
Hybrid Parallel Programming
Slide 1 Höchstleistungsrechenzentrum Stuttgart

Hybrid MPI & OpenMP
Parallel Programming

MPI + OpenMP and other models
on clusters of SMP nodes

Rolf Rabenseifner1) Georg Hager2) Gabriele Jost3)

Rabenseifner@hlrs.de Georg.Hager@rrze.uni-erlangen.de gjost@tacc.utexas.edu

1) High Performance Computing Center (HLRS), University of Stuttgart, Germany
2) Regional Computing Center (RRZE), University of Erlangen, Germany
3) Texas Advanced Computing Center, The University of Texas at Austin, USA

Tutorial M02 at SC10,
November 15, 2010, New Orleans, LA, USA

Slide 2 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline
slide number

• Introduction / Motivation 2

• Programming models on clusters of SMP nodes 6

• Case Studies / pure MPI vs hybrid MPI+OpenMP 13

• Practical “How-To” on hybrid programming 48

• Mismatch Problems 97

• Opportunities: Application categories that can 126
benefit from hybrid parallelization

• Thread-safety quality of MPI libraries 136

• Tools for debugging and profiling MPI+OpenMP 143

• Other options on clusters of SMP nodes 150

• Summary 164

• Appendix 172

• Content (detailed) 188

8:30 – 10:00

10:30 – 12:00

Slide 3 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Motivation

• Efficient programming of clusters of SMP nodes
SMP nodes:
• Dual/multi core CPUs
• Multi CPU shared memory
• Multi CPU ccNUMA
• Any mixture with shared memory programming model

• Hardware range
• mini-cluster with dual-core CPUs
• …
• large constellations with large SMP nodes

… with several sockets (CPUs) per SMP node
… with several cores per socket

���� Hierarchical system layout

• Hybrid MPI/OpenMP programming seems natural
• MPI between the nodes
• OpenMP inside of each SMP node

Node Interconnect

SMP nodes
cores
shared
memory

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes

Slide 4 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

MPI process
8 x multi-
threaded

MPI process
8 x multi-
threaded

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

Motivation

• Which programming model
is fastest?

• MPI everywhere?

• Fully hybrid
MPI & OpenMP?

• Something between?
(Mixed model)

?• Often hybrid programming
slower than pure MPI
– Examples, Reasons, …

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

Slide 5 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Goals of this tutorial

• Sensitize to problems on clusters of SMP nodes

see sections � Case studies
� Mismatch problems

• Technical aspects of hybrid programming

see sections � Programming models on clusters
� Examples on hybrid programming

• Opportunities with hybrid programming

see section � Opportunities: Application categories
that can benefit from hybrid paralleliz.

• Issues and their Solutions

with sections � Thread-safety quality of MPI libraries
� Tools for debugging and profiling

for MPI+OpenMP

•Less
frustration
&

•More
success
with your
parallel
program on
clusters of
SMP nodes

Slide 6 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities:

Application categories that can benefit from hybrid parallelization
• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary

Slide 7 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Major Programming models on hybrid systems

• Pure MPI (one MPI process on each core)
• Hybrid MPI+OpenMP

– shared memory OpenMP
– distributed memory MPI

• Other: Virtual shared memory systems, PGAS, HPF, …
• Often hybrid programming (MPI+OpenMP) slower than pure MPI

– why?

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each core

Explicit Message Passing
by calling MPI_Send & MPI_Recv

Node Interconnect

OpenMP inside of the
SMP nodes

MPI between the nodes
via node interconnect

Slide 8 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each core

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each core

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Slide 9 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Pure MPI

Advantages
– No modifications on existing MPI codes
– MPI library need not to support multiple threads

Major problems
– Does MPI library uses internally different protocols?

• Shared memory inside of the SMP nodes
• Network communication between the nodes

– Does application topology fit on hardware topology?
– Unnecessary MPI-communication inside of SMP nodes!

pure MPI
one MPI process

on each core

Discussed
in detail later on
in the section
Mismatch
Problems

Slide 10 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Hybrid Masteronly

Advantages
– No message passing inside of the SMP nodes
– No topology problem

for (iteration ….)
{
#pragma omp parallel

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside
of parallel regions

Major Problems

– All other threads are sleeping
while master thread communicates!

– Which inter-node bandwidth?

– MPI-lib must support at least
MPI_THREAD_FUNNELED

� Section
Thread-safety
quality of MPI

libraries

Slide 11 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping communication and computation

if (my_thread_rank < …) {

MPI_Send/Recv….
i.e., communicate all halo data

} else {

Execute those parts of the application
that do not need halo data
(on non-communicating threads)

}

Execute those parts of the application
that need halo data
(on all threads)

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Slide 12 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Pure OpenMP (on the cluster)

• Distributed shared virtual memory system needed

• Must support clusters of SMP nodes

• e.g., Intel® Cluster OpenMP

– Shared memory parallel inside of SMP nodes

– Communication of modified parts of pages
at OpenMP flush (part of each OpenMP barrier)

OpenMP only
distributed virtual
shared memory

i.e., the OpenMP memory and parallelization model
is prepared for clusters!

