
Höchstleistungsrechenzentrum Stuttgart

SUPERsmith

Hybrid Parallel Programming

Hybrid MPI and OpenMP
Parallel Programming

MPI + OpenMP and other models

on clusters of SMP nodes

Rolf Rabenseifner1) Georg Hager2) Gabriele Jost3)

Rabenseifner@hlrs.de Georg.Hager@rrze.uni-erlangen.de gjost@supersmith.com

1) High Performance Computing Center (HLRS), University of Stuttgart, Germany
2) Regional Computing Center (RRZE), University of Erlangen, Germany
3) Supersmith, Maximum Performance Software, USA

Author is currently working for Intel Corporation. All material presented has been prepared while still under the affiliation of Supersmith.
It does not represent the views of Intel Corporation.

Tutorial tut123 at SC13, November 17, 2013, Denver (CO) USA

Slide 1

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Motivation

• Efficient programming of clusters
of shared memory (SMP) nodes

• Hierarchical system layout

• Hybrid programming seems natural

• MPI between the nodes

• Shared memory programming inside of each SMP node

– OpenMP

– MPI-3 shared memory programming

– Accelerator support in OpenMP 4.0 and OpenACC

Node Interconnect

SMP nodes

cores

shared
memory

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes

new

new

Slide 2 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

MPI process
8 x multi-
threaded

MPI process
8 x multi-
threaded

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

Motivation

• Which programming model
is fastest?

• MPI everywhere?

• Fully hybrid
MPI & OpenMP?

• Something between?
(Mixed model)

?
• Often hybrid programming

slower than pure MPI
– Examples, Reasons, …

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

Slide 3 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Goals of this tutorial

• Sensitize to problems on clusters of SMP nodes

see sections � Case studies
� Mismatch problems

• Technical aspects of hybrid programming

see sections � Programming models on clusters
� Examples on hybrid programming

• Opportunities with hybrid programming

see section � Opportunities: Application categories
that can benefit from hybrid paralleliz.

• Issues and their Solutions

with sections � Thread-safety quality of MPI libraries
� Tools for debugging and profiling

for MPI+OpenMP

•Less
frustration
&

•More
success

with your
parallel
program on
clusters of
SMP nodes

Slide 4 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Outline
slide number

• Introduction / Motivation 2

• Programming models on clusters of SMP nodes 6

• Case Studies / pure MPI vs hybrid MPI+OpenMP 28

• Practical “How-To” on hybrid programming 55

• Mismatch Problems 91

• Opportunities: Application categories that can 109

benefit from hybrid parallelization

• Other options on clusters of SMP nodes 118

– Accelerators 135

• Summary 151

• Appendix 158

• Content (detailed) 174

08:30 – 10:00

10:30 – 12:00

Includes additional

slides, marked as

— skipped —

Slide 5 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Other options on clusters of SMP nodes

• Summary

Slide 6 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Major Programming models on hybrid systems

some_serial_code

#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized

again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each core

Explicit Message Passing
by calling MPI_Send & MPI_Recv

Node Interconnect

OpenMP inside of the
SMP nodes

MPI between the nodes
via node interconnect

new

• Pure MPI (one MPI process on each core)

• Hybrid: MPI + OpenMP

– shared memory OpenMP

– distributed memory MPI

• Hybrid: MPI message passing + MPI-3.0 shared memory programming

• Other: PGAS (UPC, Coarray Fortran, ….) / together with MPI

• Often hybrid programming (MPI+OpenMP) slower than pure MPI

– why?

Slide 7 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Parallel Programming Models on Hybrid Platforms

No overlap of
Comm. + Comp.
MPI only outside of

parallel regions
of the numerical
application code

Overlapping
Comm. + Comp.

MPI communication by
one or a few threads

while other threads are
computing

pure MPI
one MPI
process

on each core

hybrid MPI+OpenMP
MPI: inter-node
communication

OpenMP: inside of each
SMP node

OpenMP only

distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

Within shared
memory nodes:
Halo updates
through direct

data copy

Within shared
memory nodes:

No halo updates,
direct access to
neighbor data

new

new new

Slide 8 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Pure MPI

Advantages

– No modifications on existing MPI codes

– MPI library need not to support multiple threads

Major problems

– Does MPI library uses internally different protocols?
• Shared memory inside of the SMP nodes

• Network communication between the nodes

– Does application topology fit on hardware topology?

– Unnecessary MPI-communication inside of SMP nodes!

pure MPI
one MPI process

on each core

Discussed
in detail later on

in the section
Mismatch
Problems

Slide 9 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Hybrid MPI+OpenMP Masteronly Style

Advantages

– No message passing inside of the SMP nodes

– No topology problem

for (iteration ….)

{

#pragma omp parallel
numerical code

/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside
of parallel regions

Major Problems

– All other threads are sleeping
while master thread communicates!

– Which inter-node bandwidth?

– MPI-lib must support at least
MPI_THREAD_FUNNELED

� Section
Thread-safety
quality of MPI

libraries

Slide 10 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

MPI rules with OpenMP /
Automatic SMP-parallelization

• Special MPI-2 Init for multi-threaded MPI processes:

• REQUIRED values (increasing order):
– MPI_THREAD_SINGLE: Only one thread will execute
– THREAD_MASTERONLY: MPI processes may be multi-threaded,

(virtual value, but only master thread will make MPI-calls
not part of the standard) AND only while other threads are sleeping

– MPI_THREAD_FUNNELED: Only master thread will make MPI-calls
– MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,

but only one at a time
– MPI_THREAD_MULTIPLE: Multiple threads may call MPI,

with no restrictions

• returned provided may be less than REQUIRED by the application

int MPI_Init_thread(int * argc, char ** argv[],

int thread_level_required,

int * thead_level_provided);

int MPI_Query_thread(int * thread_level_provided);

int MPI_Is_main_thread(int * flag);

Slide 11 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Calling MPI inside of OMP MASTER

• Inside of a parallel region, with “OMP MASTER”

• Requires MPI_THREAD_FUNNELED,
i.e., only master thread will make MPI-calls

• Caution: There isn’t any synchronization with “OMP MASTER”!
Therefore, “OMP BARRIER” normally necessary to
guarantee, that data or buffer space from/for other
threads is available before/after the MPI call!

!$OMP BARRIER #pragma omp barrier
!$OMP MASTER #pragma omp master

call MPI_Xxx(...) MPI_Xxx(...);
!$OMP END MASTER
!$OMP BARRIER #pragma omp barrier

• But this implies that all other threads are sleeping!

• The additional barrier implies also the necessary cache flush!

Slide 12 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

… the barrier is necessary –
example with MPI_Recv

!$OMP PARALLEL
!$OMP DO

do i=1,1000
a(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP MASTER

call MPI_RECV(buf,...)
!$OMP END MASTER
!$OMP BARRIER
!$OMP DO

do i=1,1000
c(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP END PARALLEL

#pragma omp parallel
{
#pragma omp for nowait

for (i=0; i<1000; i++)
a[i] = buf[i];

#pragma omp barrier
#pragma omp master

MPI_Recv(buf,...);
#pragma omp barrier

#pragma omp for nowait
for (i=0; i<1000; i++)

c[i] = buf[i];

}
/* omp end parallel */

No barrier inside

Barriers needed
to prevent
data races

Slide 13 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Example: Thread support within Open MPI

• In order to enable thread support in Open MPI, configure with:

configure --enable-mpi-threads

• This turns on:

– Support for full MPI_THREAD_MULTIPLE

– internal checks when run with threads (--enable-debug)

configure --enable-mpi-threads --enable-progress-threads

• This (additionally) turns on:

– Progress threads to asynchronously transfer/receive data per
network BTL.

• Additional Feature:

– Compiling with debugging support, but without threads will
check for recursive locking

Courtesy of Rainer Keller, HLRS and ORNL

Slide 14 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Overlapping communication and computation

if (my_thread_rank < …) {

MPI_Send/Recv….
i.e., communicate all halo data

} else {

Execute those parts of the application

that do not need halo data

(on non-communicating threads)

}

Execute those parts of the application

that need halo data

(on all threads)

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Slide 15 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Hybrid MPI + MPI-3 shared memory

Advantages

– No message passing inside of the SMP nodes

– Using only one parallel programming standard

– No OpenMP problems (e.g., thread-safety isn’t an issue)

Major Problems

– Communicator must be split into shared
memory islands

– To minimize shared memory communication
overhead:
Halos (or the data accessed by the neighbors)
must be stored in
MPI shared memory windows

– Same work-sharing as with pure MPI

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

Slide 16 / 175

Rabenseifner, Hager, Jost

SUPERsmith

MPI-3 shared memory

• Split main communicator into shared memory islands

– MPI_Comm_split_type

• Define a shared memory window on each island

– MPI_Win_allocate_shared

– Result (by default):

contiguous array, directly accessible by all processes of the island

• Accesses and sychronization

– Normal assignments and expressions

– No MPI_PUT/GET !

– Normal MPI one-sided synchronization, e.g., MPI_WIN_FENCE

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

Slide 17 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Splitting the communicator &
contiguous shared memory allocation

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

MPI_Aint /*IN*/ local_window_count; double /*OUT*/ *base_ptr;

MPI_Comm comm_all, comm_sm; int my_rank_all, my_rank_sm, size_sm, disp_unit;

MPI_Comm_rank (comm_all, &my_rank_all);

MPI_Comm_split_type (comm_all, MPI_COMM_TYPE_SHARED, 0,

MPI_INFO_NULL, &comm_sm);

MPI_Comm_rank (comm_sm, &my_rank_sm); MPI_Comm_size (comm_sm, &size_sm);

disp_unit = sizeof(double); /* shared memory should contain doubles */

MPI_Win_allocate_shared (local_window_count*disp_unit, disp_unit, MPI_INFO_NULL,

comm_sm, &base_ptr, &win_sm);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … my_rank_all

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

…

MPI process

Sub-communicator
comm_sm
for one SMP node

local_window_count
doubles

base_ptr

Contiguous shared memory window within each SMP node

Sequence in comm_sm
as in comm_all

comm_all

F

F In Fortran, MPI-3.0, page 341, Examples 8.1 (and 8.2) show how to convert buf_ptr into a usable array a.

This mapping is based on a sequential ranking of the SMP nodes in comm_all.

M

M

Slide 18 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Within each SMP node – Essentials

• The allocated shared memory is contiguous across process ranks,

• i.e., the first byte of rank i starts right after the last byte of rank i-1.

• Processes can calculate remote addresses’ offsets
with local information only.

• Remote accesses through load/store operations,

• i.e., without MPI RMA operations (MPI_GET/PUT, …)

• Although each process in comm_sm accesses the same physical memory,
the virtual start address of the whole array
may be different in all processes!
� linked lists only with offsets in a shared array,

but not with binary pointer addresses!

• Following slides show only the shared memory accesses,
i.e., communication between the SMP nodes is not presented.

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

Slide 19 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Shared memory access example

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

MPI_Aint /*IN*/ local_window_count; double /*OUT*/ *base_ptr;

MPI_Win_allocate_shared (local_window_count*disp_unit, disp_unit, MPI_INFO_NULL,

comm_sm, &base_ptr, &win_sm);

MPI_Win_fence (0, win_sm); /*local store epoch can start*/

for (i=0; i<local_window_count; i++) base_ptr[i] = … /* fill values into local portion */

MPI_Win_fence (0, win_sm); /* local stores are finished, remote load epoch can start */

if (my_rank_sm > 0) printf("left neighbor’s rightmost value = %lf \n", base_ptr[-1]);

if (my_rank_sm < size_sm-1) printf("right neighbor’s leftmost value = %lf \n",

base_ptr[local_window_count]);

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … my_rank_all

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

…

MPI process

Sub-communicator
for one SMP node

base_ptr

Contiguous shared memory window within each SMP node local_window_count
doubles

Direct load access to
remote window

portion

Direct load access to
remote window

portion

Synchroni-
zation

Synchroni-
zation

Local stores
F

F

F

F

F In Fortran, before and after the synchronization, on must add: CALL MPI_F_SYNC_REG (buffer)

to guarantee that register copies of buffer are written back to memory, respectively read again from memory.

Slide 20 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Establish comm_sm, comm_nodes, comm_all,
if SMPs are not contiguous within comm_orig

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … my_rank_all

0 1 2 3
my_rank_sm

…
Sub-communicator
for one SMP node:

comm_sm

MPI_Comm_split_type (comm_orig, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &comm_sm);

MPI_Comm_size (comm_sm, &size_sm); MPI_Comm_rank (comm_sm, &my_rank_sm);

MPI_Comm_split (comm_orig, my_rank_sm, 0, &comm_nodes);

MPI_Comm_size (comm_nodes, &size_nodes);

if (my_rank_sm==0) {

MPI_Comm_rank (comm_nodes, &my_rank_nodes);

MPI_Exscan (&size_sm, &my_rank_all, 1, MPI_INT, MPI_SUM, comm_nodes);

if (my_rank_nodes == 0) my_rank_all = 0;

}

MPI_Comm_free (&comm_nodes);

MPI_Bcast (&my_rank_nodes, 1, MPI_INT, 0, comm_sm);

MPI_Comm_split (comm_orig, my_rank_sm, my_rank_nodes, &comm_nodes);

MPI_Bcast (&my_rank_all, 1, MPI_INT, 0, comm_sm); my_rank_all = my_rank_all + my_rank_sm;

MPI_Comm_split (comm_orig, /*color*/ 0, my_rank_all, &comm_all);

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

Establish a

communicator

comm_sm

with ranks

my_rank_sm

on each SMP

node

Result: comm_nodes combines all processes with a

given my_rank_sm into a separate communicator.Exscan does

not return

value on the

first rank,

therefore

comm_all

comm_nodes
combining all
processes with same
my_rank_sm

On processes with my_rank_sm > 0, this comm_nodes is unused

because node-numbering within these comm_nodes may be different.

Expanding the numbering from

comm_nodes with my_rank_sm

== 0 to all new node-to-node

communicators comm_nodes.

Calculating my_rank_all and

establishing global communicator

comm_all with sequential SMP

subsets.

