm_orig,  MPI_COMM_TYPE_SHARED,  0,  MPI_INFO_NULL,  &comm_sm);

MPI_Comm_size (comm_sm,  &size_sm);  MPI_Comm_rank (comm_sm,  &my_rank_sm);

MPI_Comm_split (comm_orig, my_rank_sm, 0, &comm_nodes); 

MPI_Comm_size (comm_nodes,  &size_nodes);

if (my_rank_sm==0) {

MPI_Comm_rank (comm_nodes,  &my_rank_nodes);

MPI_Exscan (&size_sm, &my_rank_all, 1, MPI_INT, MPI_SUM, comm_nodes); 

if (my_rank_nodes == 0)  my_rank_all = 0;

}

MPI_Comm_free (&comm_nodes);

MPI_Bcast (&my_rank_nodes, 1, MPI_INT, 0, comm_sm);

MPI_Comm_split (comm_orig, my_rank_sm, my_rank_nodes, &comm_nodes);

MPI_Bcast (&my_rank_all, 1, MPI_INT, 0, comm_sm); my_rank_all = my_rank_all + my_rank_sm;

MPI_Comm_split (comm_orig,  /*color*/ 0,  my_rank_all,  &comm_all);

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

Establish a 

communicator 

comm_sm

with ranks 

my_rank_sm

on each SMP 

node

Result: comm_nodes combines all processes with a 

given my_rank_sm into a separate communicator.Exscan does 

not return 

value on the 

first rank, 

therefore

comm_all

comm_nodes
combining all 
processes with same
my_rank_sm

On processes with my_rank_sm > 0, this comm_nodes is unused

because node-numbering within these comm_nodes may be different.

Expanding the numbering from 

comm_nodes with my_rank_sm

== 0  to all new node-to-node 

communicators comm_nodes.

Calculating my_rank_all and 

establishing global communicator 

comm_all with sequential SMP 

subsets.

0                              1                             2                             3

my_rank_nodes

Input
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Alternative: Non-contiguous shared memory

• Using info key "alloc_shared_noncontig“

• MPI library can put processes’ window portions

– on page boundaries,
• (internally, e.g., only one OS shared memory segment with some unused 

padding zones)

– into the local ccNUMA memory domain + page boundaries
• (internally, e.g., each window portion is one OS shared memory segment)

Pros:

• Faster local data accesses especially on ccNUMA nodes

Cons:

• Higher programming effort for neighbor accesses: MPI_WIN_SHARED_QUERY

Hybrid Parallel Programming

Further reading:
Torsten Hoefler, James Dinan, Darius Buntinas, 
Pavan Balaji, Brian Barrett, Ron Brightwell, 
William Gropp, Vivek Kale, Rajeev Thakur: 
MPI + MPI: a new hybrid approach to parallel 
programming with MPI plus shared memory.
http://link.springer.com/content/pdf/10.1007%2Fs00607-013-0324-2.pdf

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming

NUMA effects?
Significant impact of alloc_shared_noncontig
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Non-contiguous shared memory allocation

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming

MPI_Aint /*IN*/ local_window_count; double /*OUT*/  *base_ptr; 

disp_unit = sizeof(double);  /* shared memory should contain doubles */

MPI_Info info_noncontig;  

MPI_Info_create (&info_noncontig);

MPI_Info_set (info_noncontig, "alloc_shared_noncontig", "true");

MPI_Win_allocate_shared (local_window_count*disp_unit,  disp_unit,  info_noncontig,

comm_sm,  &base_ptr,  &win_sm ); 

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

0     1     2     3     
my_rank_sm

…

MPI process

Sub-communicator
for one SMP node

local_window_count
doubles

base_ptr

Non-contiguous shared memory window within each SMP node
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Non-contiguous shared memory:
Neighbor access through MPI_WIN_SHARED_QUERY

• Each process can retrieve each neighbor’s base_ptr

with calls to MPI_WIN_SHARED_QUERY

• Example: only pointers to the window memory

of the left & right neighbor

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming

if (my_rank_sm > 0) MPI_Win_shared_query (win_sm, my_rank_sm – 1, 

&win_size_left,     &disp_unit_left,     &base_ptr_left);

if (my_rank_sm < size_sm-1) MPI_Win_shared_query (win_sm, my_rank_sm + 1, 

&win_size_right,  &disp_unit_right,   &base_ptr_right);

…

MPI_Win_fence (0, win_sm);  /* local stores are finished, remote load epoch can start */

if (my_rank_sm > 0) printf("left neighbor’s rightmost value = %lf \n", 

base_ptr_left[ win_size_left/disp_unit_left – 1 ] );

if (my_rank_sm < size_sm-1) printf("right neighbor’s leftmost value = %lf \n",

base_ptr_right[ 0 ] );

base_ptr_left base_ptr_right

Thanks to Steffen Weise (TU Freiberg) for testing and correcting the example codes.
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Other technical aspects with 
MPI_WIN_ALLOCATE_SHARED
Caution: On some systems 

• the number of shared memory windows, and 

• the total size of shared memory windows

may be limited.

Some OS systems may provide options, e.g.,

• at job launch, or

• MPI process start,

to enlarge restricting defaults.

If MPI shared memory support is based on POSIX shared memory:

• Shared memory windows are located in memory-mapped /dev/shm

• Default:  25% or 50% of the physical memory, but a maximum of ~2043 windows!

• Root may change size with:  mount  –o  remount,size=6G  /dev/shm .

Cray XT/XE/XC (XPMEM):  No limits.

On a system without virtual memory (like CNK on BG/Q), you have to reserve a chunk 
of address space when the node is booted (default is 64 MB). 

Thanks to Jeff Hammond and Jed Brown (ANL), Brian W Barrett (SANDIA), and Steffen Weise (TU Freiberg), 
for input and discussion.

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming

Another restriction in a 
low-quality MPI:
MPI_COMM_SPLIT_TYPE 
may return always 
MPI_COMM_SELF

Due to default limit 
of context IDs

in mpich
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Splitting the communicator without
MPI_COMM_SPLIT_TYPE

Alternative, if you want to group based on a fixed amount size_sm of shared memory 
cores in comm_all:

– Based on sequential ranks in comm_all

– Pro: comm_sm can be restricted to ccNUMA locality domains

– Con: MPI does not guarantee MPI_WIN_ALLOCATE_SHARED() on whole SMP node
(MPI_COMM_SPLIT_TYPE() may return MPI_COMM_SELF or partial SMP node)

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming

0     1     2     3        4     5     6     7       8     9   10   11     12   13   14   15     … comm_all

0     1     2     3     
comm_sm

0     1     2     3     
comm_sm

0     1     2     3     
comm_sm

0     1     2     3     
comm_sm

0     1     2     3     
comm_sm

MPI_Comm_rank (comm_all, &my_rank);   MPI_Comm_group (comm_all, &group_all);

ranges[0][0] = (my_rank / size_sm) * size_sm; ranges[0][1] = ranges[0][0]+size_sm–1;   ranges[0][2] = 1;

MPI_Group_range_incl (group_all, 1, ranges, &group_sm);

MPI_Comm_create (comm_all, group_sm,  &comm_sm);

MPI_Win_allocate_shared (…);

e.g., ranges[0][]={4,7,1}

To guarantee shared memory,
one may add an additional

MPI_Comm_split_type (comm_sm, 
MPI_COMM_TYPE_SHARED, 0, 

MPI_INFO_NULL,  
&comm_sm_really);
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Hybrid Parallel Programming

Pure OpenMP (on the cluster)

• Distributed shared virtual memory system needed

• Must support clusters of SMP nodes, e.g.,

– Shared memory parallel inside of SMP nodes

– Communication of modified parts of pages
at OpenMP flush  (part of each OpenMP barrier)

OpenMP only
distributed virtual 
shared memory

i.e., the OpenMP memory and parallelization model
is prepared for clusters! 

by rule of thumb:

Communication 
may be

10 times slower
than with MPI
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Hybrid Parallel Programming

Outline

• Introduction  /  Motivation
• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP
– The Multi-Zone NAS Parallel Benchmarks

– For each application we discuss:

• Benchmark implementations based on different strategies and programming paradigms

• Performance results and analysis on different hardware architectures

– Compilation and Execution Summary

Gabriele Jost (Supersmith, Maximum Performance Software)

• Hybrid programming & accelerators
• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities: Application categories that can benefit from hybrid paralleli.
• Other options on clusters of SMP nodes
• Summary
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The Multi-Zone NAS Parallel Benchmarks

Hybrid Parallel Programming

OpenMP

Call MPI 

MPI 
Processes

sequential

MPI/OpenMP

OpenMP
data copy+ 

sync.
exchange

boundaries

sequentialsequentialTime step

OpenMPOpenMPintra-zones

OpenMP
MLP 

Processes
inter-zones

Nested 
OpenMP

MLP

• Multi-zone versions of the NAS Parallel Benchmarks 
LU,SP, and BT

• Two hybrid sample implementations

• Load balance heuristics part of sample codes

• www.nas.nasa.gov/Resources/Software/software.html
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MPI/OpenMP BT-MZ

call omp_set_numthreads (weight)

do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call zsolve(u,rsd,…)

end if

end do

end do

...

Hybrid Parallel Programming

call mpi_send/recv

subroutine zsolve(u, rsd,…)

...

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5             

u(m,i,j,k)=

dt*rsd(m,i,j,k-1)

end do

end do

end do

!$OMP END DO NOWAIT

end do

...

!$OMP END PARALLEL
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MPI/OpenMP LU-MZ

call omp_set_numthreads (weight)

do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call ssor 

end if

end do

end do

...

Hybrid Parallel Programming
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Pipelined Thread Execution in SSOR

subroutine  ssor

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

call sync1 ()

do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5

rsd(m,i,j,k)=

dt*rsd(m,i,j,k-1) + …

end do

end do

end do

!$OMP END DO nowait

end do

call sync2 ()
...

!$OMP END PARALLEL
...

Hybrid Parallel Programming

subbroutine sync1

…neigh = iam -1

do while (isync(neigh) .eq. 0)

!$OMP FLUSH(isync)

end do

isync(neigh) = 0

!$OMP FLUSH(isync)

…

subroutine sync2

…

neigh = iam -1

do while (isync(neigh) .eq. 1)

!$OMP FLUSH(isync)

end do

isync(neigh) = 1

!$OMP FLUSH(isync)
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Golden Rule for ccNUMA: “First touch”

c------------------------------------------------------------------

---

c      do one time step to touch all data 

c------------------------------------------------------------------

---

do iz = 1, proc_num_zones

zone = proc_zone_id(iz)

call adi(rho_i(start1(iz)), us(start1(iz)),

$            vs(start1(iz)), ws(start1(iz)

…..

$ end do

do iz = 1, proc_num_zones

zone = proc_zone_id(iz)

call initialize(u(start5(iz)),…

$ end do

Hybrid Parallel Programming

• A memory page gets mapped into the local memory of the processor that first 
touches it!