Experience:
� Mismatch

section

Slide 13 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP
– The Multi-Zone NAS Parallel Benchmarks
– For each application we discuss:

• Benchmark implementations based on different strategies and
programming paradigms

• Performance results and analysis on different hardware architectures

– Compilation and Execution Summary
Gabriele Jost (University of Texas,TACC/Naval Postgraduate School, Monterey CA)

• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities: Application categories that can benefit from hybrid paralleli.
• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary

Slide 14 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Multi-Zone NAS Parallel Benchmarks

OpenMP

Call MPI

MPI
Processes

sequential

MPI/OpenMP

OpenMPdata copy+
sync.

exchange
boundaries

sequentialsequentialTime step

OpenMPOpenMPintra-zones

OpenMPMLP
Processesinter-zones

Nested
OpenMPMLP

� Multi-zone versions of the NAS Parallel Benchmarks
LU,SP, and BT

� Two hybrid sample implementations
� Load balance heuristics part of sample codes
� www.nas.nasa.gov/Resources/Software/software.html

Slide 15 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Using MPI/OpenMP: ADI Method
call omp_set_numthreads (weight)
do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call zsolve(u,rsd,…)

end if

end do

end do

...

call mpi_send/recv

subroutine zsolve(u, rsd,…)

...

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

!$OMP DO

do k = 2, nz-1

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5
u(m,i,j,k)=
dt*rsd(m,i,j,k-1)

end do

end do

end do

end do

!$OMP END DO nowait

...

!$OMP END PARALLEL

Slide 16 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Pipelined Thread Execution in SSOR
subroutine ssor

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

call sync1 ()
do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5
rsd(m,i,j,k)=
dt*rsd(m,i,j,k-1)

end do

end do

end do

!$OMP END DO nowait

end do

call sync2 ()
...

!$OMP END PARALLEL
...

subbroutine sync1
…neigh = iam -1

do while (isync(neigh) .eq. 0)

!$OMP FLUSH(isync)

end do

isync(neigh) = 0

!$OMP FLUSH(isync)

…

subroutine sync2
…

neigh = iam -1

do while (isync(neigh) .eq. 1)

!$OMP FLUSH(isync)

end do

isync(neigh) = 1

!$OMP FLUSH(isync)

Slide 17 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

• Aggregate sizes:
– Class D: 1632 x 1216 x 34 grid points
– Class E: 4224 x 3456 x 92 grid points

• BT-MZ: (Block tridiagonal simulated CFD application)
– Alternative Directions Implicit (ADI) method
– #Zones: 1024 (D), 4096 (E)
– Size of the zones varies widely:

• large/small about 20
• requires multi-level parallelism to achieve a good load-balance

• LU-MZ: (LU decomposition simulated CFD application)
– SSOR method (2D pipelined method)
– #Zones: 16 (all Classes)
– Size of the zones identical:

• no load-balancing required
• limited parallelism on outer level

• SP-MZ: (Scalar Pentadiagonal simulated CFD application)
– #Zones: 1024 (D), 4096 (E)
– Size of zones identical

• no load-balancing required

Benchmark Characteristics

Load-balanced on
MPI level: Pure MPI
should perform best

Pure MPI: Load-
balancing problems!
Good candidate for

MPI+OpenMP

Limitted MPI
Parallelism:

� MPI+OpenMP
increases

Parallelism

Expectations:

Slide 18 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

• Sun Constellation (Ranger)
• Cray XT5
• IBM Power 6

Benchmark Architectures

Slide 19 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

• OpenMP:
– Support only per MPI process
– Version 2.5 does not provide support to control to map threads onto CPUs.

Support to specify thread affinities was under discussion for 3.0 but has not
been included

• MPI:
– Initially not designed for NUMA architectures or mixing of threads and

processes, MPI-2 supports threads in MPI
– API does not provide support for memory/thread placement

• Vendor specific APIs to control thread and memory placement:
– Environment variables
– System commands like numactl

� http://www.halobates.de/numaapi3.pdf

Hybrid code on cc-NUMA architectures

Slide 20 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Sun Constellation Cluster Ranger (1)

• Located at the Texas Advanced Computing Center (TACC),
University of Texas at Austin (http://www.tacc.utexas.edu)

• 3936 Sun Blades, 4 AMD Quad-core 64bit 2.3GHz processors per
node (blade), 62976 cores total

• 123TB aggregrate memory
• Peak Performance 579 Tflops
• InfiniBand Switch interconnect
• Sun Blade x6420 Compute Node:

– 4 Sockets per node
– 4 cores per socket
– HyperTransport System Bus
– 32GB memory

Slide 21 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Sun Constellation Cluster Ranger (2)
• Compilation:

– PGI pgf90 7.1
– mpif90 -tp barcelona-64 -r8 -mp

• Cache optimized benchmarks Execution:
– MPI MVAPICH
– setenv OMP_NUM_THREADS nthreads
– Ibrun numactl bt-mz.exe

• numactl controls
– Socket affinity: select sockets to run
– Core affinity: select cores within socket
– Memory policy:where to allocate memory
– http://www.halobates.de/numaapi3.pdf

i.e., with OpenMP

Slide 22 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

SUN: Running hybrid on Sun Constellation
Cluster Ranger

• Highly hierarchical
• Shared Memory:

– Cache-coherent, Non-
uniform memory access
(ccNUMA) 16-way Node
(Blade)

• Distributed memory:
– Network of ccNUMA blades

• Core-to-Core
• Socket-to-Socket
• Blade-to-Blade
• Chassis-to-Chassis

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

�

��

�

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

�

��

�

netw
ork

Slide 23 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

MPI ping-pong micro
benchmark results
on Ranger
• Inside one node:

Ping-pong socket 0 with 1, 2, 3
and 1, 2, or 4 simultaneous comm.
(quad-core)
� Missing Connection: Communication

between socket 0 and 3 is slower
� Maximum bandwidth:

1 x 1180, 2 x 730, 4 x 300 MB/s

• Node-to-node inside one chassis
with 1-6 node-pairs (= 2-12 procs)
� Perfect scaling for up to 6

simultaneous communications
� Max. bandwidth : 6 x 900 MB/s

• Chassis to chassis (distance: 7 hops)
with 1 MPI process per node and 1-12
simultaneous communication links
� Max: 2 x 900 up to 12 x 450 MB/s

“Exploiting Multi-Level Parallelism on the Sun Constellation
System”, L. Koesterke, et al., TACC, TeraGrid08 Paper

Slide 24 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

NPB-MZ Class E Scalability on Sun Constellation

0
500000

1000000
1500000

2000000
2500000

3000000
3500000

4000000
4500000

5000000

1024 2048 4096 8192core#

M
F

lo
p/

s

SP-MZ (MPI)
SP-MZ MPI+OpenMP
BT-MZ (MPI)
BT-MZ MPI+OpenMP

• Scalability in Mflops
• MPI/OpenMP outperforms pure MPI
• Use of numactl essential to achieve scalability

SUN: NPB-MZ Class E Scalability on Ranger

BT
Significant improve-

ment (235%):
Load-balancing

issues solved with
MPI+OpenMP

SP
Pure MPI is already

load-balanced.
But hybrid

9.6% faster, due to
smaller message

rate at NIC

Cannot be build for
8192 processes!

Hybrid:
SP: still scales

BT: does not scale

Slide 25 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

NUMA Control: Process Placement

• Affinity and Policy can be changed externally through numactl at
the socket and core level.

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

	�
����������
��

��

��

��������������

��������������������

�����������
��

���� ����numactl -N 1 ./a.out ���� ����numactl –c 0,1 ./a.out

Slide 26 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

NUMA Operations: Memory Placement

Memory allocation:
• MPI

– local allocation is best
• OpenMP

– Interleave best for large, completely
shared arrays that are randomly
accessed by different threads

– local best for private arrays
• Once allocated,

a memory-structure is fixed

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

 �� ��!�	�
����������
��

�

��

�

���� ����numactl -N 1 -l ./a.out

Slide 27 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

NUMA Operations (cont. 3)

Slide 28 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Hybrid Batch Script: 4 tasks, 4 threads/task

job script (Bourne shell) job script (C shell)

... ...

#! -pe 4way 32 #! -pe 4way 32
... ...

export OMP_NUM_THREADS=4 setenv OMP_NUM_THREADS 4

ibrun numa.sh ibrun numa.csh

numa.sh
#!/bin/bash
export MV2_USE_AFFINITY=0
export MV2_ENABLE_AFFINITY=0
export VIADEV_USE_AFFINITY=0

#TasksPerNode
TPN=`echo $PE | sed 's/way//'`
[! $TPN] && echo TPN NOT defined!
[! $TPN] && exit 1

socket=$(($PMI_RANK % $TPN))

numactl -N $socket -m $socket ./a.out

numa.csh
#!/bin/tcsh
setenv MV2_USE_AFFINITY 0
setenv MV2_ENABLE_AFFINITY 0
setenv VIADEV_USE_AFFINITY 0

#TasksPerNode
set TPN = `echo $PE | sed 's/way//'`
if(! ${%TPN}) echo TPN NOT defined!
if(! ${%TPN}) exit 0

@ socket = $PMI_RANK % $TPN

numactl -N $socket -m $socket ./a.out

fo
r m

va
pi

ch
2

4 MPI per
node

Slide 29 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Numactl – Pitfalls:
Using Threads across Sockets

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

�

��

�

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

�

��

�

netw
ork

-pe 2way 8192
export OMP_NUM_THREADS=8

my_rank=$PMI_RANK
local_rank=$(($my_rank % $myway))
numnode=$(($local_rank + 1))

Original:
numactl -N $numnode -m $numnode $*

Bad performance!
• Each process runs 8 threads on 4 cores
• Memory allocated on one socket

Rank 0

Rank 1

bt-mz.1024x8 yields
best load-balance

Slide 30 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Numactl – Pitfalls:
Using Threads across Sockets

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

�

��

�

���� ����

��������

���� ����

��������

���� ����

��������

���� ����

��������

�

��

�

netw
ork

export OMP_NUM_THREADS=8

my_rank=$PMI_RANK
local_rank=$(($my_rank % $myway))
numnode=$(($local_rank + 1))