0 1 2 3

my_rank_nodes

Input

Rabenseifner, Hager, Jost

SUPERsmith

Alternative: Non-contiguous shared memory

• Using info key "alloc_shared_noncontig“

• MPI library can put processes’ window portions

– on page boundaries,
• (internally, e.g., only one OS shared memory segment with some unused

padding zones)

– into the local ccNUMA memory domain + page boundaries
• (internally, e.g., each window portion is one OS shared memory segment)

Pros:

• Faster local data accesses especially on ccNUMA nodes

Cons:

• Higher programming effort for neighbor accesses: MPI_WIN_SHARED_QUERY

Hybrid Parallel Programming

Further reading:
Torsten Hoefler, James Dinan, Darius Buntinas,
Pavan Balaji, Brian Barrett, Ron Brightwell,
William Gropp, Vivek Kale, Rajeev Thakur:
MPI + MPI: a new hybrid approach to parallel
programming with MPI plus shared memory.
http://link.springer.com/content/pdf/10.1007%2Fs00607-013-0324-2.pdf

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

NUMA effects?
Significant impact of alloc_shared_noncontig

Slide 22 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Non-contiguous shared memory allocation

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

MPI_Aint /*IN*/ local_window_count; double /*OUT*/ *base_ptr;

disp_unit = sizeof(double); /* shared memory should contain doubles */

MPI_Info info_noncontig;

MPI_Info_create (&info_noncontig);

MPI_Info_set (info_noncontig, "alloc_shared_noncontig", "true");

MPI_Win_allocate_shared (local_window_count*disp_unit, disp_unit, info_noncontig,

comm_sm, &base_ptr, &win_sm);

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

0 1 2 3
my_rank_sm

…

MPI process

Sub-communicator
for one SMP node

local_window_count
doubles

base_ptr

Non-contiguous shared memory window within each SMP node

Slide 23 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Non-contiguous shared memory:
Neighbor access through MPI_WIN_SHARED_QUERY

• Each process can retrieve each neighbor’s base_ptr

with calls to MPI_WIN_SHARED_QUERY

• Example: only pointers to the window memory

of the left & right neighbor

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

if (my_rank_sm > 0) MPI_Win_shared_query (win_sm, my_rank_sm – 1,

&win_size_left, &disp_unit_left, &base_ptr_left);

if (my_rank_sm < size_sm-1) MPI_Win_shared_query (win_sm, my_rank_sm + 1,

&win_size_right, &disp_unit_right, &base_ptr_right);

…

MPI_Win_fence (0, win_sm); /* local stores are finished, remote load epoch can start */

if (my_rank_sm > 0) printf("left neighbor’s rightmost value = %lf \n",

base_ptr_left[win_size_left/disp_unit_left – 1]);

if (my_rank_sm < size_sm-1) printf("right neighbor’s leftmost value = %lf \n",

base_ptr_right[0]);

base_ptr_left base_ptr_right

Thanks to Steffen Weise (TU Freiberg) for testing and correcting the example codes.

Slide 24 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Other technical aspects with
MPI_WIN_ALLOCATE_SHARED
Caution: On some systems

• the number of shared memory windows, and

• the total size of shared memory windows

may be limited.

Some OS systems may provide options, e.g.,

• at job launch, or

• MPI process start,

to enlarge restricting defaults.

If MPI shared memory support is based on POSIX shared memory:

• Shared memory windows are located in memory-mapped /dev/shm

• Default: 25% or 50% of the physical memory, but a maximum of ~2043 windows!

• Root may change size with: mount –o remount,size=6G /dev/shm .

Cray XT/XE/XC (XPMEM): No limits.

On a system without virtual memory (like CNK on BG/Q), you have to reserve a chunk
of address space when the node is booted (default is 64 MB).

Thanks to Jeff Hammond and Jed Brown (ANL), Brian W Barrett (SANDIA), and Steffen Weise (TU Freiberg),
for input and discussion.

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

Another restriction in a
low-quality MPI:
MPI_COMM_SPLIT_TYPE
may return always
MPI_COMM_SELF

Due to default limit
of context IDs

in mpich

Slide 25 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Splitting the communicator without
MPI_COMM_SPLIT_TYPE

Alternative, if you want to group based on a fixed amount size_sm of shared memory
cores in comm_all:

– Based on sequential ranks in comm_all

– Pro: comm_sm can be restricted to ccNUMA locality domains

– Con: MPI does not guarantee MPI_WIN_ALLOCATE_SHARED() on whole SMP node
(MPI_COMM_SPLIT_TYPE() may return MPI_COMM_SELF or partial SMP node)

Hybrid Parallel Programming

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 … comm_all

0 1 2 3
comm_sm

0 1 2 3
comm_sm

0 1 2 3
comm_sm

0 1 2 3
comm_sm

0 1 2 3
comm_sm

MPI_Comm_rank (comm_all, &my_rank); MPI_Comm_group (comm_all, &group_all);

ranges[0][0] = (my_rank / size_sm) * size_sm; ranges[0][1] = ranges[0][0]+size_sm–1; ranges[0][2] = 1;

MPI_Group_range_incl (group_all, 1, ranges, &group_sm);

MPI_Comm_create (comm_all, group_sm, &comm_sm);

MPI_Win_allocate_shared (…);

e.g., ranges[0][]={4,7,1}

To guarantee shared memory,
one may add an additional

MPI_Comm_split_type (comm_sm,
MPI_COMM_TYPE_SHARED, 0,

MPI_INFO_NULL,
&comm_sm_really);

Slide 26 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Pure OpenMP (on the cluster)

• Distributed shared virtual memory system needed

• Must support clusters of SMP nodes, e.g.,

– Shared memory parallel inside of SMP nodes

– Communication of modified parts of pages
at OpenMP flush (part of each OpenMP barrier)

OpenMP only
distributed virtual
shared memory

i.e., the OpenMP memory and parallelization model
is prepared for clusters!

by rule of thumb:

Communication
may be

10 times slower
than with MPI

Slide 27 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP
– The Multi-Zone NAS Parallel Benchmarks

– For each application we discuss:

• Benchmark implementations based on different strategies and programming paradigms

• Performance results and analysis on different hardware architectures

– Compilation and Execution Summary

Gabriele Jost (Supersmith, Maximum Performance Software)

• Hybrid programming & accelerators
• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities: Application categories that can benefit from hybrid paralleli.
• Other options on clusters of SMP nodes
• Summary

Slide 28 / 175

Rabenseifner, Hager, Jost

SUPERsmith

The Multi-Zone NAS Parallel Benchmarks

Hybrid Parallel Programming

OpenMP

Call MPI

MPI
Processes

sequential

MPI/OpenMP

OpenMP
data copy+

sync.
exchange

boundaries

sequentialsequentialTime step

OpenMPOpenMPintra-zones

OpenMP
MLP

Processes
inter-zones

Nested
OpenMP

MLP

• Multi-zone versions of the NAS Parallel Benchmarks
LU,SP, and BT

• Two hybrid sample implementations

• Load balance heuristics part of sample codes

• www.nas.nasa.gov/Resources/Software/software.html

Slide 29 / 175

Rabenseifner, Hager, Jost

SUPERsmith

MPI/OpenMP BT-MZ

call omp_set_numthreads (weight)

do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call zsolve(u,rsd,…)

end if

end do

end do

...

Hybrid Parallel Programming

call mpi_send/recv

subroutine zsolve(u, rsd,…)

...

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5

u(m,i,j,k)=

dt*rsd(m,i,j,k-1)

end do

end do

end do

!$OMP END DO NOWAIT

end do

...

!$OMP END PARALLEL

Slide 30 / 175

Rabenseifner, Hager, Jost

SUPERsmith

MPI/OpenMP LU-MZ

call omp_set_numthreads (weight)

do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call ssor

end if

end do

end do

...

Hybrid Parallel Programming
Slide 31 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Pipelined Thread Execution in SSOR

subroutine ssor

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

call sync1 ()

do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5

rsd(m,i,j,k)=

dt*rsd(m,i,j,k-1) + …

end do

end do

end do

!$OMP END DO nowait

end do

call sync2 ()
...

!$OMP END PARALLEL
...

Hybrid Parallel Programming

subbroutine sync1

…neigh = iam -1

do while (isync(neigh) .eq. 0)

!$OMP FLUSH(isync)

end do

isync(neigh) = 0

!$OMP FLUSH(isync)

…

subroutine sync2

…

neigh = iam -1

do while (isync(neigh) .eq. 1)

!$OMP FLUSH(isync)

end do

isync(neigh) = 1

!$OMP FLUSH(isync)

Slide 32 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Golden Rule for ccNUMA: “First touch”

c--

c do one time step to touch all data

c--

do iz = 1, proc_num_zones

zone = proc_zone_id(iz)

call adi(rho_i(start1(iz)), us(start1(iz)),

$ vs(start1(iz)), ws(start1(iz)

…..

$ end do

do iz = 1, proc_num_zones

zone = proc_zone_id(iz)

call initialize(u(start5(iz)),…

$ end do

Hybrid Parallel Programming

• A memory page gets mapped into the local memory of the processor that first
touches it!

• "touch" means "write", not "allocate"

All benchmarks use first
touch policy to achieve
good memory placement!

Slide 33 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Benchmark Characteristics

• Aggregate sizes:
– Class D: 1632 x 1216 x 34 grid points
– Class E: 4224 x 3456 x 92 grid points

• BT-MZ: (Block tridiagonal simulated CFD application)
– Alternative Directions Implicit (ADI) method
– #Zones: 1024 (D), 4096 (E)
– Size of the zones varies widely:

• large/small about 20
• requires multi-level parallelism to achieve a good load-balance

• LU-MZ: (LU decomposition simulated CFD application)
– SSOR method (2D pipelined method)
– #Zones: 16 (all Classes)
– Size of the zones identical:

• no load-balancing required
• limited parallelism on outer level

• SP-MZ: (Scalar Pentadiagonal simulated CFD application)
– #Zones: 1024 (D), 4096 (E)
– Size of zones identical

• no load-balancing required
Hybrid Parallel Programming

Load-balanced on
MPI level: Pure MPI
should perform best

Pure MPI: Load-
balancing problems!

Good candidate for
MPI+OpenMP

Limitted MPI
Parallelism:

� MPI+OpenMP
increases Parallelism

Expectations:

Slide 34 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid code on cc-NUMA architectures

• OpenMP:

– Support only per MPI process

– Version 3.1 has support for binding of threads via OMP_PROC_BIND
environment variable.

– Under consideration for Version 4.0: OMP_PROC_SET or OMP_LIST
to restrict the execution to a subset of the machine; OMP_AFFINITY to
influence how the threads are distributed and bound on the machine

– Version 4.0 announced at SC12
• MPI:

– Initially not designed for NUMA architectures or mixing of threads and
processes, MPI-2 supports threads in MPI

– API does not provide support for memory/thread placement
• Vendor specific APIs to control thread and memory placement:

– Environment variables

– System commands like numactl,taskset,dplace,omplace etc

� http://www.halobates.de/numaapi3.pdf

� More in “How-to’s”

Hybrid Parallel Programming
Slide 35 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Dell Linux Cluster Lonestar

Hybrid Parallel Programming

• Located at the Texas Advanced Computing Center (TACC), University of Texas
at Austin (http://www.tacc.utexas.edu)

• 1888 nodes, 2 Xeon Intel 6-Core 64-bit Westmere processors, 3.33 GHz, 24
GB memory per node, Peak Performance 160 Gflops per node, 3 channels
from each processor's memory controller to 3 DDR3 ECC DIMMS, 1333 MHz,

• Processor interconnect, QPI, 6.4GT/s

• Node Interconnect: InfiniBand Mellanox Switches, fat-tree topology, 40Gbit/sec
point-to-point bandwidth

• More details: http://www.tacc.utexas.edu/user-services/user-guides/lonestar-
user-guide

• Compiling the benchmarks:

• ifort 11.1, Options: -O3 –ipo –openmp –mcmodel=medium

• Running the benchmarks:

• MVAPICH 2

• setenv OMP_NUM_THREADS …

• ibrun tacc_affinity ./bt-mz.x

Slide 36 / 175

Rabenseifner, Hager, Jost

SUPERsmith

NUMA Control (numactl) – Example run script

Hybrid Parallel Programming

#!/bin/csh
#$ -cwd
#$ -j y
#$ -q systest
#$ -pe 12way 24
#$ -V
#$ -l h_rt=00:10:00
setenv OMP_NUM_THREADS 1
setenv MY_NSLOTS 16
ibrun tacc_affinity ./bin/sp-mz.D.

Run 12 MPI processes per node,
allocate 24 cores (2nodes) alltogether

1 thread per MPI process

Only use 16 of the 24
cores for MPI.
NOTE:
8 cores unused!!!

numactl script for
process/thread placementCommand to

run mpi job

Slide 37 / 175

Rabenseifner, Hager, Jost

SUPERsmith

NUMA Operations

Hybrid Parallel Programming

cmd option arguments description

Socket Affinity numactl -c {0,1,2,3}

Only execute
process on cores
of this (these)
socket(s).

Memory Policy numactl -l {no argument}
Allocate on
current socket.

Memory Policy numactl -i {0,1,2,3}
Allocate round
robin (interleave)
on these sockets.

Memory Policy numactl --preferred=
{0,1,2,3}
select only one

Allocate on this
socket; fallback
to any other if full
.

Memory Policy numactl -m {0,1,2,3}
Only allocate on
this (these)
socket(s).

Core Affinity numactl -C

{0,1,2,3,
4,5,6,7,
8,9,10,11,
12,13,14,15}

Only execute
process on this
(these) Core(s).