• "touch" means "write", not "allocate"

All benchmarks use first 
touch policy to achieve 
good memory placement!
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Benchmark Characteristics

• Aggregate sizes:
– Class D: 1632 x 1216 x 34 grid points
– Class E: 4224 x 3456 x 92 grid points

• BT-MZ: (Block tridiagonal simulated CFD application)
– Alternative Directions Implicit (ADI) method
– #Zones: 1024 (D), 4096 (E)
– Size of the zones varies widely:

• large/small about 20
• requires multi-level parallelism to achieve a good load-balance

• LU-MZ: (LU decomposition simulated CFD application)
– SSOR method (2D pipelined method)
– #Zones: 16 (all Classes)
– Size of the zones identical:

• no load-balancing required
• limited parallelism on outer level

• SP-MZ: (Scalar Pentadiagonal simulated CFD application)
– #Zones: 1024 (D), 4096 (E)
– Size of zones identical

• no load-balancing required
Hybrid Parallel Programming

Load-balanced on 
MPI level: Pure MPI 
should perform best

Pure MPI: Load-
balancing problems!

Good candidate for 
MPI+OpenMP

Limitted MPI 
Parallelism:

� MPI+OpenMP 
increases Parallelism

Expectations:
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Hybrid code on cc-NUMA architectures

• OpenMP: 

– Support only per MPI process

– Version 3.1 has support for binding of threads via OMP_PROC_BIND 
environment variable.

– Under consideration for Version 4.0: OMP_PROC_SET or OMP_LIST 
to restrict the execution to a subset of the machine; OMP_AFFINITY to 
influence how the threads are distributed and bound on the machine 

– Version 4.0 announced at SC12
• MPI:

– Initially not designed for NUMA architectures or mixing of threads and 
processes, MPI-2 supports threads in MPI

– API does not provide support for memory/thread placement
• Vendor specific APIs to control thread and memory placement:

– Environment variables

– System commands like numactl,taskset,dplace,omplace etc

� http://www.halobates.de/numaapi3.pdf

� More in “How-to’s”

Hybrid Parallel Programming
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Dell Linux Cluster Lonestar 

Hybrid Parallel Programming

• Located at the Texas Advanced Computing Center (TACC), University of Texas 
at Austin (http://www.tacc.utexas.edu)

• 1888 nodes, 2 Xeon Intel 6-Core 64-bit Westmere processors, 3.33 GHz, 24 
GB memory per node, Peak Performance 160 Gflops per node, 3 channels 
from each processor's memory controller to 3 DDR3 ECC DIMMS,  1333 MHz, 

• Processor interconnect, QPI,  6.4GT/s

• Node Interconnect: InfiniBand Mellanox Switches, fat-tree topology, 40Gbit/sec 
point-to-point bandwidth

• More details: http://www.tacc.utexas.edu/user-services/user-guides/lonestar-
user-guide

• Compiling the benchmarks:

• ifort 11.1, Options: -O3 –ipo –openmp –mcmodel=medium

• Running the benchmarks:

• MVAPICH 2

• setenv OMP_NUM_THREADS  …

• ibrun tacc_affinity ./bt-mz.x
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NUMA Control (numactl) – Example run script

Hybrid Parallel Programming

#!/bin/csh
#$  -cwd
#$  -j y
#$  -q systest
#$  -pe  12way  24
#$  -V
#$  -l  h_rt=00:10:00
setenv OMP_NUM_THREADS 1
setenv MY_NSLOTS 16
ibrun tacc_affinity ./bin/sp-mz.D.

Run 12 MPI processes per node, 
allocate 24 cores (2nodes) alltogether

1 thread per MPI process

Only use 16 of the 24 
cores for MPI.
NOTE: 
8 cores unused!!!

numactl script for 
process/thread placementCommand to 

run mpi job
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NUMA Operations

Hybrid Parallel Programming

cmd option arguments description 

Socket Affinity numactl -c {0,1,2,3} 

Only execute 
process on cores 
of this (these) 
socket(s). 

Memory Policy numactl -l {no argument} 
Allocate on 
current socket. 

Memory Policy numactl -i {0,1,2,3} 
Allocate round 
robin (interleave) 
on these sockets. 

Memory Policy numactl --preferred=
{0,1,2,3}
select only one 

Allocate on this 
socket; fallback 
to any other if full 
. 

Memory Policy numactl -m {0,1,2,3} 
Only allocate on 
this (these) 
socket(s). 

Core Affinity numactl -C 

{0,1,2,3,
4,5,6,7,
8,9,10,11,
12,13,14,15} 

Only execute 
process on this 
(these) Core(s).
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Example numactl script

Hybrid Parallel Programming

myway=`echo $PE | sed s/way//`

export MV2_USE_AFFINITY=0

export MV2_ENABLE_AFFINITY=0

my_rank=$PMI_RANK 

local_rank=$(( my_rank % myway ))

if [ $myway -eq 12 ]; then

numnode=$(( local_rank / 6 ))

fi

exec numactl -c $numnode -m $numnode $*
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Dell Linux Cluster Lonestar Topology

Hybrid Parallel Programming
Slide 40 / 175



Rabenseifner, Hager, Jost

SUPERsmith

Dell Linux Cluster Lonestar Topology

Hybrid Parallel Programming

CPU type: Intel Core 

Westmere processor 

***************************

*********

Hardware Thread Topology

***************************

*********

Sockets:                2 

Cores per socket:       6 

Threads per core:       1

---------------------------------

Socket 0: ( 1 3 5 7 9 11 )

Socket 1: ( 0 2 4 6 8 10 )

---------------------------------

Careful!
Numbering scheme of 

cores is system dependent
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Hybrid Parallel Programming

No idle cores

64 
nodes

On
128 nodes

On 
256 nodes

On
512 
nodes

On 
1024 
nodes

BT-MZ 
improves 
using 
hybrid as 
expected 
due to 
better load 
balance

Unexpected: 
SP-MZ 
improves in 
some cases 
using hybrid 
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Pitfall (1): Running 2 threads on the same core

Hybrid Parallel Programming

09/26/07, Author:
Gabriele Jost

Running NPB BT-MZ Class D 128 MPI Procs,  12 threads each, 1 MPI per node (1way)

Pinning A:

exec numactl –c 0  -m 0 $*

Running 128 MPI Procs, 12 threads each

Pinning B:

exec numactl –c 0,1 -m 0,1 $*

Only use cores and memory on socket 0,
12 threads on 6 cores

Use cores and memory on 2 sockets
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Pitfall (2): Cause remote memory access

Hybrid Parallel Programming

09/26/07, Author:
Gabriele Jost

Running NPB BT-MZ Class D 128 MPI Procs,  6 threads each 2 MPI per node

Pinning A:

if [ $localrank == 0 ]; then

exec numactl --physcpubind=0,1,2,3,4,5 -m 0 $*

elif [ $localrank == 1 ]; then

exec numactl --physcpubind=6,7,8,9,10,11 -m 1 $*

fi

Running 128 MPI Procs, 6 threads each

Pinning B:

if [ $localrank == 0 ]; then

exec numactl --physcpubind=0,2,4,6,8,10 -m 0 $*

elif [ $localrank == 1 ]; then

exec numactl –physcpubind=1,3,5,7,9,11 -m 1 $*

fi

Half of the threads 
access remote memory 

600 
Gflops

900 
Gflops

900 
Gflops

Only local memory 
access
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LU-MZ Class D  Scalability on Lonestar

Hybrid Parallel Programming

• LU-MZ significantly  benefits from hybrid mode:

- Pure MPI limited to 16 cores, due to #zones = 16

• Decrease of resource contention large contribution to improvement

G
F

lo
p
s

idle cores
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Cray XE6 Hermit

Hybrid Parallel Programming

-------------------------------------------------------------

CPU type:       AMD Interlagos processor 

*************************************************************

Hardware Thread Topology

*************************************************************

Sockets:         2 

Cores per socket:       16 

Threads per core:       1 

-------------------------------------------------------------Socket 0:

+-----------------------------------------------------------------------------------------------------------------------------------------------+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| |   0  | |   1  | |   2  | |   3  | |   4  | |   5  | |   6  | |   7  | |   8  | |   9  | |  10  | |  11  | |  12  | |  13 | |  14  | |  15  | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB     | |      2MB      | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ |

| |                                 6MB                                 | |                                 6MB              | |

| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ |

• Located at HLRS Stuttgart, Germany (https://wickie.hlrs.de/platforms/index.php/Cray_XE6)

• 3552 compute nodes 113.664 cores

• Two AMD 6276 Interlagos processors with 16 cores each, running at 2.3 GHz (TurboCore 3.3GHz) per 
node 

• Around 1 Pflop theoretical peak performance 

• 32 GB of main memory available per node

• 32-way shared memory system

• High-bandwidth interconnect using Cray Gemini communication chips

Slide 46 / 175



Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

32K 
cores

16K 
cores8K 

cores

Expected:
BT-MZ benefits from hybrid 
approach:
- high number of MPI processes 
yields bad workload distribution
-Best MPIxOMP combination 
depends on problem size
Expected:
-Both benchmarks benefit by 
increasing parallelism
Unexpected:
SP-MZ improves when reducing 
number of MPI processes
BT-MZ  1024x32 unexpected low 
performance   

Cray XE6 Hermit Scalability, continued
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Cray XE6:  CrayPat Performance Analysis

• module load xt-craypat

• Compilation:

� ftn  –fastsse –r8  –mp[= trace ]

• Instrument:

� pat_build  –w  –g  mpi,omp  bt.exe  bt.exe.pat

• Execution :

� (export  PAT_RT_HWPC  {0,1,2,..})

� export  OMP_NUM_THREADS  4

� aprun  –n  NPROCS –d  4  ./bt.exe.pat

• Generate report:

� pat_report  –O 
load_balance,thread_times,program_time,mpi_callers  –O 
profile_pe.th  $1

Hybrid Parallel Programming

-d depth Specifies 
the number of CPUs 
for each PE and its 
threads.
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BT-MZ 32x4 Function Profile

Hybrid Parallel Programming
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BT-MZ Load-Balance 32x4 vs 128x1

Hybrid Parallel Programming

bt-mz-C.32x4

bt-mz-C.128x1

• maximum, median, minimum PE are shown

• bt-mz.C.128x1 shows large imbalance in User 
and MPI time

• bt-mz.C.32x4 shows well balanced times
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IBM Power 6

• Results obtained by the courtesy of the HPCMO Program and the 
Engineer Research and Development Center Major Shared 
Resource Center, Vicksburg, MS (http://www.erdc.hpc.mil/index)

• The IBM Power 6 System is located at 
(http://www.navo.hpc.mil/davinci_about.html)

• 150 Compute Nodes

• 32   4.7GHz Power6 Cores per Node (4800 cores total)

• 64 GBytes of dedicated memory per node

• QLOGOC Infiniband DDR interconnect

• IBM MPI: MPI 1.2 + MPI-IO

� mpxlf_r  –O4  –qarch=pwr6  –qtune=pwr6  –qsmp=omp 

• Execution:

� poe  launch  $PBS_O_WORKDIR./sp.C.16x4.exe

Hybrid Parallel Programming

Flag was essential to achieve full 

compiler optimization in 

presence of OMP directives!
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NPB-MZ Class D on IBM Power 6:
Exploiting SMT for 2048 Core Results

Hybrid Parallel Programming

• Results for 128-2048 
cores

• Only 1024 cores were 
available for the 
experiments

• BT-MZ and SP-MZ 
show benefit from 
Simultaneous 
Multithreading (SMT): 
2048 threads 
on 1024 cores

128 cores

256 cores

1024 cores

512 cores

2
0

4
8

x1

Doubling the number of threads 
through hyperthreading (SMT):
#!/bin/csh

#PBS -l select=32:ncpus=64:

mpiprocs=NP:ompthreads=NT

2048 

“cores”

best of category
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MPI+OpenMP memory usage of NPB-MZ

Hybrid Parallel Programming

Using more OpenMP threads reduces the memory usage substantially, 
up to five times on Hopper Cray XT5 (eight-core nodes).