Original:
numactl -N $numnode -m $numnode $*

Modified:
if [$local_rank -eq 0]; then

numactl -N 0,3 -m 0,3 $*
else

numactl -N 1,2 -m 1,2 $*
fi

Rank 0Rank 1

bt-mz.1024x8

Achieves Scalability!
• Process uses cores and memory across 2 sockets
• Suitable for 8 threads

Slide 31 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Cray XT5

• Results obtained by the courtesy of the
HPCMO Program and the Engineer Research
and Development Center Major Shared
Resource Center, Vicksburg, MS
(http://www.erdc.hpc.mil/index)

• Cray XT5 is located at the Arctic Region
Supercomputing Center (ARSC)
(http://www.arsc.edu/resources/pingo)
– 432- Cray XT5 compute nodes with

• 32 GB of shared memory per node (4 GB per core)
• 2 - quad core 2.3 GHz AMD Opteron processors

per node.
• 1 - Seastar2+ Interconnect Module per node.

– Cray Seastar2+ Interconnect between all
compute and login nodes

���� ����

��������

���� ����

��������

�

�

���� ����

��������

���� ����

��������

�

�

netw
ork

"�#�

"$ %"�#�

&	�
���'

Slide 32 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

���(����������#���
�����)�����*����
����

+ 	,* -�(�� ,.�
����(���
����
����

+ 	,* - ,./0 ��� , �
������
����
����

+ 	,* - ,./0 ��� ,
�(�������� ��(�� ,.���
����
����

+ 12* - ,.#�������
���

+ 12* - ,./0 ��� , �
������
����
������(�������� ��(��
 ,.

Cray XT5: NPB-MZ Class D Scalability

���
����
���
����

����
����

����
����

$�����
��#3

����
��#�

4 ,.���
������5� 5��#

����
��#�6��#*

.� 7����
����

�(�� ,.

best of category

Slide 33 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Cray XT5: CrayPat Performance Analysis

• module load xt-craypat

• Compilation:
� ftn –fastsse –tp barcelona–64 –r8 –mp=nonuma,[trace]

• Instrument:
� pat_build –w –T TraceOmp, –g mpi,omp bt.exe bt.exe.pat

• Execution :
� (export PAT_RT_HWPC {0,1,2,..})
� export OMP_NUM_THREADS 4
� aprun –n NPROCS –S 1 –d 4 ./bt.exe.pat

• Generate report:
� pat_report –O

load_balance,thread_times,program_time,mpi_callers –O
profile_pe.th $1

Slide 34 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Cray XT5: BT-MZ 32x4 Function Profile

Slide 35 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Cray XT5: BT-MZ Load-Balance 32x4 vs 128x1

7�*� 8*�9����

7�*� 8*�9�����

• maximum, median, minimum PE are shown

• bt-mz.C.128x1 shows large imbalance in User
and MPI time

• bt-mz.C.32x4 shows well balanced times

Slide 36 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Running Hybrid on Cray XT4

• Shared Memory:
– Cache-coherent 4-way Node

• Distributed memory:
– Network of nodes

• Core-to-Core
• Node-to-Node

netw
ork

���� ����

��������

�

���� ����

��������

�

Hyper Transport

memory

—
skipped —

Slide 37 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Pitfalls:
Process and Thread Placement on Cray XT4 (1)

���� ����

��������

�

netw
ork

���� ����

��������

�

export OMP_NUM_THREADS=4
export MPICH_RANK_REORDER_DISPLAY=1

aprun –n 2 sp-mz.B.2

[PE_0]: rank 0 is on nid01759;
[PE_0]: rank 1 is on nid01759;

Rank 0

Rank 1

1 node, 4 cores, 8 threads

Terrible execution time
because both

4-threaded MPI
processes are running

on the same socket

—
skipped —

Slide 38 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Pitfalls:
Process and Thread Placement on Cray XT4 (2)
export OMP_NUM_THREADS=4
export MPICH_RANK_REORDER_DISPLAY=1

aprun –n 2 –N 1 sp-mz.B.2

[PE_0]: rank 0 is on nid01759;
[PE_0]: rank 1 is on nid01882; Rank 0

Rank 1
���� ����

��������

�

netw
ork

���� ����

��������

�

2 nodes, 8 cores, 8 threads

Short execution time
because both 4-way MPI

processes are running
on different sockets

—
skipped —

Slide 39 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Number of MPI Procs per Node:
1 process per node allows for 4 threads per process

4 threads per MPI process

Example Batch Script Cray XT4

Cray XT4 at ERDC:
• 1 quad-core AMD Opteron per node

• ftn -fastsse -tp barcelona-64 –mp –o bt-mz.128

#!/bin/csh
#PBS -q standard
#PBS –l mppwidth=512
#PBS -l walltime=00:30:00
module load xt-mpt
cd $PBS_O_WORKDIR
setenv OMP_NUM_THREADS 4
aprun -n 128 -N 1 –d 4./bt-mz.128

setenv OMP_NUM_THREADS 2
aprun –n 256 –N 2 –d 2./bt-mz.256

Maximum of 4 threads
per MPI process on XT4

2 MPI processes per node,
2 threads per MPI process

—
skipped —

Slide 40 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

IBM Power 6

• Results obtained by the courtesy of the HPCMO Program and the
Engineer Research and Development Center Major Shared
Resource Center, Vicksburg, MS (http://www.erdc.hpc.mil/index)