Slide 38 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Example numactl script

Hybrid Parallel Programming

myway=`echo $PE | sed s/way//`

export MV2_USE_AFFINITY=0

export MV2_ENABLE_AFFINITY=0

my_rank=$PMI_RANK

local_rank=$((my_rank % myway))

if [$myway -eq 12]; then

numnode=$((local_rank / 6))

fi

exec numactl -c $numnode -m $numnode $*

Slide 39 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Dell Linux Cluster Lonestar Topology

Hybrid Parallel Programming
Slide 40 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Dell Linux Cluster Lonestar Topology

Hybrid Parallel Programming

CPU type: Intel Core

Westmere processor

Hardware Thread Topology

Sockets: 2

Cores per socket: 6

Threads per core: 1

Socket 0: (1 3 5 7 9 11)

Socket 1: (0 2 4 6 8 10)

Careful!
Numbering scheme of

cores is system dependent

Slide 41 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

No idle cores

64
nodes

On
128 nodes

On
256 nodes

On
512
nodes

On
1024
nodes

BT-MZ
improves
using
hybrid as
expected
due to
better load
balance

Unexpected:
SP-MZ
improves in
some cases
using hybrid

Slide 42 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Pitfall (1): Running 2 threads on the same core

Hybrid Parallel Programming

09/26/07, Author:
Gabriele Jost

Running NPB BT-MZ Class D 128 MPI Procs, 12 threads each, 1 MPI per node (1way)

Pinning A:

exec numactl –c 0 -m 0 $*

Running 128 MPI Procs, 12 threads each

Pinning B:

exec numactl –c 0,1 -m 0,1 $*

Only use cores and memory on socket 0,
12 threads on 6 cores

Use cores and memory on 2 sockets

Slide 43 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Pitfall (2): Cause remote memory access

Hybrid Parallel Programming

09/26/07, Author:
Gabriele Jost

Running NPB BT-MZ Class D 128 MPI Procs, 6 threads each 2 MPI per node

Pinning A:

if [$localrank == 0]; then

exec numactl --physcpubind=0,1,2,3,4,5 -m 0 $*

elif [$localrank == 1]; then

exec numactl --physcpubind=6,7,8,9,10,11 -m 1 $*

fi

Running 128 MPI Procs, 6 threads each

Pinning B:

if [$localrank == 0]; then

exec numactl --physcpubind=0,2,4,6,8,10 -m 0 $*

elif [$localrank == 1]; then

exec numactl –physcpubind=1,3,5,7,9,11 -m 1 $*

fi

Half of the threads
access remote memory

600
Gflops

900
Gflops

900
Gflops

Only local memory
access

Slide 44 / 175

Rabenseifner, Hager, Jost

SUPERsmith

LU-MZ Class D Scalability on Lonestar

Hybrid Parallel Programming

• LU-MZ significantly benefits from hybrid mode:

- Pure MPI limited to 16 cores, due to #zones = 16

• Decrease of resource contention large contribution to improvement

G
F

lo
p
s

idle cores

Slide 45 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Cray XE6 Hermit

Hybrid Parallel Programming

CPU type: AMD Interlagos processor

Hardware Thread Topology

Sockets: 2

Cores per socket: 16

Threads per core: 1

---Socket 0:

+---+

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |

| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |

| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |

| +---+ +---+ |

| | 6MB | | 6MB | |

| +---+ +---+ |

• Located at HLRS Stuttgart, Germany (https://wickie.hlrs.de/platforms/index.php/Cray_XE6)

• 3552 compute nodes 113.664 cores

• Two AMD 6276 Interlagos processors with 16 cores each, running at 2.3 GHz (TurboCore 3.3GHz) per
node

• Around 1 Pflop theoretical peak performance

• 32 GB of main memory available per node

• 32-way shared memory system

• High-bandwidth interconnect using Cray Gemini communication chips

Slide 46 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

32K
cores

16K
cores8K

cores

Expected:
BT-MZ benefits from hybrid
approach:
- high number of MPI processes
yields bad workload distribution
-Best MPIxOMP combination
depends on problem size
Expected:
-Both benchmarks benefit by
increasing parallelism
Unexpected:
SP-MZ improves when reducing
number of MPI processes
BT-MZ 1024x32 unexpected low
performance

Cray XE6 Hermit Scalability, continued

Slide 47 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Cray XE6: CrayPat Performance Analysis

• module load xt-craypat

• Compilation:

� ftn –fastsse –r8 –mp[= trace]

• Instrument:

� pat_build –w –g mpi,omp bt.exe bt.exe.pat

• Execution :

� (export PAT_RT_HWPC {0,1,2,..})

� export OMP_NUM_THREADS 4

� aprun –n NPROCS –d 4 ./bt.exe.pat

• Generate report:

� pat_report –O
load_balance,thread_times,program_time,mpi_callers –O
profile_pe.th $1

Hybrid Parallel Programming

-d depth Specifies
the number of CPUs
for each PE and its
threads.

Slide 48 / 175

Rabenseifner, Hager, Jost

SUPERsmith

BT-MZ 32x4 Function Profile

Hybrid Parallel Programming
Slide 49 / 175

Rabenseifner, Hager, Jost

SUPERsmith

BT-MZ Load-Balance 32x4 vs 128x1

Hybrid Parallel Programming

bt-mz-C.32x4

bt-mz-C.128x1

• maximum, median, minimum PE are shown

• bt-mz.C.128x1 shows large imbalance in User
and MPI time

• bt-mz.C.32x4 shows well balanced times

Slide 50 / 175

Rabenseifner, Hager, Jost

SUPERsmith

IBM Power 6

• Results obtained by the courtesy of the HPCMO Program and the
Engineer Research and Development Center Major Shared
Resource Center, Vicksburg, MS (http://www.erdc.hpc.mil/index)

• The IBM Power 6 System is located at
(http://www.navo.hpc.mil/davinci_about.html)

• 150 Compute Nodes

• 32 4.7GHz Power6 Cores per Node (4800 cores total)

• 64 GBytes of dedicated memory per node

• QLOGOC Infiniband DDR interconnect

• IBM MPI: MPI 1.2 + MPI-IO

� mpxlf_r –O4 –qarch=pwr6 –qtune=pwr6 –qsmp=omp

• Execution:

� poe launch $PBS_O_WORKDIR./sp.C.16x4.exe

Hybrid Parallel Programming

Flag was essential to achieve full

compiler optimization in

presence of OMP directives!

Slide 51 / 175

Rabenseifner, Hager, Jost

SUPERsmith

NPB-MZ Class D on IBM Power 6:
Exploiting SMT for 2048 Core Results

Hybrid Parallel Programming

• Results for 128-2048
cores

• Only 1024 cores were
available for the
experiments

• BT-MZ and SP-MZ
show benefit from
Simultaneous
Multithreading (SMT):
2048 threads
on 1024 cores

128 cores

256 cores

1024 cores

512 cores

2
0

4
8

x1

Doubling the number of threads
through hyperthreading (SMT):
#!/bin/csh

#PBS -l select=32:ncpus=64:

mpiprocs=NP:ompthreads=NT

2048

“cores”

best of category

Slide 52 / 175

Rabenseifner, Hager, Jost

SUPERsmith

MPI+OpenMP memory usage of NPB-MZ

Hybrid Parallel Programming

Using more OpenMP threads reduces the memory usage substantially,
up to five times on Hopper Cray XT5 (eight-core nodes).

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger, Alice Koniges, Nicholas J. Wright:
Analyzing the Effect of Different Programming Models Upon Performance and Memory Usage on Cray

XT5 Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Always same
number of

cores

Slide 53 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Conclusions:

Hybrid Parallel Programming

• BT-MZ:

� Inherent workload imbalance on MPI level

� #nprocs = #nzones yields poor performance

� #nprocs < #zones => better workload balance, but decreases parallelism

� Hybrid MPI/OpenMP yields better load-balance,
maintains amount of parallelism

• SP-MZ:

� No workload imbalance on MPI level, pure MPI should perform best

� MPI/OpenMP outperforms MPI on some platforms due contention to
network access within a node

• LU-MZ:

� Hybrid MPI/OpenMP increases level of parallelism

• All Benchmarks:

• Decrease network pressure

• Lower memory requirements

• Good process/thread affinity essential

Slide 54 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

Georg Hager, Regionales Rechenzentrum Erlangen (RRZE)

• Mismatch Problems

• Application categories that can benefit from hybrid parallelization

• Other options on clusters of SMP nodes

• Summary

Hybrid Parallel Programming
Slide 55 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Programming How-To: Overview

• A practical introduction to hybrid programming

– How to compile and link

– Getting a hybrid program to run on a cluster

• Running (hybrid) programs efficiently on multi-core clusters

– Affinity issues
• ccNUMA

• Bandwidth bottlenecks

– MPI and OpenMP on real hardware: Intra-node anisotropy
• MPI communication characteristics

• OpenMP loop startup overhead

– Thread/process binding

Hybrid Parallel Programming
Slide 56 / 175

Rabenseifner, Hager, Jost

SUPERsmith

How to compile, link and run

• Use appropriate OpenMP compiler switch (-openmp, -fopenmp,
-mp, -qsmp=openmp, …) and MPI compiler script (if available)

• Link with MPI library

– Usually wrapped in MPI compiler script

– If required, specify to link against thread-safe MPI library
• Often automatic when OpenMP or auto-parallelization is switched on

• Running the code

– Highly non-portable! Consult system docs! (if available…)

– If you are on your own, consider the following points

– Make sure OMP_NUM_THREADS etc. is available on all MPI
processes

• Start “env VAR=VALUE … <YOUR BINARY>” instead of your binary alone

• Use Pete Wyckoff’s mpiexec MPI launcher (see below):
http://www.osc.edu/~pw/mpiexec

– Figure out how to start fewer MPI processes than cores on your
nodes

Hybrid Parallel Programming
Slide 57 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Examples for compilation and execution

Hybrid Parallel Programming

• Cray XE6 (4 NUMA domains w/ 8 cores each):

• ftn -h omp ...

• export OMP_NUM_THREADS=8

• aprun -n nprocs -N nprocs_per_node \

-d $OMP_NUM_THREADS a.out

• Intel Sandy Bridge (8-core 2-socket) cluster, Intel MPI/OpenMP

• mpiifort -openmp ...

• OMP_NUM_THREADS=8 mpirun –ppn 2 –np 4 \

-env I_MPI_PIN_DOMAIN socket \

-env KMP_AFFINITY scatter ./a.out

Slide 58 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Interlude: Advantages of mpiexec
or similar mechanisms

• Startup mechanism should use a resource manager interface to
spawn MPI processes on nodes

– As opposed to starting remote processes with ssh/rsh:
• Correct CPU time accounting in batch system

• Faster startup

• Safe process termination

• Allowing password-less user login not required between nodes

– Interfaces directly with batch system to determine number of
procs

• Provisions for starting fewer processes per node than available
cores

– Required for hybrid programming

– E.g., “-pernode” and “-npernode #” options – does not

require messing around with nodefiles

Hybrid Parallel Programming
Slide 59 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Running the code
More examples (with mpiexec)

• Example for using mpiexec on a dual-socket quad-core cluster:

$ export OMP_NUM_THREADS=8

$ mpiexec -pernode ./a.out

• Same but 2 MPI processes per node:

$ export OMP_NUM_THREADS=4

$ mpiexec -npernode 2 ./a.out

• Pure MPI:

$ export OMP_NUM_THREADS=1 # or nothing if serial code

$ mpiexec ./a.out

Hybrid Parallel Programming

Where do the
threads run?
� see later!

Slide 60 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Running the code efficiently?

• Symmetric, UMA-type compute nodes have become rare animals

– NEC SX

– Intel 1-socket (Xeon 12XX) – rare in cluster environments

– Hitachi SR8000, IBM SP2, single-core multi-socket Intel Xeon…
(all dead)

• Instead, systems have become “non-isotropic” on the node level

– ccNUMA (AMD Opteron, SGI Altix,
IBM Power7, Intel Sandy/Ivy Bridge)

– Multi-core, multi-socket
• Shared vs. separate caches

• Multi-chip vs. single-chip

• Separate/shared buses

Hybrid Parallel Programming
Slide 61 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Issues for running code efficiently
on “non-isotropic” nodes

• ccNUMA locality effects

– Penalties for access across locality domains

– Impact of contention

– Consequences of file I/O for page placement

– Placement of MPI buffers

• Multi-core / multi-socket anisotropy effects

– Bandwidth bottlenecks, shared caches

– Intra-node MPI performance
• Core ↔ core vs. socket ↔ socket

– OpenMP loop overhead depends on mutual position of threads
in team

Hybrid Parallel Programming
Slide 62 / 175

Rabenseifner, Hager, Jost

SUPERsmith

A short introduction to ccNUMA

• ccNUMA:

– whole memory is transparently accessible by all processors

– but physically distributed

– with varying bandwidth and latency

– and potential contention (shared memory paths)

Hybrid Parallel Programming

C C C C

M M

C C C C

M M

Slide 63 / 175

Rabenseifner, Hager, Jost

SUPERsmith

How much bandwidth does non-local access cost?

• Example: AMD Magny Cours 4-socket system (8 chips, 4 sockets)
STREAM Triad bandwidth measurements

Hybrid Parallel Programming

0

1

2

3

6

7

4

5

Slide 64 / 175

Rabenseifner, Hager, Jost

SUPERsmith

How much bandwidth does non-local access cost?

• Example: Intel Sandy Bridge 2-socket system (2 chips, 2 sockets)
STREAM Triad bandwidth measurements

Hybrid Parallel Programming

0 1

General rule:

The more ccNUMA domains, the
larger the non-local access penalty

Slide 65 / 175

Rabenseifner, Hager, Jost

SUPERsmith

ccNUMA Memory Locality Problems

• Locality of reference is key to scalable performance on ccNUMA

– Less of a problem with pure MPI, but see below

• What factors can destroy locality?

• MPI programming:

– processes lose their association with the CPU the mapping took
place on originally

– OS kernel tries to maintain strong affinity, but sometimes fails

• Shared Memory Programming (OpenMP, hybrid):

– threads losing association with the CPU the mapping took place on
originally

– improper initialization of distributed data

– Lots of extra threads are running on a node, especially for hybrid

• All cases:

– Other agents (e.g., OS kernel) may fill memory with data that
prevents optimal placement of user data

Hybrid Parallel Programming
Slide 66 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Avoiding locality problems

• How can we make sure that memory ends up where it is close to
the CPU that uses it?

– See the following slides

• How can we make sure that it stays that way throughout program
execution?

– See end of section

Hybrid Parallel Programming
Slide 67 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Solving Memory Locality Problems: First Touch

• "Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the
processor that first touches it!

– Except if there is not enough local memory available

– this might be a problem, see later

– Some OSs allow to influence placement in more direct ways
• cf. libnuma (Linux), MPO (Solaris), …

• Caveat: "touch" means "write", not "allocate"

• Example:

double *huge = (double*)malloc(N*sizeof(double));

// memory not mapped yet

for(i=0; i<N; i++) // or i+=PAGE_SIZE

huge[i] = 0.0; // mapping takes place here!

• It is sufficient to touch a single item to map the entire page

Hybrid Parallel Programming
Slide 68 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Most simple case: explicit initialization

Hybrid Parallel Programming

integer,parameter :: N=10000000

double precision A(N), B(N)

A=0.d0

!$OMP parallel do

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end parallel do

integer,parameter :: N=10000000

double precision A(N),B(N)

!$OMP parallel

!$OMP do schedule(static)

do i = 1, N

A(i)=0.d0

end do

!$OMP end do

...

!$OMP do schedule(static)

do i = 1, N

B(i) = function (A(i))

end do

!$OMP end do

!$OMP end parallel

Slide 69 / 175

Rabenseifner, Hager, Jost

SUPERsmith

ccNUMA problems beyond first touch

• OS uses part of main memory for
disk buffer (FS) cache

– If FS cache fills part of memory,
apps will probably allocate from
foreign domains

– � non-local access!

– Locality problem even on hybrid
and pure MPI with “asymmetric”
file I/O, i.e. if not all MPI processes
perform I/O

• Remedies

– Drop FS cache pages after user job has run (admin’s job)
• Only prevents cross-job buffer cache “heritage”

– “Sweeper” code (run by user)

– Flush buffer cache after I/O if necessary (“sync” is not
sufficient!)

Hybrid Parallel Programming

P0
C

P1
C

C C

MI

P2
C

P3
C

C C

MI

BC

data(3)

BC

data(3)
d

a
ta

(1
)

Slide 70 / 175

Rabenseifner, Hager, Jost

SUPERsmith

ccNUMA problems beyond first touch:
Buffer cache

Real-world example: ccNUMA and the Linux buffer cache

Benchmark:

1. Write a file of some size
from LD0 to disk

2. Perform bandwidth
benchmark using
all cores in LD0 and
maximum memory
installed in LD0

Result: By default,
Buffer cache is given
priority over local
page placement

� restrict to local
domain if possible!