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger,  Alice Koniges, Nicholas J. Wright:
Analyzing the Effect of Different Programming Models Upon Performance and Memory Usage on Cray 

XT5 Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Always same 
number of 

cores
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Conclusions:

Hybrid Parallel Programming

• BT-MZ:

� Inherent workload imbalance on MPI level

� #nprocs = #nzones yields poor performance

� #nprocs < #zones => better workload balance, but decreases parallelism

� Hybrid MPI/OpenMP yields better load-balance, 
maintains amount of parallelism

• SP-MZ:

� No workload imbalance on MPI level, pure MPI should perform best

� MPI/OpenMP outperforms MPI on some platforms due contention to 
network access within a node

• LU-MZ:

� Hybrid MPI/OpenMP increases level of parallelism

• All Benchmarks:

• Decrease network pressure

• Lower memory requirements 

• Good process/thread affinity essential
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Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

Georg Hager,  Regionales Rechenzentrum Erlangen (RRZE)

• Mismatch Problems

• Application categories that can benefit from hybrid parallelization

• Other options on clusters of SMP nodes

• Summary

Hybrid Parallel Programming
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Hybrid Programming How-To: Overview

• A practical introduction to hybrid programming

– How to compile and link

– Getting a hybrid program to run on a cluster

• Running (hybrid) programs efficiently on multi-core clusters

– Affinity issues
• ccNUMA

• Bandwidth bottlenecks

– MPI and OpenMP on real hardware: Intra-node anisotropy
• MPI communication characteristics

• OpenMP loop startup overhead

– Thread/process binding

Hybrid Parallel Programming
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How to compile, link and run

• Use appropriate OpenMP compiler switch (-openmp, -fopenmp, 
-mp, -qsmp=openmp, …) and MPI compiler script (if available)

• Link with MPI library

– Usually wrapped in MPI compiler script

– If required, specify to link against thread-safe MPI library
• Often automatic when OpenMP or auto-parallelization is switched on

• Running the code

– Highly non-portable! Consult system docs! (if available…)

– If you are on your own, consider the following points

– Make sure OMP_NUM_THREADS etc. is available on all MPI 
processes

• Start “env VAR=VALUE … <YOUR BINARY>” instead of your binary alone

• Use Pete Wyckoff’s mpiexec MPI launcher (see below):
http://www.osc.edu/~pw/mpiexec

– Figure out how to start fewer MPI processes than cores on your 
nodes

Hybrid Parallel Programming
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Examples for compilation and execution

Hybrid Parallel Programming

• Cray XE6 (4 NUMA domains w/ 8 cores each):

• ftn -h omp ...

• export OMP_NUM_THREADS=8

• aprun -n nprocs -N nprocs_per_node \

-d $OMP_NUM_THREADS a.out

• Intel Sandy Bridge (8-core 2-socket) cluster, Intel MPI/OpenMP

• mpiifort -openmp ...

• OMP_NUM_THREADS=8 mpirun –ppn 2 –np 4 \

-env I_MPI_PIN_DOMAIN socket \

-env KMP_AFFINITY scatter ./a.out
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Interlude: Advantages of mpiexec 
or similar mechanisms

• Startup mechanism should use a resource manager interface to 
spawn MPI processes on nodes

– As opposed to starting remote processes with ssh/rsh:
• Correct CPU time accounting in batch system

• Faster startup 

• Safe process termination

• Allowing password-less user login not required between nodes 

– Interfaces directly with batch system to determine number of 
procs

• Provisions for starting fewer processes per node than available 
cores

– Required for hybrid programming

– E.g., “-pernode” and “-npernode #” options – does not 

require messing around with nodefiles

Hybrid Parallel Programming
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Running the code
More examples (with mpiexec)

• Example for using mpiexec on a dual-socket quad-core cluster:

$ export OMP_NUM_THREADS=8

$ mpiexec -pernode ./a.out

• Same but 2 MPI processes per node:

$ export OMP_NUM_THREADS=4

$ mpiexec -npernode 2 ./a.out

• Pure MPI:

$ export OMP_NUM_THREADS=1 # or nothing if serial code

$ mpiexec ./a.out

Hybrid Parallel Programming

Where do the 
threads run? 
� see later!
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Running the code efficiently?

• Symmetric, UMA-type compute nodes have become rare animals

– NEC SX

– Intel 1-socket (Xeon 12XX) – rare in cluster environments

– Hitachi SR8000, IBM SP2, single-core multi-socket Intel Xeon… 
(all dead)

• Instead, systems have become “non-isotropic” on the node level

– ccNUMA (AMD Opteron, SGI Altix, 
IBM Power7, Intel Sandy/Ivy Bridge)

– Multi-core, multi-socket
• Shared vs. separate caches

• Multi-chip vs. single-chip

• Separate/shared buses   

Hybrid Parallel Programming
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Issues for running code efficiently 
on “non-isotropic” nodes

• ccNUMA locality effects

– Penalties for access across locality domains

– Impact of contention

– Consequences of file I/O for page placement

– Placement of MPI buffers

• Multi-core / multi-socket anisotropy effects

– Bandwidth bottlenecks, shared caches

– Intra-node MPI performance
• Core ↔ core  vs.  socket ↔ socket

– OpenMP loop overhead depends on mutual position of threads 
in team

Hybrid Parallel Programming
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A short introduction to ccNUMA

• ccNUMA:

– whole memory is transparently accessible by all processors

– but physically distributed

– with varying bandwidth and latency

– and potential contention (shared memory paths)

Hybrid Parallel Programming

C C C C

M M

C C C C

M M
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How much bandwidth does non-local access cost?

• Example: AMD Magny Cours 4-socket system (8 chips, 4 sockets)
STREAM Triad bandwidth measurements

Hybrid Parallel Programming

0

1

2

3

6

7

4

5

Slide 64 / 175



Rabenseifner, Hager, Jost

SUPERsmith

How much bandwidth does non-local access cost?

• Example: Intel Sandy Bridge 2-socket system (2 chips, 2 sockets)
STREAM Triad bandwidth measurements

Hybrid Parallel Programming

0 1

General rule:

The more ccNUMA domains, the 
larger the non-local access penalty
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ccNUMA Memory Locality Problems

• Locality of reference is key to scalable performance on ccNUMA

– Less of a problem with pure MPI, but see below

• What factors can destroy locality?

• MPI programming:

– processes lose their association with the CPU the mapping took 
place on originally

– OS kernel tries to maintain strong affinity, but sometimes fails

• Shared Memory Programming (OpenMP, hybrid):

– threads losing association with the CPU the mapping took place on 
originally

– improper initialization of distributed data

– Lots of extra threads are running on a node, especially for hybrid

• All cases: 

– Other agents (e.g., OS kernel) may fill memory with data that 
prevents optimal placement of user data

Hybrid Parallel Programming
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Avoiding locality problems

• How can we make sure that memory ends up where it is close to 
the CPU that uses it?

– See the following slides

• How can we make sure that it stays that way throughout program 
execution?

– See end of section

Hybrid Parallel Programming
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Solving Memory Locality Problems: First Touch

• "Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the 
processor that first touches it!

– Except if there is not enough local memory available

– this might be a problem, see later

– Some OSs allow to influence placement in more direct ways
• cf. libnuma (Linux), MPO (Solaris), …

• Caveat: "touch" means "write", not "allocate"

• Example: 

double *huge = (double*)malloc(N*sizeof(double));

// memory not mapped yet

for(i=0; i<N; i++) // or i+=PAGE_SIZE

huge[i] = 0.0; // mapping takes place here!

• It is sufficient to touch a single item to map the entire page

Hybrid Parallel Programming
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Most simple case: explicit initialization 

Hybrid Parallel Programming

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel 

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

B(i) = function ( A(i) )

end do

!$OMP end do

!$OMP end parallel
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ccNUMA problems beyond first touch

• OS uses part of main memory for
disk buffer (FS) cache

– If FS cache fills part of memory, 
apps will probably allocate from 
foreign domains

– � non-local access!

– Locality problem even on hybrid 
and pure MPI with “asymmetric” 
file I/O, i.e. if not all MPI processes
perform I/O

• Remedies

– Drop FS cache pages after user job has run (admin’s job)
• Only prevents cross-job buffer cache “heritage”

– “Sweeper” code (run by user)

– Flush buffer cache after I/O if necessary (“sync” is not 
sufficient!)

Hybrid Parallel Programming

P0
C

P1
C

C C

MI

P2
C

P3
C

C C

MI

BC

data(3)

BC

data(3)
d

a
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ccNUMA problems beyond first touch:
Buffer cache

Real-world example: ccNUMA and the Linux buffer cache

Benchmark:

1. Write a file of some size
from LD0 to disk

2. Perform bandwidth
benchmark using
all cores in LD0 and
maximum memory
installed in LD0

Result: By default,
Buffer cache is given 
priority over local 
page placement

� restrict to local 
domain if possible!