• The IBM Power 6 System is located at
(http://www.navo.hpc.mil/davinci_about.html)

• 150 Compute Nodes
• 32 4.7GHz Power6 Cores per Node (4800 cores total)
• 64 GBytes of dedicated memory per node
• QLOGOC Infiniband DDR interconnect
• IBM MPI: MPI 1.2 + MPI-IO

� mpxlf_r –O4 –qarch=pwr6 –qtune=pwr6 –qsmp=omp

• Execution:
� poe launch $PBS_O_WORKDIR./sp.C.16x4.exe

:��;< ��������5�����
=5�>��(��

�� �5������5� 58��5��5�

������
���0 ,#5��
�5>��3

Slide 41 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

+ ���(���������*����

����

+ 0 ��!����
����< ���
�>�5��7������=�
�����5� ����

+ 12* -��#	,* -
�=�< 7����5�����
��������	
���
 �������	����� &� �'�
�����=���#�
������
����

NPB-MZ Class D on IBM Power 6:
Exploiting SMT for 2048 Core Results

���
����

���
����

����
����

���
����

�
�
�
�
��

Doubling the number of threads
through hyperthreading (SMT):
#!/bin/csh
#PBS -l select=32:ncpus=64:
mpiprocs=NP:ompthreads=NT

����

?
����@

best of category

Slide 42 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

LU-MZ Class D Scalability IBM Power 6

+ LU-MZ significantly benefits from hybrid mode:
� Pure MPI limited to 16 cores, due to #zones = 16

Slide 43 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Conventional Multi-Threading

• Threads alternate
– Nothing shared

Functional
Units

FX0

FX1

FP0

FP1

LS0

LS1

BRX

CRL

Thread 0 Thread 1

Time

Charles Grassl, IBM

Slide 44 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Simultaneous Multi-Threading

• Simultaneous execution
– Shared registers
– Shared functional units

FX0

FX1

FP0

FP1

LS0

LS1

BRX

CRL

Thread 0 Thread 1

0 1

Charles Grassl, IBM

Rabenseifner, Hager, Jost

• Simultaneous execution
– Shared registers
– Shared functional units

FX0

FX1

FP0

FP1

LS0

LS1

BRX

CRL

Thread 0 Thread 1

0 1

Charles Grassl, IBM

Simultaneous Multi-Threading

Slide 46 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

• Compilation:
� mpxlf_r –O4 –qarch=pwr6 –qtune=pwr6 –qsmp=omp –pg

• Execution :
� export OMP_NUM_THREADS 4
� poe launch $PBS_O_WORKDIR./sp.C.16x4.exe
� Generates a file gmount.MPI_RANK.out for each MPI Process

• Generate report:
� gprof sp.C.16x4.exe gmon*

Performance Analysis on IBM Power 6

% cumulative self self total
time seconds seconds calls ms/call ms/call name
16.7 117.94 117.94 205245 0.57 0.57 .@10@x_solve@OL@1 [2]
14.6 221.14 103.20 205064 0.50 0.50 .@15@z_solve@OL@1 [3]
12.1 307.14 86.00 205200 0.42 0.42 .@12@y_solve@OL@1 [4]
6.2 350.83 43.69 205300 0.21 0.21 .@8@compute_rhs@OL@1@OL@6 [5]

Slide 47 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Conclusions:

• BT-MZ:
� Inherent workload imbalance on MPI level
� #nprocs = #nzones yields poor performance
� #nprocs < #zones => better workload balance, but decreases parallelism
� Hybrid MPI/OpenMP yields better load-balance,

maintains amount of parallelism

• SP-MZ:
� No workload imbalance on MPI level, pure MPI should perform best
� MPI/OpenMP outperforms MPI on some platforms due contention to

network access within a node

• LU-MZ:
� Hybrid MPI/OpenMP increases level of parallelism

• “Best of category” depends on many factors
� Depends on many factors
� Hard to predict
� Good thread affinity is essential

Slide 48 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming
Georg Hager, Regionales Rechenzentrum Erlangen (RRZE)

• Mismatch Problems
• Application categories that can benefit from hybrid parallelization
• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary

Slide 49 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Hybrid Programming How-To: Overview

• A practical introduction to hybrid programming
– How to compile and link
– Getting a hybrid program to run on a cluster

• Running hybrid programs efficiently on multi-core clusters
– Affinity issues

• ccNUMA
• Bandwidth bottlenecks

– Intra-node MPI/OpenMP anisotropy
• MPI communication characteristics
• OpenMP loop startup overhead

– Thread/process binding

Slide 50 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

How to compile, link and run

• Use appropriate OpenMP compiler switch (-openmp, -xopenmp,
-mp, -qsmp=openmp, …) and MPI compiler script (if available)