Hybrid Parallel Programming

Cray: aprun -ss

Slide 71 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Intra-node MPI characteristics: IMB Ping-Pong benchmark

• Code (to be run on 2 cores):

• Intranode (1S): aprun -n 2 -cc 0,1 ./a.out

• Intranode (2S): aprun –n 2 -cc 0,16 ./a.out

• Internode: aprun –n 2 –N 1 ./a.out
Hybrid Parallel Programming

wc = MPI_WTIME()

do i=1,NREPEAT

if(rank.eq.0) then

MPI_SEND(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD,ierr)

MPI_RECV(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD, &

status,ierr)

else

MPI_RECV(…)

MPI_SEND(…)

endif

enddo

wc = MPI_WTIME() - wc C
ra

y
X

E
6
 n

o
d
e

Slide 72 / 175

Rabenseifner, Hager, Jost

SUPERsmith

IMB Ping-Pong: Latency
Intra-node vs. Inter-node on Cray XE6

0

0,2

0,4

0,6

0,8

1

1,2

1,4

1,6

1,8

internode intranode 2S intranode 1S

1,8

0,56

0,3

L
a
te

n
c
y
 [

µ
s
]

Hybrid Parallel Programming

Affinity matters!

Slide 73 / 175

Rabenseifner, Hager, Jost

SUPERsmith

IMB Ping-Pong: Bandwidth Characteristics
Intra-node vs. Inter-node on Cray XE6

Hybrid Parallel Programming

Between two cores of
one socket

Between two nodes
via InfiniBand

Between two sockets
of one node

Slide 74 / 175

Rabenseifner, Hager, Jost

SUPERsmith

The throughput-parallel vector triad benchmark
Microbenchmarking for architectural exploration

• Every core runs its own, independent triad benchmark

• � pure hardware probing, no impact from OpenMP overhead

Hybrid Parallel Programming

double precision, dimension(:), allocatable :: A,B,C,D

!$OMP PARALLEL private(i,j,A,B,C,D)

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

do j=1,NITER

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

!$OMP END PARALLEL

Slide 75 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Throughput vector triad on Sandy Bridge socket (3 GHz)

Hybrid Parallel Programming

Saturation effect
in memory

Scalable BW in
L1, L2, L3 cache

Slide 76 / 175

Rabenseifner, Hager, Jost

SUPERsmith

The OpenMP-parallel vector triad benchmark
Visualizing OpenMP overhead

• OpenMP work sharing in the benchmark loop

Hybrid Parallel Programming

double precision, dimension(:), allocatable :: A,B,C,D

allocate(A(1:N),B(1:N),C(1:N),D(1:N))

A=1.d0; B=A; C=A; D=A

!$OMP PARALLEL private(i,j)

do j=1,NITER

!$OMP DO

do i=1,N

A(i) = B(i) + C(i) * D(i)

enddo

!$OMP END DO

if(.something.that.is.never.true.) then

call dummy(A,B,C,D)

endif

enddo

!$OMP END PARALLEL

Implicit barrier

Slide 77 / 175

Rabenseifner, Hager, Jost

SUPERsmith

OpenMP vector triad on Sandy Bridge socket (3 GHz)

Hybrid Parallel Programming

sync overhead
grows with # of
threads

bandwidth
scalability
across memory
interfaces

Slide 78 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Thread synchronization overhead on SandyBridge-EP
Direct measurement of barrier overhead in CPU cycles

Hybrid Parallel Programming

2 Threads Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Shared L3 384 5242 4616

SMT threads 2509 3726 3399

Other socket 1375 5959 4909

Gcc still not very competitive

Intel compiler

Full domain Intel 13.1.0 GCC 4.7.0 GCC 4.6.1

Socket 1497 14546 14418

Node 3401 34667 29788

Node +SMT 6881 59038 58898

Slide 79 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Thread/Process Affinity (“Pinning”)

• Highly OS-dependent system calls

– But available on all systems

Linux: sched_setaffinity(), PLPA � hwloc
Windows: SetThreadAffinityMask()
…

• Support for “semi-automatic” pinning in some
compilers/environments

– Intel compilers > V9.1 (KMP_AFFINITY environment variable)

– Pathscale

– Generic Linux: taskset, numactl, likwid-pin (see below)

– OpenMP 4.0: Support for affinity

• Affinity awareness in MPI libraries

– Cray MPI

– OpenMPI

– Intel MPI

– …
Hybrid Parallel Programming
Slide 80 / 175

Rabenseifner, Hager, Jost

SUPERsmith

How do we figure out the topology?

• … and how do we enforce the mapping without changing the code?

• Compilers and MPI libs may still give you ways to do that

• But LIKWID supports all sorts of combinations:

Like
I
Knew
What
I’m
Doing

• Open source tool collection (developed at RRZE):

http://code.google.com/p/likwid

Hybrid Parallel Programming
Slide 81 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Likwid Tool Suite

• Command line tools for Linux:

– works with standard linux >= 2.6 kernel

– supports Intel and AMD CPUs

– Supports all compilers whose OpenMP implementation is based on
pthreads

• Current tools:

– likwid-topology: Print thread and cache topology
(similar to lstopo from the hwloc package)

– likwid-pin: Pin threaded application without touching code

– likwid-perfctr: Measure performance counters

– likwid-perfscope: Performance oscilloscope w/ real-time display

– likwid-powermeter: Current power consumption of chip (alpha stage)

– likwid-features: View and enable/disable hardware prefetchers

– likwid-bench: Low-level bandwidth benchmark generator tool

– likwid-mpirun: mpirun wrapper script for easy LIKWID integration

Hybrid Parallel Programming
Slide 82 / 175

Rabenseifner, Hager, Jost

SUPERsmith

likwid-topology – Topology information

• Based on cpuid information

• Functionality:

– Measured clock frequency

– Thread topology

– Cache topology

– Cache parameters (-c command line switch)

– ASCII art output (-g command line switch)

• Currently supported:

– Intel Core 2 (45nm + 65 nm)

– Intel Nehalem, Westmere, Sandy Bridge

– AMD Magny Cours, Interlagos

– Intel Xeon Phi in beta stage

Hybrid Parallel Programming
Slide 83 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Output of likwid-topology

Hybrid Parallel Programming

CPU name: Intel Core i7 processor

CPU clock: 2666683826 Hz

Hardware Thread Topology

Sockets: 2

Cores per socket: 4

Threads per core: 2

HWThread Thread Core Socket

0 0 0 0

1 1 0 0

2 0 1 0

3 1 1 0

4 0 2 0

5 1 2 0

6 0 3 0

7 1 3 0

8 0 0 1

9 1 0 1

10 0 1 1

11 1 1 1

12 0 2 1

13 1 2 1

14 0 3 1

15 1 3 1

Slide 84 / 175

Rabenseifner, Hager, Jost

SUPERsmith

likwid-topology continued

• … and also try the ultra-cool -g option!

Hybrid Parallel Programming

Socket 0: (0 1 2 3 4 5 6 7)

Socket 1: (8 9 10 11 12 13 14 15)

Cache Topology

Level: 1

Size: 32 kB

Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 2

Size: 256 kB

Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 3

Size: 8 MB

Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15)

Slide 85 / 175

Rabenseifner, Hager, Jost

SUPERsmith

likwid-pin

• Inspired and based on ptoverride (Michael Meier, RRZE) and taskset

• Pins process and threads to specific cores without touching code

• Directly supports pthreads, gcc OpenMP, Intel OpenMP

• Allows user to specify skip mask (i.e., supports many different compiler/MPI

combinations)

• Can also be used as replacement for taskset

• Uses logical (contiguous) core numbering when running inside a restricted

set of cores

• Supports logical core numbering inside node, socket, core

• Usage examples:

– env OMP_NUM_THREADS=6 likwid-pin -c 0,1,2,4-6 ./myApp parameters

– env OMP_NUM_THREADS=6 likwid-pin –c S0:0-2@S1:0-2 ./myApp

Hybrid Parallel Programming
Slide 86 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning

no pinning

Pinning (round-robin across
sockets, physical cores first)

Slide 87 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Likwid-pin
Example: Intel OpenMP

• Running the STREAM benchmark with likwid-pin:

Hybrid Parallel Programming

$ export OMP_NUM_THREADS=4

$ likwid-pin -c 0,1,4,5 ./stream

[likwid-pin] Main PID -> core 0 - OK

--

Double precision appears to have 16 digits of accuracy

Assuming 8 bytes per DOUBLE PRECISION word

--

[... some STREAM output omitted ...]

The *best* time for each test is used

EXCLUDING the first and last iterations

[pthread wrapper] PIN_MASK: 0->1 1->4 2->5

[pthread wrapper] SKIP MASK: 0x1

[pthread wrapper 0] Notice: Using libpthread.so.0

threadid 1073809728 -> SKIP

[pthread wrapper 1] Notice: Using libpthread.so.0

threadid 1078008128 -> core 1 - OK

[pthread wrapper 2] Notice: Using libpthread.so.0

threadid 1082206528 -> core 4 - OK

[pthread wrapper 3] Notice: Using libpthread.so.0

threadid 1086404928 -> core 5 - OK

[... rest of STREAM output omitted ...]

Skip shepherd
thread

Main PID always
pinned

Pin all spawned
threads in turn

Slide 88 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Topology (“mapping”) choices with MPI+OpenMP:
More examples using Intel MPI+compiler & home-grown mpirun

One MPI process per

node

One MPI process per

socket

OpenMP threads

pinned “round robin”

across cores

in node

Two MPI processes

per socket
Hybrid Parallel Programming

env OMP_NUM_THREADS=8 mpirun -pernode \

likwid-pin -c 0-7 ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \

-pin "0,1,2,3_4,5,6,7" ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \

-pin "0,1,4,5_2,3,6,7" \

likwid-pin -c L:0,2,1,3 ./a.out

env OMP_NUM_THREADS=2 mpirun -npernode 4 \

-pin "0,1_2,3_4,5_6,7" \

likwid-pin -c L:0,1 ./a.out

Slide 89 / 175

Rabenseifner, Hager, Jost

SUPERsmith

MPI/OpenMP hybrid “how-to”: Take-home messages

• Learn how to take control of hybrid execution!

• Always observe the topology dependence of

– Intranode MPI

– OpenMP overheads

– Saturation effects / scalability behavior with bandwidth-bound
code

• Enforce proper thread/process to core binding, using appropriate
tools (whatever you use, but use SOMETHING)

• Multi-LD OpenMP processes on ccNUMA nodes require correct
page placement

Hybrid Parallel Programming
Slide 90 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Other options on clusters of SMP nodes

• Summary

Slide 91 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Mismatch Problems

• None of the programming models
fits to the hierarchical hardware
(cluster of SMP nodes)

• Several mismatch problems

� following slides

• Benefit through hybrid programming

� Opportunities, see next section

• Quantitative implications

� depends on you application

Examples: No.1 No.2

Benefit through hybrid (see next section) 30% 10%
Loss by mismatch problems –10% –25%

Total +20% –15%

In most
cases:
Both
categories!

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes

Slide 92 / 175

Rabenseifner, Hager, Jost

SUPERsmith

The Topology Problem

Problem

– Application topology is mapped to the hardware topology

� communication topology and message sizes

� communication overhead

Partially independent of the programming model:

Simplifications:

Hybrid Parallel Programming

pure MPI hybrid MPI+OpenMP Hybrid MPI+MPI

SMP node:
O(N3) data items per node

Cluster network:
O(N2) neighbor communication per neighbor

Slide 93 / 175

Rabenseifner, Hager, Jost

SUPERsmith

The Topology Problem,
without inner halo communication

• Communication only through
neighbor accesses between d ccNUMA domains

• Compare the ccNUMA communication
(s = communication size per domain)
(Example: d=8 ccNUMA domains)

– 1-dimensional data decomposition s ~ 2 ∗ � ∗ � = 2 ∗ �
�

– 3-dimensional data decomposition s ~ 6 ∗
�

�
∗
�

�
= 1.5 ∗ �

�

between the ccNUMA domains

hybrid MPI+OpenMP

Hybrid MPI+MPI

No real win!
Don’t care about dimensions within

the SMP nodes!
Make your software simple!

Hybrid Parallel Programming
Slide 94 / 175

Rabenseifner, Hager, Jost

SUPERsmith

The Topology Problem,
with inner halo communication

With halo cells and halo communication between the cores:

We ignore differences in core-to-core communication speed
• within ccNUMA domain, and
• between ccNUMA domains of one SMP node

Example with c=32 cores per SMP node

– c=32 and 1-dimensional data decomposition:
s ~ 2 ∗ � ∗ � = 2 ∗ �

�

– c=32 and 3-dimensional data decomposition (4x4x2):

s ~ 2 ∗
�

�
∗
�

�
+

�

�
∗
�

�
+

�

�
∗
�

�
= 0.63 ∗ �

�

– In general: win = s1−dim
s3−dim

=
c�

�

3

Hybrid Parallel Programming

pure MPI

Hybrid MPI+MPI

(s = communication size per core)

N

N

�

�

c=16, 32, 64, … � win= factor 2, 3, 5, … ! Real win?
You may not care as long as your inner-node

communication is below xx% !
Make your software simple !?

�

�

�

�

Slide 95 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

The Mapping Problem with mixed model

Several multi-threaded MPI
process per SMP node:

Problem

– Where are your processes
and threads really located?

Solutions:

– Depends on your platform,

– e.g., with numactl

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

MPI

process

4 x multi-

threaded

MPI

process

4 x multi-

threaded

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

Do we have this? … or that?

MPI

pro-

cess

0

MPI

pro-

cess

1

� Case study on
Sun Constellation Cluster

Ranger
with BT-MZ and SP-MZ

Further questions:

– Where is the NIC1) located?

– Which cores share caches?

1) NIC = Network Interface Card

hybrid MPI+OpenMP

Hybrid MPI+MPI

pure MPI

Slide 96 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Unnecessary intra-node communication

Problem:

– If several MPI process on each SMP node
� unnecessary intra-node communication

Solution:

– MPI+OpenMP: Only one MPI process per SMP node

– MPI+MPI: No halo-communication within an SMP node

Remarks:

– MPI communication within an SMP node: 2 copies
(user send buffer � shared memory � user recv buffer)

– MPI-3 shared memory halo commincation: 1 copy
(user send buffer � user recv buffer)

– MPI-3 with direct access to neighbor data: 0 copy

Mixed model
(several multi-threaded MPI
processes per SMP node)

pure MPI

Hybrid MPI+MPI
(with halo communication)

pure MPI &
Mixed model

Hybrid MPI+MPI
(with halo communication)

Hybrid MPI+MPI
(with direct neighbor access)

Slide 97 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Sleeping threads and network saturation
with

Problem 1:
– Can the master thread

saturate the network?
Solution:
– If not, use mixed model
– i.e., several MPI

processes per SMP node

Problem 2:
– Sleeping threads are

wasting CPU time
Solution:
– Overlapping of

computation and
communication

Problem 1&2 together:
– Producing more idle time

through lousy bandwidth
of master thread

for (iteration ….)