Hybrid Parallel Programming

Cray: aprun -ss
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Intra-node MPI characteristics: IMB Ping-Pong benchmark

• Code (to be run on 2 cores):

• Intranode (1S):   aprun -n 2 -cc 0,1 ./a.out

• Intranode (2S):   aprun –n 2 -cc 0,16 ./a.out

• Internode:   aprun –n 2 –N 1 ./a.out
Hybrid Parallel Programming

wc = MPI_WTIME()

do i=1,NREPEAT

if(rank.eq.0) then

MPI_SEND(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD,ierr)

MPI_RECV(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD, &

status,ierr)

else

MPI_RECV(…)

MPI_SEND(…)

endif

enddo

wc = MPI_WTIME() - wc C
ra

y 
X

E
6
 n

o
d
e
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IMB Ping-Pong: Latency
Intra-node vs. Inter-node on Cray XE6
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Hybrid Parallel Programming

Affinity matters!
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IMB Ping-Pong: Bandwidth Characteristics 
Intra-node vs. Inter-node on Cray XE6

Hybrid Parallel Programming

Between two cores of 
one socket

Between two nodes 
via InfiniBand

Between two sockets 
of one node
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The throughput-parallel vector triad benchmark
Microbenchmarking for architectural exploration

• Every core runs its own, independent triad benchmark

• � pure hardware probing, no impact from OpenMP overhead

Hybrid Parallel Programming

double precision, dimension(:), allocatable :: A,B,C,D

!$OMP PARALLEL private(i,j,A,B,C,D)

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

do j=1,NITER

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

!$OMP END PARALLEL
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Throughput vector triad on Sandy Bridge socket (3 GHz)

Hybrid Parallel Programming

Saturation effect
in memory

Scalable BW in 
L1, L2, L3 cache
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The OpenMP-parallel vector triad benchmark
Visualizing OpenMP overhead

• OpenMP work sharing in the benchmark loop

Hybrid Parallel Programming

double precision, dimension(:), allocatable :: A,B,C,D

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

!$OMP PARALLEL private(i,j)

do j=1,NITER

!$OMP DO

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

!$OMP END DO

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

!$OMP END PARALLEL

Implicit barrier
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OpenMP vector triad on Sandy Bridge socket (3 GHz)

Hybrid Parallel Programming

sync overhead 
grows with # of 
threads

bandwidth 
scalability 
across memory 
interfaces
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Thread synchronization overhead on SandyBridge-EP 
Direct measurement of barrier overhead in CPU cycles

Hybrid Parallel Programming

2 Threads Intel  13.1.0 GCC 4.7.0 GCC 4.6.1

Shared L3 384 5242 4616

SMT threads 2509 3726 3399

Other socket 1375 5959 4909

Gcc still not very competitive

Intel compiler

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Socket 1497 14546 14418

Node 3401 34667 29788

Node +SMT 6881 59038 58898
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Thread/Process Affinity (“Pinning”)

• Highly OS-dependent system calls

– But available on all systems

Linux: sched_setaffinity(), PLPA � hwloc
Windows: SetThreadAffinityMask()
…

• Support for “semi-automatic” pinning in some 
compilers/environments

– Intel compilers > V9.1 (KMP_AFFINITY environment variable)

– Pathscale

– Generic Linux: taskset, numactl, likwid-pin (see below)

– OpenMP 4.0: Support for affinity

• Affinity awareness in MPI libraries

– Cray MPI

– OpenMPI

– Intel MPI

– …
Hybrid Parallel Programming
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How do we figure out the topology?

• … and how do we enforce the mapping without changing the code?

• Compilers and MPI libs may still give you ways to do that

• But LIKWID supports all sorts of combinations:

Like
I
Knew
What
I’m
Doing

• Open source tool collection (developed at RRZE):

http://code.google.com/p/likwid

Hybrid Parallel Programming
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Likwid Tool Suite

• Command line tools for Linux:

– works with standard linux >= 2.6 kernel

– supports Intel and AMD CPUs

– Supports all compilers whose OpenMP implementation is based on 
pthreads

• Current tools:

– likwid-topology: Print thread and cache topology
(similar to lstopo from the hwloc package)

– likwid-pin: Pin threaded application without touching code

– likwid-perfctr: Measure performance counters

– likwid-perfscope: Performance oscilloscope w/ real-time display

– likwid-powermeter: Current power consumption of chip (alpha stage)

– likwid-features: View and enable/disable hardware prefetchers

– likwid-bench: Low-level bandwidth benchmark generator tool

– likwid-mpirun: mpirun wrapper script for easy LIKWID integration

Hybrid Parallel Programming
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likwid-topology – Topology information

• Based on cpuid information

• Functionality:

– Measured clock frequency

– Thread topology

– Cache topology

– Cache parameters (-c command line switch)

– ASCII art output (-g command line switch)

• Currently supported:

– Intel Core 2 (45nm + 65 nm)

– Intel Nehalem, Westmere, Sandy Bridge

– AMD Magny Cours, Interlagos

– Intel Xeon Phi in beta stage

Hybrid Parallel Programming
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Output of likwid-topology

Hybrid Parallel Programming

CPU name:       Intel Core i7 processor

CPU clock:      2666683826 Hz

*************************************************************

Hardware Thread Topology

*************************************************************

Sockets:                2

Cores per socket:       4

Threads per core:       2

-------------------------------------------------------------

HWThread        Thread          Core            Socket

0               0               0               0

1               1               0               0

2               0               1               0

3               1               1               0

4               0               2               0

5               1               2               0

6               0               3               0

7               1               3               0

8               0               0               1

9               1               0               1

10              0               1               1

11              1               1               1

12              0               2               1

13              1               2               1

14              0               3               1

15              1               3               1

-------------------------------------------------------------
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likwid-topology continued

• … and also try the ultra-cool -g option!

Hybrid Parallel Programming

Socket 0: ( 0 1 2 3 4 5 6 7 )

Socket 1: ( 8 9 10 11 12 13 14 15 )

-------------------------------------------------------------

*************************************************************

Cache Topology

*************************************************************

Level:   1

Size:    32 kB

Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )

-------------------------------------------------------------

Level:   2

Size:    256 kB

Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )

-------------------------------------------------------------

Level:   3

Size:    8 MB

Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 )

-------------------------------------------------------------
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likwid-pin

• Inspired and based on ptoverride (Michael Meier, RRZE) and taskset

• Pins process and threads to specific cores without touching code

• Directly supports pthreads, gcc OpenMP, Intel OpenMP

• Allows user to specify skip mask (i.e., supports many different compiler/MPI 

combinations)

• Can also be used as replacement for taskset

• Uses logical (contiguous) core numbering when running inside a restricted 

set of cores

• Supports logical core numbering inside node, socket, core

• Usage examples:

– env OMP_NUM_THREADS=6 likwid-pin -c 0,1,2,4-6 ./myApp parameters 

– env OMP_NUM_THREADS=6 likwid-pin –c S0:0-2@S1:0-2 ./myApp

Hybrid Parallel Programming
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Hybrid Parallel Programming

Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning

no pinning

Pinning (round-robin across 
sockets, physical cores first)
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Likwid-pin
Example: Intel OpenMP

• Running the STREAM benchmark with likwid-pin:

Hybrid Parallel Programming

$ export OMP_NUM_THREADS=4  

$ likwid-pin -c 0,1,4,5 ./stream

[likwid-pin] Main PID -> core 0 - OK

----------------------------------------------

Double precision appears to have 16 digits of accuracy

Assuming 8 bytes per DOUBLE PRECISION word

----------------------------------------------

[... some STREAM output omitted ...]

The *best* time for each test is used

*EXCLUDING* the first and last iterations

[pthread wrapper] PIN_MASK: 0->1  1->4  2->5  

[pthread wrapper] SKIP MASK: 0x1

[pthread wrapper 0] Notice: Using libpthread.so.0

threadid 1073809728 -> SKIP 

[pthread wrapper 1] Notice: Using libpthread.so.0 

threadid 1078008128 -> core 1 - OK

[pthread wrapper 2] Notice: Using libpthread.so.0 

threadid 1082206528 -> core 4 - OK

[pthread wrapper 3] Notice: Using libpthread.so.0 

threadid 1086404928 -> core 5 - OK

[... rest of STREAM output omitted ...]

Skip shepherd 
thread

Main PID always 
pinned

Pin all spawned 
threads in turn

Slide 88 / 175



Rabenseifner, Hager, Jost

SUPERsmith

Topology (“mapping”) choices with MPI+OpenMP:
More examples using Intel MPI+compiler & home-grown mpirun

One MPI process per 

node

One MPI process per 

socket

OpenMP threads 

pinned “round robin” 

across cores 

in node

Two MPI processes 

per socket
Hybrid Parallel Programming

env OMP_NUM_THREADS=8 mpirun -pernode \

likwid-pin -c 0-7 ./a.out 

env OMP_NUM_THREADS=4 mpirun -npernode 2 \

-pin "0,1,2,3_4,5,6,7" ./a.out 

env OMP_NUM_THREADS=4 mpirun -npernode 2 \

-pin "0,1,4,5_2,3,6,7" \

likwid-pin -c L:0,2,1,3 ./a.out 

env OMP_NUM_THREADS=2 mpirun -npernode 4 \

-pin "0,1_2,3_4,5_6,7" \

likwid-pin -c L:0,1 ./a.out 
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MPI/OpenMP hybrid “how-to”: Take-home messages

• Learn how to take control of hybrid execution!

• Always observe the topology dependence of

– Intranode MPI

– OpenMP overheads

– Saturation effects / scalability behavior with bandwidth-bound
code

• Enforce proper thread/process to core binding, using appropriate 
tools (whatever you use, but use SOMETHING)

• Multi-LD OpenMP processes on ccNUMA nodes require correct 
page placement

Hybrid Parallel Programming
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Hybrid Parallel Programming

Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Other options on clusters of SMP nodes

• Summary
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Hybrid Parallel Programming

Mismatch Problems

• None of the programming models
fits to the hierarchical hardware 
(cluster of SMP nodes)

• Several mismatch problems

� following slides

• Benefit through hybrid programming

� Opportunities, see next section

• Quantitative implications 

� depends on you application 

Examples: No.1 No.2

Benefit through hybrid (see next section) 30% 10%
Loss by mismatch problems –10% –25%

Total +20% –15%

In most 
cases: 
Both
categories!

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes
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The Topology Problem

Problem

– Application topology is mapped to the hardware topology

� communication topology and message sizes

� communication overhead

Partially independent of the programming model:

Simplifications:

Hybrid Parallel Programming

pure MPI hybrid MPI+OpenMP Hybrid MPI+MPI

SMP node: 
O(N3) data items per node

Cluster network: 
O(N2) neighbor communication per neighbor
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The Topology Problem, 
without inner halo communication

• Communication only through 
neighbor accesses between d ccNUMA domains

• Compare the ccNUMA communication
(s = communication size per domain)
(Example: d=8 ccNUMA domains)

– 1-dimensional data decomposition s ~ 2 ∗ � ∗ � = 2 ∗ �
�

– 3-dimensional data decomposition s ~ 6 ∗
�

�
∗
�

�
= 1.5 ∗ �

�

between the ccNUMA domains

hybrid MPI+OpenMP

Hybrid MPI+MPI

No real win!
Don’t care about dimensions within 

the SMP nodes!
Make your software simple!