• Link with MPI library
– Usually wrapped in MPI compiler script
– If required, specify to link against thread-safe MPI library

• Often automatic when OpenMP or auto-parallelization is switched on

• Running the code
– Highly non-portable! Consult system docs! (if available…)
– If you are on your own, consider the following points
– Make sure OMP_NUM_THREADS etc. is available on all MPI

processes
• Start “env VAR=VALUE … <YOUR BINARY>” instead of your binary alone
• Use Pete Wyckoff’s mpiexec MPI launcher (see below):

http://www.osc.edu/~pw/mpiexec

– Figure out how to start less MPI processes than cores on your
nodes

Slide 51 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel ProgrammingHybrid Parallel Programming

Some examples for compilation and execution (1)

• NEC SX9
– NEC SX9 compiler
– mpif90 –C hopt –P openmp … # –ftrace for profiling info
– Execution:

$ export OMP_NUM_THREADS=<num_threads>
$ MPIEXPORT=“OMP_NUM_THREADS”
$ mpirun –nn <# MPI procs per node> -nnp <# of nodes> a.out

• Standard Intel Xeon cluster (e.g. @HLRS):
– Intel Compiler
– mpif90 –openmp …

– Execution (handling of OMP_NUM_THREADS, see next slide):

$ mpirun_ssh –np <num MPI procs> -hostfile machines a.out

Slide 52 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel ProgrammingHybrid Parallel Programming

Handling of OMP_NUM_THREADS
• without any support by mpirun:

– E.g. with mpich-1
– Problem:

mpirun has no features to export environment variables to the via ssh
automatically started MPI processes

– Solution: Set
export OMP_NUM_THREADS=<# threads per MPI process>
in ~/.bashrc (if a bash is used as login shell)

– If you want to set OMP_NUM_THREADS individually when starting the MPI
processes:

• Add
test -s ~/myexports && . ~/myexports
in your ~/.bashrc

• Add
echo '$OMP_NUM_THREADS=<# threads per MPI process>' > ~/myexports
before invoking mpirun

• Caution: Several invocations of mpirun cannot be executed at the same time with this trick!

Some examples for compilation and execution (2)

Slide 53 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel ProgrammingHybrid Parallel Programming

Handling of OMP_NUM_THREADS (continued)

• with support by OpenMPI –x option:
export OMP_NUM_THREADS= <# threads per MPI process>

mpiexec –x OMP_NUM_THREADS –n <# MPI processes> ./executable

Some examples for compilation and execution (3)

Slide 54 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel ProgrammingHybrid Parallel Programming

Some examples for compilation and execution (4)

• Sun Constellation Cluster:
• mpif90 -fastsse -tp barcelona-64 –mp …

• SGE Batch System
• setenv OMP_NUM_THREADS

• ibrun numactl.sh a.out

• Details see TACC Ranger User Guide
(www.tacc.utexas.edu/services/userguides/ranger/#numactl)

• Cray XT5:
• ftn -fastsse -tp barcelona-64 -mp=nonuma …

• aprun -n nprocs -N nprocs_per_node a.out

Slide 55 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Interlude: Advantages of mpiexec
or similar mechanisms

• Uses PBS/Torque Task Manager (“TM”) interface to spawn MPI
processes on nodes
– As opposed to starting remote processes with ssh/rsh:

• Correct CPU time accounting in batch system
• Faster startup
• Safe process termination
• Understands PBS per-job nodefile
• Allowing password-less user login not required between nodes

– Support for many different types of MPI
• All MPICHs, MVAPICHs, Intel MPI, …

– Interfaces directly with batch system to determine number of procs
– Downside: If you don’t use PBS or Torque, you’re out of luck…

• Provisions for starting less processes per node than available cores
– Required for hybrid programming
– “-pernode” and “-npernode #” options – does not require messing

around with nodefiles

Slide 56 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Running the code
Examples with mpiexec

• Example for using mpiexec on a dual-socket quad-core cluster:

$ export OMP_NUM_THREADS=8
$ mpiexec -pernode ./a.out

• Same but 2 MPI processes per node:

$ export OMP_NUM_THREADS=4
$ mpiexec -npernode 2 ./a.out

• Pure MPI:

$ export OMP_NUM_THREADS=1 # or nothing if serial code
$ mpiexec ./a.out

Slide 57 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Running the code efficiently?

• Symmetric, UMA-type compute nodes have become rare animals
– NEC SX
– Intel 1-socket (“Port Townsend/Melstone/Lynnfield”) – see case

studies
– Hitachi SR8000, IBM SP2, single-core multi-socket Intel Xeon…

(all dead)
• Instead, systems have become “non-isotropic” on the node level

– ccNUMA (AMD Opteron, SGI Altix,
IBM Power6 (p575), Intel Nehalem)

– Multi-core, multi-socket
• Shared vs. separate caches
• Multi-chip vs. single-chip
• Separate/shared buses

P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory

Chipset

Memory

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C

Slide 58 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Issues for running code efficiently
on “non-isotropic” nodes

• ccNUMA locality effects
– Penalties for inter-LD access
– Impact of contention
– Consequences of file I/O for page placement
– Placement of MPI buffers