{

#pragma omp parallel
numerical code

/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside of

parallel regions

Node Interconnect

Master
thread

Socket 1

SMP node SMP node

Socket 2

Master
thread

Socket 1

Socket 2

Master
thread

Master
thread

hybrid
MPI+OpenMP

Slide 98 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

OpenMP: Additional Overhead & Pitfalls

• Using OpenMP

� may prohibit compiler optimization

� may cause significant loss of computational performance

• Thread fork / join overhead

• On ccNUMA SMP nodes:

– Loss of performance due to missing memory page locality
or missing first touch strategy

– E.g. with the masteronly scheme:

• One thread produces data

• Master thread sends the data with MPI

�data may be internally communicated from one memory to the other one

• Amdahl’s law for each level of parallelism

• Using MPI-parallel application libraries? � Are they prepared for hybrid?

• Using thread-local application libraries? � Are they thread-safe?

See, e.g., the necessary –O4 flag with
mpxlf_r on IBM Power6 systems

hybrid
MPI+OpenMP

Slide 99 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

MPI-3 shared memory programming

• Pros

– ISV and application libraries need not to be thread-safe

– No additional OpenMP overhead

– No OpenMP problems

• Cons

– Library calls (MPI_WIN_ALLOCATE_SHARED)
instead of SHARED / PRIVATE compiler directives

– No work-sharing directives
• Loop scheduling must be programmed by hand

– No support for fine-grained or auto-balanced work-sharing
• As with OpenMP tasks, and dynamic or guided loop schedule

– Virtual addresses of a shared memory window may be different in
each MPI process
� no binary pointers
� i.e., linked lists must be stored with offsets rather than pointers

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

Slide 100 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Parallel Programming Models on Hybrid Platforms

No overlap of
Comm. + Comp.
MPI only outside of

parallel regions
of the numerical
application code

Overlapping
Comm. + Comp.

MPI communication by
one or a few threads

while other threads are
computing

pure MPI
one MPI
process

on each core

hybrid MPI+OpenMP
MPI: inter-node
communication

OpenMP: inside of each
SMP node

OpenMP only

distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Hybrid MPI+MPI
MPI for inter-node

communication
+ MPI-3.0 shared memory

programming

Within shared
memory nodes:
Halo updates
through direct

data copy

Within shared
memory nodes:

No halo updates,
direct access to
neighbor data

new

new new

Funneled
MPI only

on master-thread

Multiple
more than one thread

may communicate

Funneled &
Reserved

reserved thread
for communication

Funneled
with

Full Load
Balancing

Slide 101 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Overlapping communication and computation

Three problems:

• the application problem:

– one must separate application into:
• code that can run before the halo data is received

• code that needs halo data

�very hard to do !!!

• the thread-rank problem:

– comm. / comp. via
thread-rank

– cannot use
work-sharing directives

�loss of major
OpenMP support
(see next slide)

• the load balancing problem

if (my_thread_rank < 1) {

MPI_Send/Recv….

} else {

my_range = (high-low-1) / (num_threads-1) + 1;

my_low = low + (my_thread_rank+1)*my_range;

my_high=high+ (my_thread_rank+1+1)*my_range;

my_high = max(high, my_high)

for (i=my_low; i<my_high; i++) {

….

}

}

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Slide 102 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Experiment: Matrix-vector-multiply (MVM)

• Jacobi-Davidson-Solver
on IBM SP Power3 nodes
with 16 CPUs per node

• funneled&reserved is
always faster in this
experiments

• Reason:
Memory bandwidth
is already saturated
by 15 CPUs, see inset

• Inset:
Speedup on 1 SMP node
using different
number of threads

funneled &
reserved

Masteronly

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures.
International Journal of High Performance Computing Applications, Vol. 17, No. 1, 2003, Sage Science Press .

fu
n

n
e

le
d

 &
 r

e
s

e
rv

e
d

is
 f

a
s

te
r

m
a

s
te

ro
n

ly
is

 f
a

s
te

rp
e
rf

o
rm

a
n

c
e
 r

a
ti

o

(r

)

Slide 103 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Overlapping: Using OpenMP tasks

Hybrid Parallel Programming

NEW OpenMP Tasking Model gives a new way to achieve more parallelism
form hybrid computation.

Slides, courtesy of Alice Koniges, NERSC, LBNL

Alice Koniges et al.:
Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide 104 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Case study: Communication and Computation in
Gyrokinetic Tokamak Simulation (GTS) shift routine

Hybrid Parallel Programming

Work on particle array (packing for sending, reordering, adding after
sending) can be overlapped with data independent MPI
communication using OpenMP tasks.

IN
D

E
P

E
N

D
E

N
T

IN
D

E
P

E
N

D
E

N
T

S
E

M
I-IN

D
E

P
E

N
D

E
N

T

GTS shift routine

Slides, courtesy of Alice Koniges, NERSC, LBNL

Slide 105 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Overlapping can be achieved with OpenMP tasks (1st part)

Hybrid Parallel Programming

Overlapping MPI_Allreduce with particle work

• Overlap: Master thread encounters (!$omp master) tasking statements and creates
work for the thread team for deferred execution. MPI Allreduce call is immediately
executed.

• MPI implementation has to support at least MPI_THREAD_FUNNELED

• Subdividing tasks into smaller chunks to allow better load balancing and scalability

among threads.
Slides, courtesy of Alice Koniges, NERSC, LBNL

Slide 106 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Overlapping can be achieved with OpenMP tasks (2nd part)

Hybrid Parallel Programming

Overlapping particle reordering

Overlapping remaining MPI_Sendrecv

Particle reordering of remaining
particles (above) and adding sent
particles into array (right) & sending
or receiving of shifted particles can
be independently executed.

Slides, courtesy of Alice Koniges, NERSC, LBNL

Slide 107 / 175

Rabenseifner, Hager, Jost

SUPERsmith

OpenMP tasking version outperforms original shifter,
especially in larger poloidal domains

Hybrid Parallel Programming

• Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI pro-
cess with varying domain decomposition and particles per cell on Franklin Cray XT4.

• MPI communication in the shift phase uses a toroidal MPI communicator
(constantly 128).

• Large performance differences in the 256 MPI run compared to 2048 MPI run!

• Speed-Up is expected to be higher on larger GTS runs with hundreds of thousands
CPUs since MPI communication is more expensive.

256 size run 2048 size run

Slides, courtesy of
Alice Koniges, NERSC, LBNL

Slide 108 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid
parallelization

• Other options on clusters of SMP nodes

• Summary

Slide 109 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Nested Parallelism

• Example NPB: BT-MZ (Block tridiagonal simulated CFD application)

– Outer loop:

• limited number of zones ���� limited parallelism

• zones with different workload ���� speedup <

– Inner loop:

• OpenMP parallelized (static schedule)

• Not suitable for distributed memory parallelization

• Principles:

– Limited parallelism on outer level

– Additional inner level of parallelism

– Inner level not suitable for MPI

– Inner level may be suitable for static OpenMP worksharing

Sum of workload of all zones
Max workload of a zone

Slide 110 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Load-Balancing
(on same or different level of parallelism)

• OpenMP enables

– Cheap dynamic and guided load-balancing

– Just a parallelization option (clause on omp for / do directive)

– Without additional software effort

– Without explicit data movement

• On MPI level

– Dynamic load balancing requires
moving of parts of the data structure through the network

– Significant runtime overhead

– Complicated software / therefore not implemented

• MPI & OpenMP

– Simple static load-balancing on MPI level, medium quality
dynamic or guided on OpenMP level cheap implementation

#pragma omp parallel for schedule(dynamic)
for (i=0; i<n; i++) {
/* poorly balanced iterations */ …

}

Slide 111 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Memory consumption

• Shared nothing

– Heroic theory

– In practice: Some data is duplicated

• MPI & OpenMP
With n threads per MPI process:

– Duplicated data may be reduced by factor n

Slide 112 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Case study: MPI+OpenMP memory usage of NPB

Hybrid Parallel Programming

Using more
OpenMP threads
could reduce the
memory usage
substantially,
up to five times on
Hopper Cray XT5
(eight-core nodes).

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger,
Alice Koniges, Nicholas J. Wright:
Analyzing the Effect of Different Programming Models Upon
Performance and Memory Usage on Cray XT5 Platorms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide, courtesy of
Alice Koniges, NERSC, LBLN

Always same
number of cores

Slide 113 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

How many threads per MPI process?

• SMP node = with m sockets (NUMA domains) and n cores/socket

• How many threads (i.e., cores) per MPI process?

– Too many threads per MPI process
� overlapping of MPI and computation may be necessary,
� some NICs unused?

– Too few threads
� too much memory consumption (see previous slides)

• Optimum

– somewhere between 1 and m x n threads per MPI process,

– Typical optima:
• 1 MPI process per socket

• 2 MPI processes per socket

• Seldom: 1 MPI process per whole SMP node

Slide 114 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

To overcome MPI scaling problems

compared to pure MPI
• Reduced number of MPI messages,

reduced aggregated message size

• MPI has a few scaling problems

– Handling of more than 10,000 MPI processes

– Irregular Collectives: MPI_....v(), e.g. MPI_Gatherv()

� Scaling applications should not use MPI_....v() routines

– MPI-2.1 Graph topology (MPI_Graph_create)

� MPI-2.2 MPI_Dist_graph_create_adjacent

– Creation of sub-communicators with MPI_Comm_create

� MPI-2.2 introduces a new scaling meaning of MPI_Comm_create

– … see P. Balaji, et al.: MPI on a Million Processors. Proceedings EuroPVM/MPI 2009.

• Hybrid programming reduces all these problems (due to a smaller number of processes)

Slide 115 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Opportunities, if MPI speedup is limited due to
algorithmic problems

• Algorithmic opportunities due to larger physical domains inside of
each MPI process

� If multigrid algorithm only inside of MPI processes

� If separate preconditioning inside of MPI nodes and between
MPI nodes

� If MPI domain decomposition is based on physical zones

Slide 116 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Summary: Opportunities of hybrid parallelization
(MPI & OpenMP)

• Nested Parallelism

� Outer loop with MPI / inner loop with OpenMP

• Load-Balancing

� Using OpenMP dynamic and guided worksharing

• Memory consumption

� Significantly reduction of replicated data on MPI level

• Reduced MPI scaling problems

� Significantly reduced number of MPI processes

• Opportunities, if MPI speedup is limited due to algorithmic problem

� Significantly reduced number of MPI processes

Slide 117 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Other options on clusters of SMP nodes

– Multi-core aware Domain-Decomposition (Rolf Rabenseifner)

– Remarks on MPI scalability / Cache Optimization / Cost-benefit /PGAS (R.R.)

– Hybrid programming and accelerators (Gabriele Jost)

• Summary

Slide 118 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Multicore-aware
Hierarchical Cartesian DD

0

0 1 2 3

0 1 2 3

1

0 1 2 3

4 5 6 7

2

0 1 2 3

8 9 10 11

3

0 1 2 3

12 13 14 15

11 3

10 2

9 1

8 0

7 3

6 2

5 1

4 0

3 3

2 2

1 1

0 0

3 1
2 0

1 1
0 0

0

1

2

0

1

x

Coordinate 0

y

Coordinate 1

z = Coordinate 2

Node coord.

coord. in SMP

Global coord.

Hybrid MPI+MPI

pure MPI

Major result:
New global communicator

with
• minimal node-to-node &

• optimal intra-node
communication

Implementation hints on
following (skipped) slide

Slide 119 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Hierarchical Cartesian DD (Step 1)

// Input: Original communicator: MPI_Comm comm_orig; (e.g. MPI_COMM_WORLD)

// Number of dimensions: int ndims = 3;

// Global periods: int periods_global[] = /*e.g.*/ {1,0,1};

MPI_Comm_size (comm_orig, &size_global);

MPI_Comm_rank (comm_orig, &myrank_orig);

// Establish a communicator on each SMP node:

MPI_Comm_split_type (comm_orig, MPI_COMM_TYPE_SHARED, 0, MPI_INFO_NULL, &comm_smp_flat);

MPI_Comm_size (comm_smp_flat, &size_smp);

int dims_smp[] = {0,0,0}; int periods_smp[] = {0,0,0} /*always non-period*/;

MPI_Dims_create (size_smp, ndims, dims_smp);

MPI_Cart_create (comm_smp_flat, ndims, dims_smp, periods_smp, /*reorder=*/ 1, &comm_smp_cart);

MPI_Comm_free (&comm_smp_flat);

MPI_Comm_rank (comm_smp_cart, &myrank_smp);

MPI_Cart_coords (comm_smp_cart, myrank_smp, ndims, mycoords_smp);

// This source code requires that all SMP nodes have the same size. It is tested:

MPI_Allreduce (&size_smp, &size_smp_min, 1, MPI_INT, MPI_MIN, comm_orig);

MPI_Allreduce (&size_smp, &size_smp_max, 1, MPI_INT, MPI_MAX, comm_orig);

if (size_smp_min < size_smp_max) { printf("non-equal SMP sizes\n"); MPI_Abort (comm_orig, 1); }

Hybrid MPI+MPI

pure MPI

Slide 120 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Hierarchical Cartesian DD (Step 2)

// Establish the node rank. It is calculated based on the sequence of ranks in comm_orig

// in the processes with myrank_smp == 0:

MPI_Comm_split (comm_orig, myrank_smp, 0, &comm_nodes_flat);

// Result: comm_nodes_flat combines all processes with a given myrank_smp into a separate communicator.

// Caution: The node numbering within these comm_nodes-flat may be different.