Hybrid Parallel Programming
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The Topology Problem, 
with inner halo communication

With halo cells and halo communication between the cores: 

We ignore differences in core-to-core communication speed 
• within ccNUMA domain, and
• between ccNUMA domains of one SMP node

Example with c=32 cores per SMP node

– c=32 and 1-dimensional data decomposition:
s ~ 2 ∗ � ∗ � = 2 ∗ �

�

– c=32 and 3-dimensional data decomposition (4x4x2):

s ~ 2 ∗
�

�
∗
�

�
+

�

�
∗
�

�
+

�

�
∗
�

�
= 0.63 ∗ �

�

– In general:  win = s1−dim
s3−dim

=
c�

�

3

Hybrid Parallel Programming

pure MPI

Hybrid MPI+MPI

(s = communication size per core)

N

N

�

�

c=16, 32, 64, … � win= factor 2, 3, 5, … !    Real win? 
You may not care as long as your inner-node 

communication is below xx% !
Make your software simple !?

�

�

�

�
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Hybrid Parallel Programming

The Mapping Problem with mixed model

Several multi-threaded MPI 
process per SMP node:

Problem

– Where are your processes 
and threads really located?

Solutions:

– Depends on your platform,

– e.g., with numactl

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

MPI 

process

4 x multi-

threaded

MPI 

process

4 x multi-

threaded

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

Do we have this? … or that?

MPI 

pro-

cess

0

MPI 

pro-

cess

1

� Case study on 
Sun Constellation Cluster 

Ranger
with BT-MZ and SP-MZ

Further questions:

– Where is the NIC1) located?

– Which cores share caches?

1) NIC = Network Interface Card

hybrid MPI+OpenMP

Hybrid MPI+MPI

pure MPI
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Hybrid Parallel Programming

Unnecessary intra-node communication

Problem:

– If several MPI process on each SMP node
� unnecessary intra-node communication

Solution:

– MPI+OpenMP: Only one MPI process per SMP node

– MPI+MPI:         No halo-communication within an SMP node

Remarks:

– MPI communication within an SMP node: 2 copies
(user send buffer � shared memory � user recv buffer)

– MPI-3 shared memory halo commincation: 1 copy
(user send buffer � user recv buffer)

– MPI-3 with direct access to neighbor data: 0 copy

Mixed model
(several multi-threaded MPI 
processes per SMP node)

pure MPI

Hybrid MPI+MPI
(with halo communication)

pure MPI &
Mixed model

Hybrid MPI+MPI
(with halo communication)

Hybrid MPI+MPI
(with direct neighbor access)
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Hybrid Parallel Programming

Sleeping threads and network saturation 
with

Problem 1:
– Can the master thread 

saturate the network?
Solution:
– If not, use mixed model
– i.e., several MPI 

processes per SMP node

Problem 2:
– Sleeping threads are 

wasting CPU time
Solution:
– Overlapping of 

computation and 
communication

Problem 1&2 together:
– Producing more idle time 

through lousy bandwidth 
of master thread

for (iteration ….)

{

#pragma omp parallel 
numerical code

/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas 
in other SMP nodes)

MPI_Recv (halo data 
from the neighbors)

} /*end for loop

Masteronly
MPI only outside of 

parallel regions

Node Interconnect

Master
thread

Socket 1

SMP node SMP node

Socket 2

Master
thread

Socket 1

Socket 2

Master
thread

Master
thread

hybrid 
MPI+OpenMP
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Hybrid Parallel Programming

OpenMP:  Additional Overhead & Pitfalls

• Using OpenMP

� may prohibit compiler optimization

� may cause significant loss of computational performance

• Thread fork / join overhead

• On ccNUMA SMP nodes:

– Loss of performance due to missing memory page locality 
or missing first touch strategy

– E.g. with the masteronly scheme:

• One thread produces data

• Master thread sends the data with MPI

�data may be internally communicated from one memory to the other one

• Amdahl’s law for each level of parallelism

• Using MPI-parallel application libraries?  � Are they prepared for hybrid? 

• Using thread-local application libraries?  � Are they thread-safe? 

See, e.g., the necessary –O4 flag with 
mpxlf_r on IBM Power6 systems

hybrid 
MPI+OpenMP
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Hybrid Parallel Programming

MPI-3 shared memory programming

• Pros

– ISV and application libraries need not to be thread-safe

– No additional OpenMP overhead

– No OpenMP problems 

• Cons

– Library calls (MPI_WIN_ALLOCATE_SHARED) 
instead of SHARED / PRIVATE compiler directives

– No work-sharing directives
• Loop scheduling must be programmed by hand 

– No support for fine-grained or auto-balanced work-sharing
• As with OpenMP tasks, and dynamic or guided loop schedule

– Virtual addresses of a shared memory window may be different in 
each MPI process
� no binary pointers
� i.e., linked lists must be stored with offsets rather than pointers

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming
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Hybrid Parallel Programming

Parallel Programming Models on Hybrid Platforms

No overlap of 
Comm. + Comp.
MPI only outside of 

parallel regions
of the numerical 
application code

Overlapping
Comm. + Comp.

MPI communication by 
one or a few threads

while other threads are 
computing

pure MPI
one MPI 
process

on each core

hybrid MPI+OpenMP
MPI: inter-node 
communication

OpenMP: inside of each 
SMP node

OpenMP only

distributed virtual 
shared memory

Masteronly
MPI only outside
of parallel regions

Hybrid MPI+MPI
MPI for inter-node 

communication 
+ MPI-3.0 shared memory 

programming

Within shared 
memory nodes:
Halo updates 
through direct 

data copy

Within shared 
memory nodes:

No halo updates, 
direct access to 
neighbor data

new

new new

Funneled
MPI only 

on master-thread

Multiple
more than one thread 

may communicate

Funneled & 
Reserved

reserved thread 
for communication

Funneled 
with 

Full Load 
Balancing
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Hybrid Parallel Programming

Overlapping communication and computation

Three problems:

• the application problem:

– one must separate application into: 
• code that can run before the halo data is received

• code that needs halo data

�very hard to do !!!

• the thread-rank problem:

– comm. / comp. via
thread-rank

– cannot use
work-sharing directives

�loss of major
OpenMP support
(see next slide)

• the load balancing problem

if (my_thread_rank < 1) {

MPI_Send/Recv….

} else {

my_range = (high-low-1) / (num_threads-1) + 1;

my_low = low + (my_thread_rank+1)*my_range;

my_high=high+ (my_thread_rank+1+1)*my_range;

my_high = max(high, my_high)

for (i=my_low; i<my_high; i++) {

….

}

}

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing
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Experiment: Matrix-vector-multiply (MVM)

• Jacobi-Davidson-Solver 
on IBM SP Power3 nodes
with 16 CPUs per node

• funneled&reserved is 
always faster in this 
experiments

• Reason: 
Memory bandwidth 
is already saturated 
by 15 CPUs, see inset

• Inset: 
Speedup on 1 SMP node 
using different 
number of threads

funneled &
reserved

Masteronly

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures.
International Journal of High Performance Computing Applications, Vol. 17, No. 1, 2003, Sage Science Press .
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Overlapping: Using OpenMP tasks

Hybrid Parallel Programming

NEW OpenMP Tasking Model gives a new way to achieve more parallelism
form hybrid computation. 

Slides, courtesy of Alice Koniges, NERSC, LBNL 

Alice Koniges et al.:
Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.
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Case study:  Communication and Computation in 
Gyrokinetic Tokamak Simulation (GTS) shift routine

Hybrid Parallel Programming

Work on particle array (packing for sending, reordering, adding after 
sending) can be overlapped with data independent MPI 
communication using OpenMP tasks.
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GTS shift routine

Slides, courtesy of Alice Koniges, NERSC, LBNL 
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Overlapping can be achieved with OpenMP tasks (1st part)

Hybrid Parallel Programming

Overlapping MPI_Allreduce with particle work 

• Overlap: Master thread encounters (!$omp master) tasking statements and creates 
work for the thread team for deferred execution. MPI Allreduce call is immediately 
executed.

• MPI implementation has to support at least MPI_THREAD_FUNNELED

• Subdividing tasks into smaller chunks to allow better load balancing and scalability 

among threads.
Slides, courtesy of Alice Koniges, NERSC, LBNL 
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Overlapping can be achieved with OpenMP tasks (2nd part)

Hybrid Parallel Programming

Overlapping particle reordering

Overlapping remaining MPI_Sendrecv

Particle reordering of remaining 
particles (above) and adding sent 
particles into array (right)  & sending 
or receiving of shifted particles can 
be independently executed.

Slides, courtesy of Alice Koniges, NERSC, LBNL 
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OpenMP tasking version outperforms original shifter, 
especially in larger poloidal domains

Hybrid Parallel Programming

• Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI pro-
cess with varying domain decomposition and particles per cell on Franklin Cray XT4.

• MPI communication in the shift phase uses a toroidal MPI communicator 
(constantly 128).

• Large performance differences in the 256 MPI run compared to 2048 MPI run!

• Speed-Up is expected to be higher on larger GTS runs with hundreds of thousands 
CPUs since MPI communication is more expensive.

256 size run 2048 size run

Slides, courtesy of 
Alice Koniges, NERSC, LBNL 
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Hybrid Parallel Programming

Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid 
parallelization 

• Other options on clusters of SMP nodes

• Summary
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Nested Parallelism

• Example NPB: BT-MZ  (Block tridiagonal simulated CFD application)

– Outer loop: 

• limited number of zones  ���� limited parallelism

• zones with different workload ���� speedup <

– Inner loop:

• OpenMP parallelized (static schedule)

• Not suitable for distributed memory parallelization 

• Principles:

– Limited parallelism on outer level

– Additional inner level of parallelism

– Inner level not suitable for MPI

– Inner level may be suitable for static OpenMP worksharing 

Sum of workload of all zones 
Max workload of a zone
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Load-Balancing
(on same or different level of parallelism)

• OpenMP enables

– Cheap dynamic and guided load-balancing

– Just a parallelization option (clause on omp for / do directive)

– Without additional software effort

– Without explicit data movement

• On MPI level

– Dynamic load balancing requires 
moving of parts of the data structure through the network

– Significant runtime overhead

– Complicated software  /   therefore not implemented

• MPI & OpenMP

– Simple static load-balancing on MPI level, medium quality
dynamic or guided on OpenMP level cheap implementation

#pragma omp parallel for schedule(dynamic)
for (i=0; i<n; i++) {
/* poorly balanced iterations */ …

}
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Hybrid Parallel Programming

Memory consumption

• Shared nothing

– Heroic theory

– In practice: Some data is duplicated

• MPI & OpenMP
With n threads per MPI process:

– Duplicated data may be reduced by factor n
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Case study: MPI+OpenMP memory usage of NPB

Hybrid Parallel Programming

Using more 
OpenMP threads 
could reduce the 
memory usage 
substantially, 
up to five times on 
Hopper Cray XT5 
(eight-core nodes).

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger, 
Alice Koniges, Nicholas J. Wright:
Analyzing the Effect of Different Programming Models Upon 
Performance and Memory Usage on Cray XT5 Platorms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide, courtesy of 
Alice Koniges, NERSC, LBLN 

Always same 
number of cores
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How many threads per MPI process?

• SMP node = with m sockets (NUMA domains) and n cores/socket

• How many threads (i.e., cores) per MPI process?