• Multi-core / multi-socket anisotropy effects
– Bandwidth bottlenecks, shared caches
– Intra-node MPI performance

• Core � core vs. socket � socket

– OpenMP loop overhead depends on mutual position of threads
in team

Slide 59 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

A short introduction to ccNUMA

• ccNUMA:
– whole memory is transparently accessible by all processors
– but physically distributed
– with varying bandwidth and latency
– and potential contention (shared memory paths)

C C C C

M M

C C C C

M M

Slide 60 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Example: HP DL585 G5
4-socket ccNUMA Opteron 8220 Server

P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory
P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory

• CPU
– 64 kB L1 per core
– 1 MB L2 per core
– No shared caches
– On-chip memory controller (MI)
– 10.6 GB/s local memory bandwidth

• HyperTransport 1000 network
– 4 GB/s per link per direction

• 3 distance categories for
core-to-memory connections:
– same LD
– 1 hop
– 2 hops

• Q1: What are the real penalties for non-local accesses?
• Q2: What is the impact of contention?

HT

HT

HTHT

Slide 61 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Effect of non-local access on HP DL585 G5:
Serial vector triad A(:)=B(:)+C(:)*D(:)

local

1 hop

2 hops

Slide 62 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Contention vs. parallel access on HP DL585 G5:
OpenMP vector triad A(:)=B(:)+C(:)*D(:)

T = # threads
S = # sockets

In-cache performance
unharmed by ccNUMA

Single LD saturated
by 2 cores!

Perfect scaling
across LDs

Affinity matters!

Slide 63 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

ccNUMA Memory Locality Problems

• Locality of reference is key to scalable performance on ccNUMA
– Less of a problem with pure MPI, but see below

• What factors can destroy locality?
• MPI programming:

– processes lose their association with the CPU the mapping took
place on originally

– OS kernel tries to maintain strong affinity, but sometimes fails
• Shared Memory Programming (OpenMP, hybrid):

– threads losing association with the CPU the mapping took place on
originally

– improper initialization of distributed data
– Lots of extra threads are running on a node, especially for hybrid

• All cases:
– Other agents (e.g., OS kernel) may fill memory with data that

prevents optimal placement of user data

Slide 64 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Avoiding locality problems

• How can we make sure that memory ends up where it is close to
the CPU that uses it?
– See the following slides

• How can we make sure that it stays that way throughout program
execution?
– See end of section

Slide 65 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Solving Memory Locality Problems: First Touch

• "Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the
processor that first touches it!
– Except if there is not enough local memory available
– this might be a problem, see later
– Some OSs allow to influence placement in more direct ways

• cf. libnuma (Linux), MPO (Solaris), …

• Caveat: "touch" means "write", not "allocate"
• Example:

double *huge = (double*)malloc(N*sizeof(double));
// memory not mapped yet
for(i=0; i<N; i++) // or i+=PAGE_SIZE

huge[i] = 0.0; // mapping takes place here!

• It is sufficient to touch a single item to map the entire page

Im
porta

nt

Slide 66 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

ccNUMA problems beyond first touch
• OS uses part of main memory for

disk buffer (FS) cache
– If FS cache fills part of memory,

apps will probably allocate from
foreign domains

– � non-local access!
– Locality problem even on hybrid

and pure MPI with “asymmetric”
file I/O, i.e. if not all MPI processes
perform I/O

• Remedies
– Drop FS cache pages after user job has run (admin’s job)

• Only prevents cross-job buffer cache “heritage”

– “Sweeper” code (run by user)
– Flush buffer cache after I/O if necessary (“sync” is not sufficient!)

P0
C

P1
C

C C

MI

P2
C

P3
C

C C

MI

BC

data(3)

BC

data(3)

data(1)

Slide 67 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

ccNUMA problems beyond first touch
• Real-world example: ccNUMA vs. UMA and the Linux buffer cache
• Compare two 4-way systems: AMD Opteron ccNUMA vs. Intel UMA, 4 GB

main memory

• Run 4 concurrent
triads (512 MB each)
after writing a large
file

• Report perfor-
mance vs. file size

• Drop FS cache after
each data point

Slide 68 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Intra-node MPI characteristics: IMB Ping-Pong benchmark

• Code (to be run on 2 processors):

• Intranode (1S): mpirun –np 2 –pin “1 3” ./a.out
• Intranode (2S): mpirun –np 2 –pin “2 3” ./a.out
• Internode: mpirun –np 2 –pernode ./a.out

wc = MPI_WTIME()

do i=1,NREPEAT

if(rank.eq.0) then
MPI_SEND(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD,ierr)
MPI_RECV(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD, &

status,ierr)
else
MPI_RECV(…)
MPI_SEND(…)

endif

enddo

wc = MPI_WTIME() - wc

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Slide 69 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

IMB Ping-Pong: Latency
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)

3,24

0,55
0,31

0

0,5

1

1,5

2

2,5

3

3,5

La
te

nc
y

[µ
s]

IB internode IB intranode 2S IB intranode 1S

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Affinity matters!