// The following source code expands the numbering from comm_nodes_flat with myrank_smp == 0

// to all node-to-node communicators:

MPI_Comm_size (comm_nodes_flat, &size_nodes);

int dims_nodes[] = {0,0,0}; for (i=0; i<ndims; i++) periods_nodes[i] = periods_global[i];

MPI_Dims_create (size_nodes, ndims, dims_nodes);

if (myrank_smp==0) {

MPI_Cart_create (comm_nodes_flat, ndims, dims_nodes, periods_nodes, 1, &comm_nodes_cart);

MPI_Comm_rank (comm_nodes_cart, &myrank_nodes);

MPI_Comm_free (&comm_nodes_cart); /*was needed only to calculate myrank_nodes*/
}

MPI_Comm_free (&comm_nodes_flat);

MPI_Bcast (&myrank_nodes, 1, MPI_INT, 0, comm_smp_cart);

MPI_Comm_split (comm_orig, myrank_smp, myrank_nodes, &comm_nodes_flat);

MPI_Cart_create (comm_nodes_flat, ndims, dims_nodes, periods_nodes, 0, &comm_nodes_cart);

MPI_Cart_coords (comm_nodes_cart, myrank_nodes, ndims, mycoords_nodes);

MPI_Comm_free (&comm_nodes_flat);
Copying it for the

other processes in
each SMP node

Optimization according to
inter-node network of the first
processes in each SMP node

Hybrid MPI+MPI

pure MPI

Slide 121 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid MPI+MPI

pure MPI

Hybrid Parallel Programming

Hierarchical Cartesian DD
Result of Step2

0

0 1 2 3

0 1 2 3

1

0 1 2 3

4 5 6 7

2

0 1 2 3

8 9 10 11

3

0 1 2 3

12 13 14 15

11 3

10 2

9 1

8 0

7 3

6 2

5 1

4 0

3 3

2 2

1 1

0 0

3 1
2 0

1 1
0 0

0

1

2

0

1y

Coordinate 1

z = Coordinate 2

mycoords_nodes

mycoords_smp

mycoords_global

comm_smp_cart
for all processes with
coord_nodes== {1,2,0}

comm_nodes_cart
for all processes with

mycoord_smp== {2,3,1}

Coordinate 0
x

Slide 122 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Hierarchical Cartesian DD (Step 3)

// Establish the global Cartesian communicator:

for (i=0; i<ndims; i++) { dims_global[i] = dims_smp[i] * dims_nodes[i];

mycoords_global[i] = mycoords_nodes[i] * dims_smp[i] + mycoords_smp[i];

}

myrank_global = mycoords_global[0];

for (i=1; i<ndims; i++) { myrank_global = myrank_global * dims_global[i] + mycoords_global[i]; }

MPI_Comm_split (comm_orig, /*color*/ 0, myrank_global, &comm_global_flat);

MPI_Cart_create (comm_global_flat, ndims, dims_global, periods_global, 0, &comm_global_cart);

MPI_Comm_free (&comm_global_flat);

// Result:

// Input was:

// comm_orig, ndims, periods_global

// Result is:

// comm_smp_cart, size_smp, myrank_smp, dims_smp, periods_smp, my_coords_smp,

// comm_nodes_cart, size_nodes, myrank_nodes, dims_nodes, periods_nodes, my_coords_nodes,

// comm_global_cart, size_global, myrank_global, dims_global, my_coords_global

Hybrid MPI+MPI

pure MPI

Slide 123 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

How to achieve a
hierarchical domain decomposition (DD)?

• Unstructured grids:

– Single-level DD (finest level)

• Analysis of the communication pattern in a first run
(with only a few iterations)

• Optimized rank mapping to the hardware before production run

• E.g., with CrayPAT + CrayApprentice

– Multi-level DD:

• Top-down: Several levels of (Par)Metis
� unbalanced communication

� demonstrated on next (skipped) slide

• Bottom-up: Low level DD
+ higher level recombination

� based on DD of the grid of subdomains

Hybrid MPI+MPI

pure MPI

Slide 124 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Top-down – several levels of (Par)Metis

Steps:

– Load-balancing (e.g., with
ParMetis) on outer level,
i.e., between all SMP nodes

– Independent (Par)Metis
inside of each node

– Metis inside of each socket

� Subdivide does not care on
balancing of the outer boundary

� processes can get a lot of
neighbors with inter-node
communication

� unbalanced communication

Hybrid MPI+MPI

pure MPI

Slide 125 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Bottom-up –
Multi-level DD through recombination

1. Core-level DD: partitioning of application’s data grid

2. Numa-domain-level DD: recombining of core-domains

3. SMP node level DD: recombining of socket-domains

• Problem:
Recombination
must not
calculate patches
that are smaller
or larger than the
average

• In this example
the load-balancer
must combine
always

� 6 cores, and

� 4 numa-
domains (i.e.,
sockets or
dies)

• Advantage:
Communication
is balanced!

Graph of
all sub-

domains
(core-
sized)

Divided
into sub-
graphs
for each
socket

Hybrid MPI+MPI

pure MPI

Slide 126 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Profiling solution

• First run with profiling

– Analysis of the communication pattern

• Optimization step

– Calculation of an optimal mapping of ranks in MPI_COMM_WORLD
to the hardware grid (physical cores / sockets / SMP nodes)

• Restart of the application with this optimized locating of the ranks on the
hardware grid

• Example: CrayPat and CrayApprentice

Hybrid MPI+MPI

pure MPI

Slide 127 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

The vendors
should deliver
scalable MPI

libraries for their
largest systems!

Scalability of MPI to hundreds of thousands …

Scalability of pure MPI

• As long as the application does not use

– MPI_ALLTOALL

– MPI_<collectives>V (i.e., with length arrays)

and application

– distributes all data arrays

one can expect:

– Significant, but still scalable memory overhead for halo cells.

– MPI library is internally scalable:
• E.g., mapping ranks ���� hardware grid

– Centralized storing in shared memory (OS level)

– In each MPI process, only used neighbor ranks are stored (cached) in
process-local memory.

• Tree based algorithm with O(log N)

– From 1000 to 1000,000 process O(Log N) only doubles!

Hybrid MPI+MPI

pure MPI

Slide 128 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Remarks on Cache Optimization

• After all parallelization domain decompositions (DD, up to 3 levels)
are done:

• Cache-blocking is an additional DD into data blocks

– that fit to 2nd or 3rd level cache.

– It is done inside of each MPI process (on each core).

– Outer loops run from block to block

– Inner loops inside of each block

– Cartesian example: 3-dim loop is split into
do i_block=1,ni,stride_i

do j_block=1,nj,stride_j
do k_block=1,nk,stride_k

do i=i_block,min(i_block+stride_i-1, ni)
do j=j_block,min(j_block+stride_j-1, nj)

do k=k_block,min(k_block+stride_k-1, nk)
a(i,j,k) = f(b(i±0,1,2, j±0,1,2, k±0,1,2))

… … … end do
end do

Access to 13-point stencil

See
Gerhard Wellein, Georg Hager, Jan Treibig:
The Practitioner's Cookbook for
Good Parallel Performance
on Multi- and Many-Core Systems
SC13 tutorial – Monday, November 18th, 2013

Slide 129 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Remarks on Cost-Benefit Calculation

Costs

• for optimization effort

– e.g., additional OpenMP parallelization

– e.g., 3 person month x 5,000 € = 15,000 € (full costs)

Benefit

• from reduced CPU utilization

– e.g., Example 1:
100,000 € hardware costs of the cluster
x 20% used by this application over whole lifetime of the cluster
x 7% performance win through the optimization
= 1,400 € ���� total loss = 13,600 €

– e.g., Example 2:
10 Mio € system x 5% used x 8% performance win
= 40,000 € ���� total win = 25,000 €

Slide 130 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• Parallelization always means

– expressing locality.

• If the application has no locality,

– Then the parallelization needs not to model locality

� UPC with its round robin data distribution may fit

• If the application has locality,

– then it must be expressed in the parallelization

• Coarray Fortran (CAF) expresses data locality explicitly through “co-
dimension”:

– A(17,15)[3]
= element A(17,13) in the distributed array A in process with rank 3

Slide 131 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• Future shrinking of memory per core implies

– Communication time becomes a bottleneck

� Computation and communication must be overlapped,

i.e., latency hiding is needed

• With PGAS, halos are not needed.

– But it is hard for the compiler to access data such early that the
transfer can be overlapped with enough computation.

• With MPI, typically too large message chunks are transferred.

– This problem also complicates overlapping.

• Strided transfer is expected to be slower than contiguous transfers

– Typical packing strategies do not work for PGAS on compiler level

– Only with MPI, or with explicit application programming with PGAS

Slide 132 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• Point-to-point neighbor communication

– PGAS or MPI nonblocking may fit
if message size makes sense for overlapping.

• Collective communication

– Library routines are best optimized

– Non-blocking collectives (comes with MPI-3.0)
versus calling MPI from additional communication thread

– Only blocking collectives in PGAS library?

Slide 133 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• For extreme HPC (many nodes x many cores)

– Most parallelization may still use MPI

– Parts are optimized with PGAS, e.g., for better latency hiding

– PGAS efficiency is less portable than MPI

– #ifdef … PGAS

– Requires mixed programming PGAS & MPI
� will be addressed by MPI-3.0

Slide 134 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Other options on clusters of SMP nodes

– Pure MPI – multi-core aware (Rolf Rabenseifner)

– Remarks on MPI scalability / Cache Optimization / Cost-benefit /PGAS (R.R.)

– Hybrid programming and accelerators (Gabriele Jost)

• Summary

Slide 135 / 175

Rabenseifner, Hager, Jost

SUPERsmith

OpenMP 4.0 Support for Co-Processors

Hybrid Parallel Programming

• New concepts:

- Device: An implementation defined logical execution engine; local storage
which could be shared with other devices; device could have one or more
processors

• Extension to the previous Memory Model:

- Previous: Relaxed-Consistency Shared-Memory

- Added in 4.0 :

• Device with local storage

− Data movement can be explicitly indicated by compiler directives

• League: Set of thread teams created by a “teams” construct

• Contention group: threads within a team; OpenMP synchronization
restricted to contention groups.

• Extension to the previous Execution Model

- Previous: Fork-join of OpenMP threads

- Added in 4.0:

• Host device offloads a region for execution on a target device

• Host device waits for completion of execution on the target device

Slide 136 / 175

Rabenseifner, Hager, Jost

SUPERsmith

OpenMP Accelerator Additions

Hybrid Parallel Programming

Target data
Place objects on the device

Target
Move execution to a device

Target update
Update objects on the device or host

Declare target
Place subroutines/functions on the
device

Teams
Start multiple contention groups

Distribute
Similar to the OpenACC loop construct,
binds to teams construct

Array sections

Current Status:
Accelerator support version 1 accepted
Currently open for public review:
http://www.openmp.org/mp-
documents/OpenMP_4.0_RC2.pdf

• The “target data” construct:

₋ When a target data construct is encountered, a
new device data environment is created, and the
encountering task executes the target data
region

pragma omp target data [device, map, if]

• The “target” construct:

₋ Creates device data environment and specifies
that the region is executed by a device. The
encountering task waits for the device to
complete the target region at the end of the
construct

pragma omp target [device, map, if]

₋ The “teams” construct:

₋ Creates a league of thread teams. The master
thread of each team executes the teams region

pragma omp teams [num_teams, num_threads,
…]

₋ The ”distribute” construct:

₋ Specifies that the iterations of one or more loops
will be executed by the thread teams. The
iterations of the loop are distributed across the
master threads of all teams

pragma omp distribute [collapse, dist_schedule,
….]

Slide 137 / 175

Rabenseifner, Hager, Jost

SUPERsmith

OpenMP 4.0 Example

Hybrid Parallel Programming

void smooth(float* restrict a, float* restrict b,

float w0, float w1, float w2, int n, int m, int niters)

{

int i, j, iter;

float* tmp;

for(iter = 1; iter < niters; ++iter){

for(i = 1; i < n-1; ++i)

for(j = 1; j < m-1; ++j)

a[i*m+j] = w0 * b[i*m+j] +

w1*(b[(i-1)*m+j] + b[(i+1)*m+j] + b[i*m+j-1] +

b[i*m+j+1]) +

w2*(b[(i-1)*m+j-1] + b[(i-1)*m+j+1] +b[(i+1)*m+j-1] +

b[(i+1)*m+j+1]);

tmp = a; a = b; b = tmp;

}

}

In main:

{

smooth(a, b, w0, w1, w2, n, m, iters);

}

Slide 138 / 175

Rabenseifner, Hager, Jost

SUPERsmith

OpenMP 4.0 Example

Hybrid Parallel Programming

void smooth(float* restrict a, float* restrict b,

float w0, float w1, float w2, int n, int m, int niters)

{

int i, j, iter;

float* tmp;

#pragma omp target mapto(b[0:n*m]) map(a[0:n*m])

#pragma omp team num_teams(8) num_maxthreads(5)

for(iter = 1; iter < niters; ++iter){

#pragma omp distribute dist_schedule(static) // chunk across teams

for(i = 1; i < n-1; ++i)

#pragma omp parallel for // chunk across threads

for(j = 1; j < m-1; ++j)

a[i*m+j] = w0 * b[i*m+j] +

w1*(b[(i-1)*m+j] + b[(i+1)*m+j] + b[i*m+j-1] +

b[i*m+j+1]) +

w2*(b[(i-1)*m+j-1] + b[(i-1)*m+j+1] +b[(i+1)*m+j-1] +

b[(i+1)*m+j+1]);

tmp = a; a = b; b = tmp;

} }

In main:

#pragma omp target data map(b[0:n*m],a[0:n*m])

{

smooth(a, b, w0, w1, w2, n, m, iters);

}

Slide 139 / 175

Rabenseifner, Hager, Jost

SUPERsmith

OpenMP 4.0 Team and Distribute Construct

Hybrid Parallel Programming

#pragma omp target device(acc)

#pragma omp team num_teams(8) num_maxthreads(5)

{

Stmt1;

#pragma omp distribute // chunk across thread blocks
for (i=0; i<N; i++)

#pragma omp parallel for // chunk across threads
for (j=0; j<M; j++)

{

Threads cannot
synchronize

Threads can
synchronize

only executed by master thread of each team

Slide 140 / 175

Rabenseifner, Hager, Jost

SUPERsmith

What is OpenACC?

Hybrid Parallel Programming

• API that supports off-loading of loops and regions of code (e.g. loops) from a
host CPU to an attached accelerator in C, C++, and Fortran

• Managed by a nonprofit corporation formed by a group of companies:

– CAPS Enterprise, Cray Inc., PGI and NVIDIA

• Set of compiler directives, runtime routines and environment variables

• Simple programming model for using accelerators (focus on GPGPUs)

• Memory model:

– Host CPU + Device may have completely separate memory; Data
movement between host and device performed by host via runtime calls;
Memory on device may not support memory coherence between
execution units or need to be supported by explicit barrier

• Execution model:

― Compute intensive code regions offloaded to the device, executed as
kernels ; Host orchestrates data movement, initiates computation, waits
for completion; Support for multiple levels of parallelism, including SIMD
(gangs, workers, vector)

― Example constructs: acc parallel loop, acc data

Slide 141 / 175

Rabenseifner, Hager, Jost

SUPERsmith

OpenACC Example

Hybrid Parallel Programming

void smooth(float* restrict a, float* restrict b,

float w0, float w1, float w2, int n, int m, int niters)

{

int i, j, iter;

float* tmp;

for(iter = 1; iter < niters; ++iter){

#pragma acc parallel loop gang(16) worker(8)// chunk across gangs and workers
for(i = 1; i < n-1; ++i)

#pragma acc vector (32) // execute in SIMD mode
for(j = 1; j < m-1; ++j)

a[i*m+j] = w0 * b[i*m+j] +

w1*(b[(i-1)*m+j] + b[(i+1)*m+j] + b[i*m+j-1] +

b[i*m+j+1]) +

w2*(b[(i-1)*m+j-1] + b[(i-1)*m+j+1] +b[(i+1)*m+j-1] +

b[(i+1)*m+j+1]);

tmp = a; a = b; b = tmp;

} }

In main:

#pragma acc data copy (b[0:n*m],a[0:n*m])

{

smooth(a, b, w0, w1, w2, n, m, iters);

}

CAPS HMPPWorkbench compiler:

acc_test.c:11: Loop 'j' was vectorized(32)
acc_test.c:9: Loop 'i' was shared among
gangs(16) and workers(8)

Slide 142 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Cray XK7 Hermit

Hybrid Parallel Programming

• Located at HLRS Stuttgart, Germany (https://wickie.hlrs.de/platforms/index.php/Cray_XE6)

• 16 Cray XK7 compute nodes; AMD's 16-core Opteron™ 6200 Series processor with NVIDIA® Tesla®
K20 GPU Accelerator Cards

CPU type: AMD Interlagos processor

Hardware Thread Topology

Sockets: 1
Cores per socket: 16
Threads per core: 1

Socket 0:
+---+
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| | 0 | | 1 | | 2 | | 3 | | 4 | | 5 | | 6 | | 7 | | 8 | | 9 | | 10 | | 11 | | 12 | | 13 | | 14 | | 15 | |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | | 16kB | |
| +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ +------+ |
| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |
| | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | | 2MB | |
| +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ +---------------+ |
| +---+ +---+ |
| | 6MB | | 6MB | |
| +---+ +---+ |
+---+

Slide 143 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Mantevo miniGhost on Cray XK7

Hybrid Parallel Programming

!$acc data present (GRID)

! Back boundary

IF (NEIGHBORS(BACK) /= -1) THEN

TIME_START_DIR = MG_TIMER ()

!$acc data present (SEND_BUFFER_BACK)

!$acc parallel loop

DO J = 0, NY+1

DO I = 0, NX+1

SEND_BUFFER_BACK(COUNT_SEND_BACK + J*(NX+2) + I + 1) = &

GRID (I, J, 1)

END DO

END DO

!$acc end data

#endif

...