– Too many threads per MPI process
� overlapping of MPI and computation may be necessary,
� some NICs unused? 

– Too few threads
� too much memory consumption (see previous slides)

• Optimum

– somewhere between 1 and m x n threads per MPI process,

– Typical optima:
• 1 MPI process per socket

• 2 MPI processes per socket

• Seldom:  1 MPI process per whole SMP node
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To overcome MPI scaling problems

compared to pure MPI
• Reduced number of MPI messages,

reduced aggregated message size

• MPI has a few scaling problems

– Handling of more than 10,000 MPI processes

– Irregular Collectives: MPI_....v(), e.g. MPI_Gatherv()

� Scaling applications should not use MPI_....v() routines

– MPI-2.1 Graph topology (MPI_Graph_create)

� MPI-2.2 MPI_Dist_graph_create_adjacent

– Creation of sub-communicators with MPI_Comm_create

� MPI-2.2 introduces a new scaling meaning of MPI_Comm_create

– … see P. Balaji, et al.: MPI on a Million Processors. Proceedings EuroPVM/MPI 2009.

• Hybrid programming reduces all these problems (due to a smaller number of processes)

Slide 115 / 175



Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Opportunities, if MPI speedup is limited due to 
algorithmic problems

• Algorithmic opportunities due to larger physical domains inside of 
each MPI process

� If multigrid algorithm only inside of MPI processes

� If separate preconditioning inside of MPI nodes and between 
MPI nodes

� If MPI domain decomposition is based on physical zones
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Summary: Opportunities of hybrid parallelization 
(MPI & OpenMP)

• Nested Parallelism 

� Outer loop with MPI  /  inner loop with OpenMP

• Load-Balancing

� Using OpenMP dynamic and guided worksharing

• Memory consumption

� Significantly reduction of replicated data on MPI level

• Reduced MPI scaling problems

� Significantly reduced number of MPI processes

• Opportunities, if MPI speedup is limited due to algorithmic problem

� Significantly reduced number of MPI processes
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Hybrid Parallel Programming

Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Other options on clusters of SMP nodes

– Multi-core aware Domain-Decomposition   (Rolf Rabenseifner)

– Remarks on MPI scalability / Cache Optimization / Cost-benefit /PGAS (R.R.)

– Hybrid programming and accelerators    (Gabriele Jost)

• Summary
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Multicore-aware
Hierarchical Cartesian DD
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Coordinate 1

z = Coordinate 2

Node coord.

coord. in SMP

Global coord.

Hybrid MPI+MPI

pure MPI

Major result:
New global communicator

with
• minimal node-to-node &

• optimal intra-node 
communication

Implementation hints on 
following (skipped) slide 
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Hierarchical Cartesian DD  (Step 1)

// Input: Original communicator: MPI_Comm comm_orig; (e.g. MPI_COMM_WORLD)

// Number of dimensions: int ndims = 3;

// Global periods: int periods_global[] = /*e.g.*/ {1,0,1};

MPI_Comm_size (comm_orig,  &size_global);

MPI_Comm_rank (comm_orig,  &myrank_orig);

// Establish a communicator on each SMP node:

MPI_Comm_split_type (comm_orig,  MPI_COMM_TYPE_SHARED,  0,  MPI_INFO_NULL,  &comm_smp_flat);

MPI_Comm_size (comm_smp_flat,  &size_smp);

int dims_smp[] = {0,0,0};   int periods_smp[] = {0,0,0} /*always non-period*/;

MPI_Dims_create (size_smp,  ndims,  dims_smp);

MPI_Cart_create (comm_smp_flat,  ndims,  dims_smp,  periods_smp, /*reorder=*/ 1,  &comm_smp_cart);

MPI_Comm_free (&comm_smp_flat);

MPI_Comm_rank (comm_smp_cart,  &myrank_smp);

MPI_Cart_coords (comm_smp_cart,  myrank_smp,  ndims,  mycoords_smp);

// This source code requires that all SMP nodes have the same size. It is tested: 

MPI_Allreduce (&size_smp,  &size_smp_min,   1,  MPI_INT,  MPI_MIN,  comm_orig);

MPI_Allreduce (&size_smp,  &size_smp_max,  1,  MPI_INT,  MPI_MAX,  comm_orig);

if (size_smp_min < size_smp_max)  { printf("non-equal SMP sizes\n");  MPI_Abort (comm_orig, 1); }

Hybrid MPI+MPI

pure MPI
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Hierarchical Cartesian DD  (Step 2)

// Establish the node rank. It is calculated based on the sequence of ranks in comm_orig

// in the processes with myrank_smp == 0:

MPI_Comm_split (comm_orig, myrank_smp, 0, &comm_nodes_flat);

// Result: comm_nodes_flat combines all processes with a given myrank_smp into a separate communicator.

// Caution: The node numbering within these comm_nodes-flat may be different.

// The following source code expands the numbering from comm_nodes_flat with myrank_smp == 0

// to all node-to-node communicators:

MPI_Comm_size (comm_nodes_flat,  &size_nodes);

int dims_nodes[] =  {0,0,0};   for (i=0; i<ndims; i++) periods_nodes[i] = periods_global[i];

MPI_Dims_create (size_nodes,  ndims,  dims_nodes);

if (myrank_smp==0) {

MPI_Cart_create (comm_nodes_flat,  ndims,  dims_nodes,  periods_nodes, 1,  &comm_nodes_cart);

MPI_Comm_rank (comm_nodes_cart,  &myrank_nodes); 

MPI_Comm_free (&comm_nodes_cart); /*was needed only to calculate myrank_nodes*/
}

MPI_Comm_free (&comm_nodes_flat);

MPI_Bcast (&myrank_nodes, 1, MPI_INT, 0, comm_smp_cart);

MPI_Comm_split (comm_orig, myrank_smp, myrank_nodes, &comm_nodes_flat);

MPI_Cart_create (comm_nodes_flat,  ndims,  dims_nodes,  periods_nodes, 0,  &comm_nodes_cart);

MPI_Cart_coords (comm_nodes_cart,  myrank_nodes,  ndims,  mycoords_nodes); 

MPI_Comm_free (&comm_nodes_flat);
Copying it for the 

other processes in 
each SMP node 

Optimization according to 
inter-node network of the first 
processes in each SMP node 

Hybrid MPI+MPI

pure MPI
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Hybrid MPI+MPI

pure MPI

Hybrid Parallel Programming

Hierarchical Cartesian DD
Result of Step2
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Hierarchical Cartesian DD  (Step 3)

// Establish the global Cartesian communicator:

for (i=0; i<ndims; i++) { dims_global[i] = dims_smp[i] * dims_nodes[i];

mycoords_global[i] = mycoords_nodes[i] * dims_smp[i] + mycoords_smp[i];

}

myrank_global = mycoords_global[0];

for (i=1; i<ndims; i++)  { myrank_global = myrank_global * dims_global[i] + mycoords_global[i]; }

MPI_Comm_split (comm_orig,  /*color*/ 0,  myrank_global,  &comm_global_flat);

MPI_Cart_create (comm_global_flat,  ndims,  dims_global,  periods_global,  0,  &comm_global_cart); 

MPI_Comm_free (&comm_global_flat);

// Result:

//   Input was: 

// comm_orig,  ndims,  periods_global

//   Result is:

// comm_smp_cart, size_smp, myrank_smp, dims_smp, periods_smp, my_coords_smp,

// comm_nodes_cart, size_nodes, myrank_nodes, dims_nodes, periods_nodes, my_coords_nodes,

// comm_global_cart, size_global, myrank_global, dims_global, my_coords_global

Hybrid MPI+MPI

pure MPI
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How to achieve a 
hierarchical domain decomposition (DD)?

• Unstructured grids:

– Single-level DD (finest level)

• Analysis of the communication pattern in a first run 
(with only a few iterations)

• Optimized rank mapping to the hardware before production run

• E.g., with CrayPAT + CrayApprentice

– Multi-level DD:

• Top-down: Several levels of (Par)Metis
� unbalanced communication

� demonstrated on next (skipped) slide

• Bottom-up: Low level DD 
+  higher level recombination

� based on DD of the grid of subdomains

Hybrid MPI+MPI

pure MPI
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Top-down – several levels of (Par)Metis

Steps:

– Load-balancing (e.g., with 
ParMetis) on outer level,
i.e., between all SMP nodes

– Independent (Par)Metis 
inside of each node

– Metis inside of each socket

� Subdivide does not care on 
balancing of the outer boundary

� processes can get a lot of 
neighbors with inter-node 
communication

� unbalanced communication

Hybrid MPI+MPI

pure MPI
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Bottom-up –
Multi-level DD through recombination 

1. Core-level DD: partitioning of application’s data grid

2. Numa-domain-level DD: recombining of core-domains

3. SMP node level DD: recombining of socket-domains

• Problem: 
Recombination 
must not
calculate patches 
that are smaller 
or larger than the 
average

• In this example 
the load-balancer 
must combine 
always 

� 6 cores, and

� 4 numa-
domains (i.e., 
sockets or 
dies)

• Advantage:
Communication 
is balanced!

Graph of 
all sub-

domains 
(core-
sized) 

Divided 
into sub-
graphs 
for each 
socket 

Hybrid MPI+MPI

pure MPI

Slide 126 / 175



Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Profiling solution

• First run with profiling

– Analysis of the communication pattern

• Optimization step

– Calculation of an optimal mapping of ranks in MPI_COMM_WORLD
to the hardware grid (physical cores / sockets / SMP nodes)

• Restart of the application with this optimized locating of the ranks on the 
hardware grid

• Example: CrayPat and CrayApprentice

Hybrid MPI+MPI

pure MPI
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The vendors 
should deliver 
scalable MPI 

libraries for their 
largest systems! 

Scalability of MPI to hundreds of thousands …

Scalability of pure MPI

• As long as the application does not use

– MPI_ALLTOALL

– MPI_<collectives>V    (i.e., with length arrays)

and application

– distributes all data arrays

one can expect:

– Significant, but still scalable memory overhead for halo cells.

– MPI library is internally scalable:
• E.g., mapping ranks ���� hardware grid

– Centralized storing in shared memory (OS level)

– In each MPI process, only used neighbor ranks are stored (cached) in 
process-local memory.

• Tree based algorithm with O(log N)

– From 1000 to 1000,000 process O(Log N) only doubles! 

Hybrid MPI+MPI

pure MPI
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Remarks on Cache Optimization

• After all parallelization domain decompositions (DD, up to 3 levels) 
are done:

• Cache-blocking is an additional DD into data blocks

– that fit to 2nd or 3rd level cache.

– It is done inside of each MPI process (on each core).

– Outer loops run from block to block

– Inner loops inside of each block

– Cartesian example:  3-dim loop is split into
do i_block=1,ni,stride_i

do j_block=1,nj,stride_j
do k_block=1,nk,stride_k

do i=i_block,min(i_block+stride_i-1, ni)
do j=j_block,min(j_block+stride_j-1, nj)

do k=k_block,min(k_block+stride_k-1, nk)
a(i,j,k) = f( b(i±0,1,2, j±0,1,2, k±0,1,2) )

… … … end do
end do

Access to 13-point stencil 

See
Gerhard Wellein, Georg Hager, Jan Treibig:
The Practitioner's Cookbook for 
Good Parallel Performance 
on Multi- and Many-Core Systems
SC13 tutorial – Monday, November 18th, 2013
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Remarks on Cost-Benefit Calculation

Costs

• for optimization effort

– e.g., additional OpenMP parallelization

– e.g., 3 person month x 5,000 € = 15,000 € (full costs)

Benefit

• from reduced CPU utilization 

– e.g., Example 1:
100,000 € hardware costs of the cluster
x  20% used by this application over whole lifetime of the cluster
x  7% performance win through the optimization
= 1,400 € ���� total loss = 13,600 €

– e.g., Example 2:
10 Mio € system x  5% used  x  8% performance win
= 40,000 € ���� total win = 25,000 €
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Remarks on MPI and PGAS (UPC & CAF)

• Parallelization always means

– expressing locality.

• If the application has no locality,

– Then the parallelization needs not to model locality

� UPC with its round robin data distribution may fit

• If the application has locality,

– then it must be expressed in the parallelization

• Coarray Fortran (CAF) expresses data locality explicitly through “co-
dimension”:

– A(17,15)[3] 
= element A(17,13) in the distributed array A in process with rank 3
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Remarks on MPI and PGAS (UPC & CAF) 

• Future shrinking of memory per core implies

– Communication time becomes a bottleneck 

� Computation and communication must be overlapped,

i.e., latency hiding is needed

• With PGAS, halos are not needed.

– But it is hard for the compiler to access data such early that the 
transfer can be overlapped with enough computation.

• With MPI, typically too large message chunks are transferred.

– This problem also complicates overlapping.

• Strided transfer is expected to be slower than contiguous transfers

– Typical packing strategies do not work for PGAS on compiler level

– Only with MPI, or with explicit application programming with PGAS
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Remarks on MPI and PGAS (UPC & CAF) 

• Point-to-point neighbor communication

– PGAS or MPI nonblocking may fit
if message size makes sense for overlapping.

• Collective communication

– Library routines are best optimized

– Non-blocking collectives (comes with MPI-3.0)
versus calling MPI from additional communication thread

– Only blocking collectives in PGAS library?
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Remarks on MPI and PGAS (UPC & CAF)

• For extreme HPC  (many nodes  x   many cores)

– Most parallelization may still use MPI

– Parts are optimized with PGAS, e.g., for better latency hiding

– PGAS efficiency is less portable than MPI

– #ifdef … PGAS

– Requires mixed programming PGAS & MPI  
� will be addressed by MPI-3.0
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Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Other options on clusters of SMP nodes

– Pure MPI  – multi-core aware    (Rolf Rabenseifner)

– Remarks on MPI scalability / Cache Optimization / Cost-benefit /PGAS (R.R.)

– Hybrid programming and accelerators    (Gabriele Jost)

• Summary
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Hybrid Parallel Programming

• New concepts: 

- Device: An implementation defined logical execution engine; local storage 
which could be shared with other devices; device could have one or more 
processors

• Extension to the previous Memory Model:

- Previous: Relaxed-Consistency Shared-Memory

- Added in 4.0 :

• Device with local storage

− Data movement can be explicitly indicated by compiler directives

• League: Set of thread teams created by a “teams” construct

• Contention group: threads within a team; OpenMP synchronization 
restricted to contention groups. 

• Extension to the previous Execution Model 

- Previous: Fork-join of OpenMP threads

- Added in 4.0: 

• Host device offloads a region for execution on a target device

• Host device waits for completion of execution on the target device
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Hybrid Parallel Programming

Target data
Place objects on the device

Target
Move execution to a device

Target update
Update objects on the device or host

Declare target
Place subroutines/functions on the 
device

Teams
Start multiple contention groups

Distribute
Similar to the OpenACC loop construct, 
binds to teams construct

Array sections

Current Status:
Accelerator support version 1 accepted
Currently open for public review: 
http://www.openmp.org/mp-
documents/OpenMP_4.0_RC2.pdf

• The “target data” construct:

₋ When a target data construct is encountered, a 
new device data environment is created, and the 
encountering task executes the target data 
region

pragma omp target data [device, map, if]

• The “target” construct:

₋ Creates device data environment and specifies 
that the region is executed by a device. The 
encountering task waits for the device to 
complete the target region at the end of the 
construct

pragma omp target [device, map, if]

₋ The “teams” construct:

₋ Creates a league of thread teams. The master 
thread of each team executes the teams region

pragma omp teams [num_teams, num_threads, 
…]

₋ The ”distribute” construct:

₋ Specifies that the iterations of one or more loops 
will be executed by the thread teams. The 
iterations of the loop are distributed across the 
master threads of all teams

pragma omp distribute [collapse, dist_schedule, 
….] 
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OpenMP 4.0 Example

Hybrid Parallel Programming

void smooth( float* restrict a, float* restrict b,

float w0, float w1, float w2, int n, int m, int niters )

{

int i, j, iter;

float* tmp;

for( iter = 1; iter < niters; ++iter ){

for( i = 1; i < n-1; ++i )

for( j = 1; j < m-1; ++j )

a[i*m+j] = w0 * b[i*m+j] +

w1*(b[(i-1)*m+j] + b[(i+1)*m+j] + b[i*m+j-1] + 

b[i*m+j+1]) +

w2*(b[(i-1)*m+j-1] + b[(i-1)*m+j+1] +b[(i+1)*m+j-1] + 

b[(i+1)*m+j+1]);

tmp = a;  a = b;  b = tmp;

}

}

In main:

{

smooth( a, b, w0, w1, w2, n, m, iters );

}
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OpenMP 4.0 Example

Hybrid Parallel Programming

void smooth( float* restrict a, float* restrict b,

float w0, float w1, float w2, int n, int m, int niters )

{

int i, j, iter;

float* tmp;

#pragma omp target mapto(b[0:n*m]) map(a[0:n*m])

#pragma omp team num_teams(8) num_maxthreads(5)

for( iter = 1; iter < niters; ++iter ){

#pragma omp distribute dist_schedule(static) // chunk across teams

for( i = 1; i < n-1; ++i )

#pragma omp parallel for // chunk across threads

for( j = 1; j < m-1; ++j )

a[i*m+j] = w0 * b[i*m+j] +

w1*(b[(i-1)*m+j] + b[(i+1)*m+j] + b[i*m+j-1] + 

b[i*m+j+1]) +

w2*(b[(i-1)*m+j-1] + b[(i-1)*m+j+1] +b[(i+1)*m+j-1] + 

b[(i+1)*m+j+1]);

tmp = a;  a = b;  b = tmp;

} }

In main:

#pragma omp target data map(b[0:n*m],a[0:n*m])

{

smooth( a, b, w0, w1, w2, n, m, iters );

}
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OpenMP 4.0 Team and Distribute Construct

Hybrid Parallel Programming

#pragma omp target device(acc)

#pragma omp team num_teams(8) num_maxthreads(5)

{

Stmt1;

#pragma omp distribute  // chunk across thread blocks
for (i=0; i<N; i++)

#pragma omp parallel for  // chunk across threads
for (j=0; j<M; j++)

{

Threads cannot 
synchronize

Threads can 
synchronize

only executed by master thread of each team
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What is OpenACC?

Hybrid Parallel Programming

• API that supports off-loading of loops and regions of code (e.g. loops) from a 
host CPU to an attached accelerator in C, C++, and Fortran

• Managed by a nonprofit corporation  formed by a group of companies:

– CAPS Enterprise, Cray Inc., PGI and NVIDIA

• Set of compiler directives, runtime routines and environment variables

• Simple programming model for using accelerators (focus on GPGPUs)

• Memory model:

– Host CPU + Device may have completely separate memory; Data 
movement between host and device performed by host via runtime calls; 
Memory on device may not support memory coherence between 
execution units or need to be supported by explicit barrier

• Execution model:

― Compute intensive code regions offloaded to the device, executed as 
kernels ; Host orchestrates data movement, initiates computation, waits 
for completion; Support for multiple levels of parallelism, including SIMD 
(gangs, workers, vector)

― Example constructs: acc parallel loop, acc data
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Hybrid Parallel Programming

void smooth( float* restrict a, float* restrict b,

float w0, float w1, float w2, int n, int m, int niters )

{

int i, j, iter;

float* tmp;

for( iter = 1; iter < niters; ++iter ){

#pragma acc parallel loop gang(16) worker(8)// chunk across gangs and workers
for( i = 1; i < n-1; ++i )

#pragma acc vector (32) // execute in SIMD mode
for( j = 1; j < m-1; ++j )

a[i*m+j] = w0 * b[i*m+j] +

w1*(b[(i-1)*m+j] + b[(i+1)*m+j] + b[i*m+j-1] + 

b[i*m+j+1]) +

w2*(b[(i-1)*m+j-1] + b[(i-1)*m+j+1] +b[(i+1)*m+j-1] + 

b[(i+1)*m+j+1]);

tmp = a;  a = b;  b = tmp;

} }

In main:

#pragma acc data copy (b[0:n*m],a[0:n*m])

{

smooth( a, b, w0, w1, w2, n, m, iters );

}

CAPS HMPPWorkbench compiler:

acc_test.c:11: Loop 'j' was vectorized(32)
acc_test.c:9: Loop 'i' was shared among 
gangs(16) and workers(8)

Slide 142 / 175



Rabenseifner, Hager, Jost

SUPERsmith

Cray XK7 Hermit

Hybrid Parallel Programming

• Located at HLRS Stuttgart, Germany (https://wickie.hlrs.de/platforms/index.php/Cray_XE6)

• 16 Cray XK7 compute nodes;  AMD's 16-core Opteron™ 6200 Series processor with NVIDIA® Tesla® 
K20 GPU Accelerator Cards

-------------------------------------------------------------
CPU type:       AMD Interlagos processor 
*************************************************************
Hardware Thread Topology
*************************************************************
Sockets:        1 
Cores per socket:       16 
Threads per core:       1 
-------------------------------------------------------------

Socket 0:
+-------------------------------------------------------------------------------------------------------------------------------------------------+
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| |   0  | |   1  | |   2  | |   3  | |   4  | |   5  | |   6  | |   7  | |   8  | |   9  | |  10  | |  11  | |  12  | |  13 | |  14  | |  15  | |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |
| |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB      | |      2MB     | |      2MB      | |
| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |
| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ |
| |                                 6MB                                 | |                                 6MB              | |
| +---------------------------------------------------------------------+ +---------------------------------------------------------------------+ |
+-------------------------------------------------------------------------------------------------------------------------------------------------+
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Mantevo miniGhost on Cray XK7 

Hybrid Parallel Programming

!$acc data present ( GRID)

! Back boundary

IF ( NEIGHBORS(BACK) /= -1 ) THEN

TIME_START_DIR = MG_TIMER ()

!$acc data present ( SEND_BUFFER_BACK )

!$acc parallel loop

DO J = 0, NY+1

DO I = 0, NX+1

SEND_BUFFER_BACK(COUNT_SEND_BACK + J*(NX+2) + I + 1) = &

GRID ( I, J, 1 )

END DO

END DO

!$acc end data

#endif

...