• Mantevo 1.0.1 miniGhost 1.0
-Finite-Difference Proxy
Application
-27 PT Stencil + Boundary
Exchange of Ghost Cells
-Implemented in Fortran;
-MPI+OpenMP and
MPI+OpenACC
-http://www.mantevo.org

• Test System:
-Located at HLRS Stuttgart,

• Test Case:Problem size
384x796x384, 10 variables, 20
time steps

• Compilation:
•pgf90 13.4-0
•-O3 -fast –fastsse –m -acc

CALL MPI_WAITANY (MAX_NUM_SENDS + MAX_NUM_RECVS, MSG_REQS, ...)

....

!$acc data present (RECV_BUFFER_BACK)

!$acc update device (RECV_BUFFER_BACK)

!$acc end data$acc data present (GRID)

Packing of boundary data

Unpacking of boundary data

Slide 144 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Mantevo miniGhost: 27-PT Stencil

Hybrid Parallel Programming

#if defined _MOG_OMP
!$OMP PARALLEL DO PRIVATE(SLICE_BACK, SLICE_MINE, SLICE_FRONT)

#else

!$acc data present (WORK)

!$acc parallel

!$acc loop

#endif

DO K = 1, NZ

DO J = 1, NY

DO I = 1, NX

SLICE_BACK = GRID(I-1,J-1,K-1) + GRID(I-1,J,K-1) + GRID(I-1,J+1,K-1) + &

GRID(I ,J-1,K-1) + GRID(I ,J,K-1) + GRID(I ,J+1,K-1) + &

GRID(I+1,J-1,K-1) + GRID(I+1,J,K-1) + GRID(I+1,J+1,K-1)

SLICE_MINE = GRID(I-1,J-1,K) + GRID(I-1,J,K) + GRID(I-1,J+1,K) + &

GRID(I ,J-1,K) + GRID(I ,J,K) + GRID(I ,J+1,K) + &

GRID(I+1,J-1,K) + GRID(I+1,J,K) + GRID(I+1,J+1,K)

SLICE_FRONT = GRID(I-1,J-1,K+1) + GRID(I-1,J,K+1) + GRID(I-1,J+1,K+1) + &

GRID(I ,J-1,K+1) + GRID(I ,J,K+1) + GRID(I ,J+1,K+1) + &

GRID(I+1,J-1,K+1) + GRID(I+1,J,K+1) + GRID(I+1,J+1,K+1)

WORK(I,J,K) = (SLICE_BACK + SLICE_MINE + SLICE_FRONT) / 27.0

END DO

END DO

END DO

Slide 145 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Scalability of miniGhost on Cray XK7

Hybrid Parallel Programming

Total Time(sec) Comm. Time (sec)

OpenMP (16x1t) 12.1 0.4

OpenMP (16x16t) 1.9 0.16

OpenACC (16x16t) 1.17 0.34

Pure MPI (256 Ranks) 1.5 0.28

Elapsed time as reported
by the application
Communication includes
packing/unpacking

0

1000

2000

3000

4000

5000

6000

16 32 64 128 256 (2x4x2)256 (1x8x2)

T
o

ta
l
G

F
L

O
P

S

Cores

OpenMP (1 MPI per node, 1 thread)

OpenMP (1 MPI per node, 16 threads)

OpenACC (1 MPI per node, 1 thread)

pure MPI (16 MPI per node)

Slide 146 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

IMB Bandwidth Ping-Pong XK7

Slide 147 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Profiling Information: export PGI_ACC_TIME=1

Hybrid Parallel Programming

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_UNPACK_BSPMA.F

mg_unpack_bspma NVIDIA devicenum=0

time(us): 36,951

124: data copyin reached 20 times

device time(us): total=8,603 max=431 min=429 avg=430

….

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_STENCIL_COMPS.F

mg_stencil_3d27pt NVIDIA devicenum=0

time(us): 1,063,875

330: kernel launched 200 times

grid: [160] block: [256]

device time(us): total=1,063,875 max=5,337 min=5,302 avg=5,319

elapsed time(us): total=1,073,817 max=5,444 min=5,349 avg=5,369

…

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_SEND_BSPMA.F

mg_send_bspma NVIDIA devicenum=0

time(us): 33,150

94: data copyout reached 20 times

device time(us): total=7,800 max=392 min=389 avg=390

…

device time(us): total=12,618 max=633 min=630 avg=630

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_PACK.F

mg_pack NVIDIA devicenum=0

time(us): 9,615

91: kernel launched 200 times

grid: [98] block: [256]

device time(us): total=2,957 max=68 min=13 avg=14

elapsed time(us): total=11,634 max=107 min=51 avg=58

Slide 148 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Profiling Information: export PGI_ACC_TIME=1

Hybrid Parallel Programming

Accelerator Kernel Timing data

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_STENCIL_COMPS.F

mg_stencil_3d27pt NVIDIA devicenum=0

time(us): 1,064,197

330: kernel launched 200 times

grid: [160] block: [256]

device time(us): total=1,064,197 max=5,351 min=5,299 avg=5,320

elapsed time(us): total=1,074,081 max=5,442 min=5,348 avg=5,370

/univ_1/ws1/ws/hpcjost-ISC13_GJOST-0/miniGhost_OpenACC_1.0/MG_PACK.F

mg_pack NVIDIA devicenum=0

time(us): 9,568

91: kernel launched 200 times

grid: [98] block: [256]

device time(us): total=2,924 max=70 min=12 avg=14

elapsed time(us): total=11,624 max=110 min=51 avg=58

195: kernel launched 200 times

grid: [162] block: [256]

device time(us): total=3,432 max=120 min=15 avg=17

elapsed time(us): total=11,385 max=160 min=53 avg=56

221: kernel launched 200 times

grid: [162] block: [256]

device time(us): total=3,212 max=19 min=15 avg=16

elapsed time(us): total

Slide 149 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Conclusions for miniGhost Experiment:

Hybrid Parallel Programming

• Hybrid MPI/OpenMP and MPI/OpenACC yield performance increase over
pure MPI

• Compiler pragma based API provides relatively easy way to exploit
coprocessors

• OpenACC targeted toward GPU type coprocessors

• OpenMP 4.0 extensions will provide flexibility to exploit a wide range of
heterogeneous coprocessors (GPU, APU, heterogeneous many-core types)

Slide 150 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Hybrid programming & accelerators

• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Other options on clusters of SMP nodes

• Summary

Slide 151 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Acknowledgements

• We want to thank

– Gerhard Wellein, RRZE

– Alice Koniges, NERSC, LBNL

– Rainer Keller, HLRS and ORNL

– Jim Cownie, Intel

– SCALASCA/KOJAK project at JSC, Research Center Jülich

– HPCMO Program and the Engineer Research and
Development Center Major Shared Resource Center,
Vicksburg, MS (http://www.erdc.hpc.mil/index)

– Steffen Weise, TU Freiberg

Slide 152 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Summary – Alternatives

Pure MPI

+ Ease of use

– Topology and mapping problems may need to be solved
(depends on loss of efficiency with these problems)

– Number of cores may be more limited than with MPI+OpenMP

+ Good candidate for perfectly load-balanced applications

Pure OpenMP

+ Ease of use

– Limited to problems with tiny communication footprint

– source code modifications are necessary
(Variables that are used with “shared” data scope
must be allocated as “sharable”)

± (Only) for the appropriate application a suitable tool

pure MPI

OpenMP only

Slide 153 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Summary – hybrid MPI+OpenMP

MPI + OpenMP

• Seen with NPB-MZ examples

– BT-MZ � strong improvement (as expected)

– SP-MZ � small improvement

– Usability on higher number of cores

• Advantages

– Memory consumption

– Load balancing

– Two levels of parallelism
• Outer ���� distributed memory ���� halo data transfer ���� MPI

• Inner ���� shared memory ���� ease of SMP parallelization ���� OpenMP

• You can do it � “How To”

• Huge amount of pitfalls

• Optimum: Somewhere in the area of 1 MPI process per NUMA domain

Maybe the most important advantage!

hybrid MPI+OpenMP

Slide 154 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Summary – the bad news

MPI+OpenMP: There is a huge amount of pitfalls

• Pitfalls of MPI

• Pitfalls of OpenMP

– On ccNUMA � e.g., first touch

– Pinning of threads on cores

• Pitfalls through combination of MPI & OpenMP

– E.g., topology and mapping problems

– Many mismatch problems

• Tools are available

– It is not easier than analyzing pure MPI programs

• Most hybrid programs � Masteronly style

• Overlapping communication and computation with several threads

– Requires thread-safety quality of MPI library

– Loss of OpenMP worksharing support � using OpenMP tasks
as workaround

hybrid MPI+OpenMP

Slide 155 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Summary – hybrid MPI+MPI

MPI + MPI-3 shared memory

• Two levels of parallelism
• Outer ���� distributed memory ���� halo data transfer ���� MPI

• Inner ���� shared memory ���� halo transfer or direct access ���� MPI-3

• New promising hybrid parallelization model

• No real experience up to now

• No OpenMP and thread-safety problems

Hybrid MPI+MPI

Slide 156 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Conclusions

• Future hardware will be more complicated
– Heterogeneous � GPU, FPGA, …
– ccNUMA quality may be lost on cluster nodes
– ….

• High-end programming � more complex

• Medium number of cores � more simple
(if #cores / SMP-node will not shrink)

• MPI + OpenMP ���� work horse on large systems

• MPI + MPI-3 ���� new promising alternative to MPI + OpenMP

• Pure MPI � still on smaller cluster

• OpenMP � on large ccNUMA nodes
(not distributed virtual shared memory)

Thank you for your interest

Q & A
Please fill in the feedback sheet – Thank you

Slide 157 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Appendix

• Abstract

• Authors

• References (with direct relation to the content of this tutorial)

• Further references

Slide 158 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Abstract

Half-Day Tutorial (Level: 25% Introductory, 50% Intermediate, 25% Advanced)

Authors. Rolf Rabenseifner, HLRS, University of Stuttgart, Germany
Georg Hager, University of Erlangen-Nuremberg, Germany
Gabriele Jost, Supersmith, Maximum Performance Software, USA

Abstract. Most HPC systems are clusters of shared memory nodes. Such systems can be PC
clusters with single/multi-socket and multi-core SMP nodes, but also constellation type systems with
large SMP nodes. Parallel programming may combine the distributed memory parallelization on the
node interconnect with the shared memory parallelization inside of each node.

This tutorial analyzes the strengths and weaknesses of several parallel programming models on
clusters of SMP nodes. Multi-socket-multi-core systems in highly parallel environments are given
special consideration. MPI-3.0 introduced a new shared memory programming interface, which can
be combined with MPI message passing and remote memory access on the cluster interconnect. It
can be used for direct neighbor accesses similar to OpenMP or for direct halo copies, and enables
new hybrid programming models. These models are compared with various hybrid MPI+OpenMP
approaches and pure MPI. This tutorial also includes a discussion on OpenMP support for
accelerators. Benchmark results on different platforms are presented. Numerous case studies
demonstrate the performance-related aspects of hybrid programming, and application categories that
can take advantage of this model are identified. Tools for hybrid programming such as thread/process
placement support and performance analysis are presented in a "how-to" section.

Details. https://fs.hlrs.de/projects/rabenseifner/publ/ISC2013-hybrid.html

Slide 159 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Rolf Rabenseifner

Dr. Rolf Rabenseifner studied mathematics and physics at the University of

Stuttgart. Since 1984, he has worked at the High-Performance Computing-

Center Stuttgart (HLRS). He led the projects DFN-RPC, a remote procedure

call tool, and MPI-GLUE, the first metacomputing MPI combining different

vendor's MPIs without loosing the full MPI interface. In his dissertation, he

developed a controlled logical clock as global time for trace-based profiling of

parallel and distributed applications. Since 1996, he has been a member of

the MPI-2 Forum and since Dec. 2007, he is in the steering committee of the

MPI-3 Forum. From January to April 1999, he was an invited researcher at the

Center for High-Performance Computing at Dresden University of Technology.

Currently, he is head of Parallel Computing - Training and Application Services

at HLRS. He is involved in MPI profiling and benchmarking, e.g., in the HPC

Challenge Benchmark Suite. In recent projects, he studied parallel I/O,

parallel programming models for clusters of SMP nodes, and optimization of

MPI collective routines. In workshops and summer schools, he teaches

parallel programming models in many universities and labs in Germany, and

in Jan. 2012, he was appointed as GCS' PATC director.

Slide 160 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Georg Hager

Georg Hager holds a PhD in computational physics from

the University of Greifswald. He has been working with high performance

systems since 1995, and is now a senior research scientist in the HPC

group at Erlangen Regional Computing Center (RRZE). His daily work

encompasses all aspects of HPC user support and training, assessment

of novel system and processor architectures, and supervision of student

projects and theses. Recent research includes architecture-specific

optimization for current microprocessors, performance modeling on

processor and system levels, and the efficient use of hybrid parallel

systems. His textbook “Introduction to High Performance Computing for

Scientists and Engineers” is recommended reading for many HPC-related

courses and lectures worldwide. A full list of publications, talks, and other

things he is interested in can be found in his blog:

http://blogs.fau.de/hager.