• Mantevo 1.0.1 miniGhost 1.0 
-Finite-Difference Proxy 
Application
-27 PT Stencil + Boundary 
Exchange of Ghost Cells
-Implemented in Fortran; 
-MPI+OpenMP and 
MPI+OpenACC
-http://www.mantevo.org

• Test System:
-Located at HLRS Stuttgart,

• Test Case:Problem size 
384x796x384, 10 variables, 20 
time steps

• Compilation:
•pgf90 13.4-0
•-O3  -fast –fastsse –m -acc

CALL MPI_WAITANY ( MAX_NUM_SENDS + MAX_NUM_RECVS, MSG_REQS, ...  )

....

!$acc             data present ( RECV_BUFFER_BACK )

!$acc             update device ( RECV_BUFFER_BACK )

!$acc             end data$acc data present ( GRID)

Packing of boundary data

Unpacking of boundary data
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Mantevo miniGhost: 27-PT Stencil

Hybrid Parallel Programming

#if defined _MOG_OMP
!$OMP PARALLEL DO PRIVATE(SLICE_BACK, SLICE_MINE, SLICE_FRONT)

#else

!$acc data present ( WORK )

!$acc parallel

!$acc loop

#endif

DO K = 1, NZ

DO J = 1, NY

DO I = 1, NX

SLICE_BACK =  GRID(I-1,J-1,K-1) + GRID(I-1,J,K-1) + GRID(I-1,J+1,K-1) + &

GRID(I  ,J-1,K-1) + GRID(I  ,J,K-1) + GRID(I  ,J+1,K-1) + &

GRID(I+1,J-1,K-1) + GRID(I+1,J,K-1) + GRID(I+1,J+1,K-1)

SLICE_MINE =  GRID(I-1,J-1,K)   + GRID(I-1,J,K)   + GRID(I-1,J+1,K) + &

GRID(I  ,J-1,K)   + GRID(I  ,J,K)   + GRID(I  ,J+1,K) + &

GRID(I+1,J-1,K)   + GRID(I+1,J,K)   + GRID(I+1,J+1,K)

SLICE_FRONT = GRID(I-1,J-1,K+1) + GRID(I-1,J,K+1) + GRID(I-1,J+1,K+1) + &

GRID(I  ,J-1,K+1) + GRID(I  ,J,K+1) + GRID(I  ,J+1,K+1) + &

GRID(I+1,J-1,K+1) + GRID(I+1,J,K+1) + GRID(I+1,J+1,K+1)

WORK(I,J,K) = ( SLICE_BACK + SLICE_MINE + SLICE_FRONT ) / 27.0

END DO

END DO

END DO
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Scalability of miniGhost on Cray XK7 

Hybrid Parallel Programming

Total Time(sec) Comm. Time (sec)

OpenMP (16x1t) 12.1 0.4

OpenMP (16x16t) 1.9 0.16

OpenACC (16x16t) 1.17 0.34

Pure MPI (256 Ranks) 1.5 0.28

Elapsed time as reported 
by the application
Communication includes 
packing/unpacking
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IMB Bandwidth Ping-Pong XK7
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Profiling Information: export PGI_ACC_TIME=1

Hybrid Parallel Programming

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_UNPACK_BSPMA.F

mg_unpack_bspma NVIDIA  devicenum=0

time(us): 36,951

124: data copyin reached 20 times

device time(us): total=8,603 max=431 min=429 avg=430

….

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_STENCIL_COMPS.F

mg_stencil_3d27pt  NVIDIA  devicenum=0

time(us): 1,063,875

330: kernel launched 200 times

grid: [160]  block: [256]

device time(us): total=1,063,875 max=5,337 min=5,302 avg=5,319

elapsed time(us): total=1,073,817 max=5,444 min=5,349 avg=5,369

…

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_SEND_BSPMA.F 

mg_send_bspma NVIDIA  devicenum=0

time(us): 33,150

94: data copyout reached 20 times

device time(us): total=7,800 max=392 min=389 avg=390

…

device time(us): total=12,618 max=633 min=630 avg=630

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_PACK.F

mg_pack NVIDIA  devicenum=0    

time(us): 9,615

91: kernel launched 200 times

grid: [98]  block: [256]

device time(us): total=2,957 max=68 min=13 avg=14

elapsed time(us): total=11,634 max=107 min=51 avg=58 
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Profiling Information: export PGI_ACC_TIME=1

Hybrid Parallel Programming

Accelerator Kernel Timing data

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_STENCIL_COMPS.F

mg_stencil_3d27pt  NVIDIA  devicenum=0

time(us): 1,064,197

330: kernel launched 200 times

grid: [160]  block: [256]

device time(us): total=1,064,197 max=5,351 min=5,299 avg=5,320

elapsed time(us): total=1,074,081 max=5,442 min=5,348 avg=5,370

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_PACK.F

mg_pack NVIDIA  devicenum=0

time(us): 9,568

91: kernel launched 200 times

grid: [98]  block: [256]

device time(us): total=2,924 max=70 min=12 avg=14

elapsed time(us): total=11,624 max=110 min=51 avg=58

195: kernel launched 200 times

grid: [162]  block: [256]

device time(us): total=3,432 max=120 min=15 avg=17

elapsed time(us): total=11,385 max=160 min=53 avg=56

221: kernel launched 200 times

grid: [162]  block: [256]

device time(us): total=3,212 max=19 min=15 avg=16

elapsed time(us): total
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Conclusions for miniGhost Experiment:

Hybrid Parallel Programming

• Hybrid MPI/OpenMP and MPI/OpenACC yield performance increase over 
pure MPI

• Compiler pragma based API provides relatively easy way to exploit 
coprocessors

• OpenACC targeted toward GPU type coprocessors

• OpenMP 4.0 extensions will provide flexibility to exploit a wide range of 
heterogeneous coprocessors (GPU, APU, heterogeneous many-core types)
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Hybrid Parallel Programming

Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Other options on clusters of SMP nodes

• Summary
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Summary  – Alternatives 

Pure MPI

+ Ease of use

– Topology and mapping problems may need to be solved
(depends on loss of efficiency with these problems)

– Number of cores may be more limited than with MPI+OpenMP

+ Good candidate for perfectly load-balanced applications

Pure OpenMP

+ Ease of use

– Limited to problems with tiny communication footprint

– source code modifications are necessary
(Variables that are used with “shared” data scope
must be allocated as “sharable”)

± (Only) for the appropriate application a suitable tool

pure MPI

OpenMP only
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Summary  – hybrid MPI+OpenMP

MPI + OpenMP

• Seen with NPB-MZ examples

– BT-MZ � strong improvement (as expected)

– SP-MZ � small improvement

– Usability on higher number of cores

• Advantages

– Memory consumption 

– Load balancing

– Two levels of parallelism 
• Outer ���� distributed memory ���� halo data transfer ���� MPI

• Inner ���� shared memory ���� ease of SMP parallelization ���� OpenMP

• You can do it � “How To”

• Huge amount of pitfalls

• Optimum:  Somewhere in the area of 1 MPI process per NUMA domain

Maybe the most important advantage!

hybrid MPI+OpenMP
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Summary  – the bad news

MPI+OpenMP:  There is a huge amount of pitfalls

• Pitfalls of MPI

• Pitfalls of OpenMP

– On ccNUMA � e.g., first touch

– Pinning of threads on cores

• Pitfalls through combination of MPI & OpenMP

– E.g., topology and mapping problems

– Many mismatch problems

• Tools are available 

– It is not easier than analyzing pure MPI programs

• Most hybrid programs � Masteronly style

• Overlapping communication and computation with several threads

– Requires thread-safety quality of MPI library

– Loss of OpenMP worksharing support � using OpenMP tasks 
as workaround

hybrid MPI+OpenMP
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Summary  – hybrid MPI+MPI

MPI + MPI-3 shared memory

• Two levels of parallelism 
• Outer ���� distributed memory ���� halo data transfer ���� MPI

• Inner ���� shared memory ���� halo transfer or direct access ���� MPI-3

• New promising hybrid parallelization model

• No real experience up to now

• No OpenMP and thread-safety problems 

Hybrid MPI+MPI
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Conclusions 

• Future hardware will be more complicated
– Heterogeneous � GPU, FPGA, … 
– ccNUMA quality may be lost on cluster nodes
– ….

• High-end programming � more complex

• Medium number of cores � more simple
(if  #cores / SMP-node will not shrink)

• MPI + OpenMP ���� work horse on large systems

• MPI + MPI-3 ���� new promising alternative to MPI + OpenMP

• Pure MPI � still on smaller cluster

• OpenMP � on large ccNUMA nodes
(not distributed virtual shared memory)

Thank you for your interest

Q & A
Please fill in the feedback sheet – Thank you
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Appendix

• Abstract

• Authors

• References (with direct relation to the content of this tutorial)

• Further references
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Abstract

Half-Day Tutorial   (Level: 25% Introductory, 50% Intermediate, 25% Advanced)

Authors. Rolf Rabenseifner, HLRS, University of Stuttgart, Germany
Georg Hager, University of Erlangen-Nuremberg, Germany
Gabriele Jost, Supersmith, Maximum Performance Software, USA

Abstract. Most HPC systems are clusters of shared memory nodes. Such systems can be PC 
clusters with single/multi-socket and multi-core SMP nodes, but also constellation type systems with 
large SMP nodes. Parallel programming may combine the distributed memory parallelization on the 
node interconnect with the shared memory parallelization inside of each node. 

This tutorial analyzes the strengths and weaknesses of several parallel programming models on 
clusters of SMP nodes. Multi-socket-multi-core systems in highly parallel environments are given 
special consideration. MPI-3.0 introduced a new shared memory programming interface, which can 
be combined with MPI message passing and remote memory access on the cluster interconnect. It 
can be used for direct neighbor accesses similar to OpenMP or for direct halo copies, and enables 
new hybrid programming models. These models are compared with various hybrid MPI+OpenMP
approaches and pure MPI. This tutorial also includes a discussion on OpenMP support for 
accelerators. Benchmark results on different platforms are presented. Numerous case studies 
demonstrate the performance-related aspects of hybrid programming, and application categories that 
can take advantage of this model are identified. Tools for hybrid programming such as thread/process 
placement support and performance analysis are presented in a "how-to" section. 

Details. https://fs.hlrs.de/projects/rabenseifner/publ/ISC2013-hybrid.html 
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Hybrid Parallel Programming
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