Hybrid Parallel Programming
Slide 161 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Gabriele Jost

Gabriele Jost obtained her doctorate in Applied Mathematics from the

University of Göttingen, Germany. For more than a decade she worked

for various vendors (Suprenum GmbH, Thinking Machines Corporation,

and NEC) of high performance parallel computers in the areas of

vectorization, parallelization, performance analysis and optimization of

scientific and engineering applications.

In 2005 she moved from California to the Pacific Northwest and joined

Sun Microsystems as a staff engineer in the Compiler Performance

Engineering team, analyzing compiler generated code and providing

feedback and suggestions for improvement to the compiler group. She

then decided to explore the world beyond scientific computing and joined

Oracle as a Principal Engineer working on performance analysis for

application server software. That was fun, but she realized that her real

passions remains in area of performance analysis and evaluation of

programming paradigms for high performance computing and joined the

Texas Advanced Computing Center (TACC), working on all sorts of

exciting projects related to large scale parallel processing for scientific

computing. In 2011, she joined Advanced Micro Devices (AMD) as a

design engineer in the Systems Performance Optimization group.

Slide 162 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

References (with direct relation to the content of this tutorial)

• T. Hoefler, J. Dinan, D. Buntinas, P. Balaji, B. Barrett, R. Brightwell, W. Gropp, V. Kale,
R. Thakur: MPI + MPI: a new hybrid approach to parallel programming with
MPI plus shared memory. DOI 10.1007/s00607-013-0324-2, Computing, May 2013.
http://link.springer.com/content/pdf/10.1007%2Fs00607-013-0324-2.pdf

• NAS Parallel Benchmarks:
http://www.nas.nasa.gov/Resources/Software/npb.html

• R.v.d. Wijngaart and H. Jin,
NAS Parallel Benchmarks, Multi-Zone Versions,
NAS Technical Report NAS-03-010, 2003

• H. Jin and R. v.d.Wijngaart,
Performance Characteristics of the multi-zone NAS Parallel Benchmarks,
Proceedings IPDPS 2004

• G. Jost, H. Jin, D. an Mey and F. Hatay,
Comparing OpenMP, MPI, and Hybrid Programming,
Proc. Of the 5th European Workshop on OpenMP, 2003

• E. Ayguade, M. Gonzalez, X. Martorell, and G. Jost,
Employing Nested OpenMP for the Parallelization of Multi-Zone CFD Applications,
Proc. Of IPDPS 2004

Slide 163 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

References

• Rolf Rabenseifner,
Hybrid Parallel Programming on HPC Platforms.
In proceedings of the Fifth European Workshop on OpenMP, EWOMP '03,
Aachen, Germany, Sept. 22-26, 2003, pp 185-194, www.compunity.org.

• Rolf Rabenseifner,
Comparison of Parallel Programming Models on Clusters of SMP Nodes.
In proceedings of the 45nd Cray User Group Conference, CUG SUMMIT 2003,
May 12-16, Columbus, Ohio, USA.

• Rolf Rabenseifner and Gerhard Wellein,
Comparison of Parallel Programming Models on Clusters of SMP Nodes.
In Modelling, Simulation and Optimization of Complex Processes (Proceedings of
the International Conference on High Performance Scientific Computing,
March 10-14, 2003, Hanoi, Vietnam) Bock, H.G.; Kostina, E.; Phu, H.X.;
Rannacher, R. (Eds.), pp 409-426, Springer, 2004.

• Rolf Rabenseifner and Gerhard Wellein,
Communication and Optimization Aspects of Parallel Programming Models
on Hybrid Architectures.
In the International Journal of High Performance Computing Applications,
Vol. 17, No. 1, 2003, pp 49-62. Sage Science Press.

Slide 164 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

References

• Rolf Rabenseifner,
Communication and Optimization Aspects on Hybrid Architectures.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface, J.
Dongarra and D. Kranzlmüller (Eds.), Proceedings of the 9th European PVM/MPI
Users' Group Meeting, EuroPVM/MPI 2002, Sep. 29 - Oct. 2, Linz, Austria, LNCS,
2474, pp 410-420, Springer, 2002.

• Rolf Rabenseifner and Gerhard Wellein,
Communication and Optimization Aspects of Parallel Programming Models on
Hybrid Architectures.
In proceedings of the Fourth European Workshop on OpenMP (EWOMP 2002),
Roma, Italy, Sep. 18-20th, 2002.

• Rolf Rabenseifner,
Communication Bandwidth of Parallel Programming Models on Hybrid
Architectures.
Proceedings of WOMPEI 2002, International Workshop on OpenMP: Experiences
and Implementations, part of ISHPC-IV, International Symposium on High
Performance Computing, May, 15-17., 2002, Kansai Science City, Japan, LNCS 2327,
pp 401-412.

Slide 165 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

References

• Georg Hager and Gerhard Wellein:
Introduction to High Performance Computing for Scientists and Engineers.
CRC Press, ISBN 978-1439811924.

• Barbara Chapman et al.:
Toward Enhancing OpenMP’s Work-Sharing Directives.
In proceedings, W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 645-654, 2006.

• Barbara Chapman, Gabriele Jost, and Ruud van der Pas:
Using OpenMP.
The MIT Press, 2008.

• Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Sameer Kumar, Ewing
Lusk, Rajeev Thakur and Jesper Larsson Traeff:
MPI on a Million Processors.
EuroPVM/MPI 2009, Springer.

• Alice Koniges et al.: Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

• H. Shan, H. Jin, K. Fuerlinger, A. Koniges, N. J. Wright: Analyzing the Effect of
Different Programming Models Upon Performance and Memory Usage on Cray XT5
Platorms. Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide 166 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

References

• J. Treibig, G. Hager and G. Wellein:
LIKWID: A lightweight performance-oriented tool suite for x86 multicore
environments.
Proc. of PSTI2010, the First International Workshop on Parallel Software Tools and Tool
Infrastructures, San Diego CA, September 13, 2010.
Preprint: http://arxiv.org/abs/1004.4431

• H. Stengel:
Parallel programming on hybrid hardware: Models and applications.
Master’s thesis, Ohm University of Applied Sciences/RRZE, Nuremberg, 2010.
http://www.hpc.rrze.uni-erlangen.de/Projekte/hybrid.shtml

• Torsten Hoefler, James Dinan, Darius Buntinas, Pavan Balaji, Brian Barrett,
Ron Brightwell, William Gropp, Vivek Kale, Rajeev Thakur:
MPI + MPI: a new hybrid approach to parallel programming with MPI plus shared
memory.
http://link.springer.com/content/pdf/10.1007%2Fs00607-013-0324-2.pdf

Slide 167 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Further references

• Sergio Briguglio, Beniamino Di Martino, Giuliana Fogaccia and Gregorio Vlad,
Hierarchical MPI+OpenMP implementation of parallel PIC applications on
clusters of Symmetric MultiProcessors,
10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,
29 Sep - 2 Oct, 2003

• Barbara Chapman,
Parallel Application Development with the Hybrid MPI+OpenMP Programming
Model,
Tutorial, 9th EuroPVM/MPI & 4th DAPSYS Conference, Johannes Kepler University
Linz, Austria September 29-October 02, 2002

• Luis F. Romero, Eva M. Ortigosa, Sergio Romero, Emilio L. Zapata,
Nesting OpenMP and MPI in the Conjugate Gradient Method for Band Systems,
11th European PVM/MPI Users' Group Meeting in conjunction with DAPSYS'04,
Budapest, Hungary, September 19-22, 2004

• Nikolaos Drosinos and Nectarios Koziris,
Advanced Hybrid MPI/OpenMP Parallelization Paradigms for Nested Loop
Algorithms onto Clusters of SMPs,
10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,
29 Sep - 2 Oct, 2003

Slide 168 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Further references

• Holger Brunst and Bernd Mohr,
Performance Analysis of Large-scale OpenMP and Hybrid MPI/OpenMP
Applications with VampirNG
Proceedings for IWOMP 2005, Eugene, OR, June 2005.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

• Felix Wolf and Bernd Mohr,
Automatic performance analysis of hybrid MPI/OpenMP applications
Journal of Systems Architecture, Special Issue "Evolutions in parallel distributed
and network-based processing", Volume 49, Issues 10-11, Pages 421-439,
November 2003.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

• Felix Wolf and Bernd Mohr,
Automatic Performance Analysis of Hybrid MPI/OpenMP Applications
short version: Proceedings of the 11-th Euromicro Conference on Parallel,
Distributed and Network based Processing (PDP 2003), Genoa, Italy, February
2003.
long version: Technical Report FZJ-ZAM-IB-2001-05.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

Slide 169 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Further references

• Frank Cappello and Daniel Etiemble,
MPI versus MPI+OpenMP on the IBM SP for the NAS benchmarks,
in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/cappello00mpi.html
www.sc2000.org/techpapr/papers/pap.pap214.pdf

• Jonathan Harris,
Extending OpenMP for NUMA Architectures,
in proceedings of the Second European Workshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

• D. S. Henty,
Performance of hybrid message-passing and shared-memory parallelism for
discrete element modeling,
in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/henty00performance.html
www.sc2000.org/techpapr/papers/pap.pap154.pdf

Slide 170 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Further references

• Matthias Hess, Gabriele Jost, Matthias Müller, and Roland Rühle,
Experiences using OpenMP based on Compiler Directed Software DSM on a PC
Cluster,
in WOMPAT2002: Workshop on OpenMP Applications and Tools, Arctic Region
Supercomputing Center, University of Alaska, Fairbanks, Aug. 5-7, 2002.
http://www.hlrs.de/people/mueller/papers/wompat2002/wompat2002.pdf

• John Merlin,
Distributed OpenMP: Extensions to OpenMP for SMP Clusters,
in proceedings of the Second EuropeanWorkshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

• Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka,
Design of OpenMP Compiler for an SMP Cluster,
in proceedings of the 1st European Workshop on OpenMP (EWOMP'99), Lund,
Sweden, Sep. 1999, pp 32-39. http://citeseer.nj.nec.com/sato99design.html

• Alex Scherer, Honghui Lu, Thomas Gross, and Willy Zwaenepoel,
Transparent Adaptive Parallelism on NOWs using OpenMP,
in proceedings of the Seventh Conference on Principles and Practice of Parallel
Programming (PPoPP '99), May 1999, pp 96-106.

Slide 171 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Further references

• Weisong Shi, Weiwu Hu, and Zhimin Tang,
Shared Virtual Memory: A Survey,
Technical report No. 980005, Center for High Performance Computing,
Institute of Computing Technology, Chinese Academy of Sciences, 1998,
www.ict.ac.cn/chpc/dsm/tr980005.ps.

• Lorna Smith and Mark Bull,
Development of Mixed Mode MPI / OpenMP Applications,
in proceedings of Workshop on OpenMP Applications and Tools (WOMPAT 2000),
San Diego, July 2000. www.cs.uh.edu/wompat2000/

• Gerhard Wellein, Georg Hager, Achim Basermann, and Holger Fehske,
Fast sparse matrix-vector multiplication for TeraFlop/s computers,
in proceedings of VECPAR'2002, 5th Int'l Conference on High Performance Computing
and Computational Science, Porto, Portugal, June 26-28, 2002, part I, pp 57-70.
http://vecpar.fe.up.pt/

Slide 172 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Further references

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,
Load Balanced Parallel Simulated Annealing on a Cluster of SMP Nodes.
In proceedings, W. E. Nagel, W. V. Walter, and W. Lehner (Eds.): Euro-Par 2006,
Parallel Processing, 12th International Euro-Par Conference, Aug. 29 - Sep. 1,
Dresden, Germany, LNCS 4128, Springer, 2006.

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,
Nesting OpenMP in MPI to Implement a Hybrid Communication Method of
Parallel Simulated Annealing on a Cluster of SMP Nodes.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Beniamino Di Martino, Dieter Kranzlmüller, and Jack Dongarra (Eds.), Proceedings
of the 12th European PVM/MPI Users' Group Meeting, EuroPVM/MPI 2005,
Sep. 18-21, Sorrento, Italy, LNCS 3666, pp 18-27, Springer, 2005

Slide 173 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Content
slide

• Motivation / Goals . 2

• Outline . 5

• Programming models on clusters of SMP nodes . . 6

– Major programming models 7

– Pure MPI 9

– Hybrid MPI+OpenMP Masteronly Style 10

– MPI_Init_thread 11

– omp master 12

– Thread support within OpenMPI 14

– Overlapping Communication and Computation 15

– Hybrid MPI + MPI-3 shared memory 16

– Pure OpenMP 27

• Case Studies / pure MPI vs. hybrid MPI+OpenMP . 28

– The Multi-Zone NAS Parallel Benchmarks 29

– Benchmark Characteristics 34

– Hybrid code on ccNUMA architectures 35

– Dell Linux Cluster Lonestar 36

– NUMA Control (numactl) 37

– On Cray XE6 Hermit (AMD Interlagos) 46

– On a IBM Power6 system 51

– MPI+OpenMP memory usage 53

– Conclusions 54

slide

• Practical “How-To” on hybrid programming 55

– How to compile, link and run 57

– Running the code efficiently? 61

– A short introduction to ccNUMA 63

– ccNUMA Memory Locality Problems / First Touch 68

– ccNUMA problems beyond first touch 70

– Bandwidth and latency 72

– Parallel vector triad benchmark 75

– Thread synchronization overhead 79

– Thread/Process Affinity (“Pinning”) 80

– LIKWID 81

– Hybrid MPI/OpenMP “how-to”: Take-home mess. 90

• Mismatch Problems . 91

– Topology problem 93

– Mapping problem with mixed model 96

– Unnecessary intra-node communication 97

– Sleeping threads and network saturation problem 98

– Additional OpenMP overhead 99

– MPI-3 shared memory, pros and cons 100

– Overlapping communication and computation 101

Slide 174 / 175

Rabenseifner, Hager, Jost

SUPERsmith

Hybrid Parallel Programming

Content

• Opportunities: Application categories that can 109
benefit from hybrid parallelization

– Nested Parallelism 110

– Load-Balancing 111

– Memory consumption 112

– To overcome MPI scaling problems 115

– Opportunities, if MPI speedup is limited due 116
to algorithmic problem

– Summary 117

• Other options on clusters of SMP nodes 118

– Multicore-aware Hierarchical Cartesian DD 119

– Hierarchical DD on unstructured grids 124

– Scalability of MPI to hundreds of thousands 128

– Remarks on Cache Optimization 129

– Remarks on Cost-Benefit Calculation 130

– Remarks on MPI and PGAS (UPC & CAF) 131

• Hybrid Programming & Accelerators 135

– OpenMP 4.0 136

– OpenACC 141

– Mantevo miniGhost on Cray XK7 143

• Summary . 151

– Acknowledgements 152

– Summaries 153

– Conclusions 157

• Appendix . 158

– Abstract 159

– Authors 160

– References (with direct relation to the
content of this tutorial) 163

– Further references 168

• Content . 190

Slide 175 / 175