Slide 70 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

IMB Ping-Pong: Bandwidth Characteristics
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)

Shared cache
advantage

intranode
shm comm

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Affinity matters!

Between two cores of
one socket

Between two nodes
via InfiniBand

Between two sockets
of one node

Slide 71 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

OpenMP Overhead

• As with intra-node MPI, OpenMP loop start overhead varies with the
mutual position of threads in a team

• Possible variations
– Intra-socket vs. inter-socket
– Different overhead for “parallel for” vs. plain “for”
– If one multi-threaded MPI process spans multiple sockets,

• … are neighboring threads on neighboring cores?
• … or are threads distributed “round-robin” across cores?

• Test benchmark: Vector triad
#pragma omp parallel
for(int j=0; j < NITER; j++){
#pragma omp (parallel) for

for(i=0; i < N; ++i)
a[i]=b[i]+c[i]*d[i];
if(OBSCURE)

dummy(a,b,c,d);
}

Look at performance for small
array sizes!

Slide 72 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

OpenMP Overhead

Nomenclature:

1S/2S
1-/2-socket

RR
round-robin

SS
socket-socket

inner
parallel on
inner loop

OMP overhead can be
comparable to MPI latency!

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Affinity matters!

Slide 73 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread synchronization overhead
Barrier overhead in CPU cycles: pthreads vs. OpenMP vs. spin loop

2 Threads Q9550 (shared L2) i7 920 (shared L3)

pthreads_barrier_wait 23739 6511

omp barrier (icc 11.0) 399 469

Spin loop 231 270

4 Threads Q9550 i7 920 (shared L3)

pthreads_barrier_wait 42533 9820

omp barrier (icc 11.0) 977 814

Spin loop 1106 475

pthreads � OS kernel call
Spin loop does fine for shared cache sync

OpenMP & Intel compiler

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C C

P
C

P
C

C C
C

Slide 74 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread synchronization overhead
Barrier overhead: OpenMP icc vs. gcc

2 Threads Q9550 (shared L2) i7 920 (shared L3)

gcc 4.3.3 22603 7333

icc 11.0 399 469

4 Threads Q9550 i7 920 (shared L3)

gcc 4.3.3 64143 10901

icc 11.0 977 814

gcc obviously uses a pthreads barrier for the OpenMP barrier:

Correct pinning of threads:

• Manual pinning in source code (see below) or

• likwid-pin: http://code.google.com/p/likwid/

P
C

P
C

C

P
C

P
C

C

P
C

P
C

C C

P
C

P
C

C C
C

Slide 75 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Xeon E5420 2 Threads shared L2 same socket different socket

pthreads_barrier_wait 5863 27032 27647

omp barrier (icc 11.0) 576 760 1269

Spin loop 259 485 11602

Nehalem 2 Threads Shared SMT
threads

shared L3 different socket

pthreads_barrier_wait 23352 4796 49237

omp barrier (icc 11.0) 2761 479 1206

Spin loop 17388 267 787

Thread synchronization overhead
Barrier overhead: Topology influence

• SMT can be a big performance problem for synchronizing threads

• Well known for a long time…

C
hi

ps
et

M
em

or
y

P C
P C

C

P C
P C

C

P C
P C

C

P C
P C

C
P C

P C
C

C

P C
P C

C
C

C

P C
P C

C
C

P C
P C

C
C

C

M
em

or
y

M
em

or
y

Slide 76 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread/Process Affinity (“Pinning”)

• Highly OS-dependent system calls
– But available on all systems

Linux: sched_setaffinity(), PLPA (see below) � hwloc
Solaris: processor_bind()
Windows: SetThreadAffinityMask()
…

• Support for “semi-automatic” pinning in some compilers/environments
– Intel compilers > V9.1 (KMP_AFFINITY environment variable)
– Pathscale
– SGI Altix dplace (works with logical CPU numbers!)
– Generic Linux: taskset, numactl, likwid-pin (see below)

• Affinity awareness in MPI libraries
– SGI MPT
– OpenMPI
– Intel MPI
– …

Widely usable example: Using PLPA
under Linux!

Seen on SUN Ranger slides

Slide 77 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Explicit Process/Thread Binding With PLPA on Linux:
http://www.open-mpi.org/software/plpa/
• Portable Linux Processor Affinity
• Wrapper library for sched_*affinity() functions

– Robust against changes in kernel API
• Example for pure OpenMP: Pinning of threads

#include <plpa.h>
...
#pragma omp parallel
{

#pragma omp critical
{
if(PLPA_NAME(api_probe)()!=PLPA_PROBE_OK) {

cerr << "PLPA failed!" << endl; exit(1);
}
plpa_cpu_set_t msk;
PLPA_CPU_ZERO(&msk);
int cpu = omp_get_thread_num();
PLPA_CPU_SET(cpu,&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);

}

Pinning
available?

Which CPU
to run on?

Pin “me”

Care about correct
core numbering!
0…N-1 is not always
contiguous! If
required, reorder by
a map:
cpu = map[cpu];

Slide 78 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Process/Thread Binding With PLPA
• Example for pure MPI: Process pinning

– Bind MPI processes to cores in a cluster
of 2x2-core machines

• Hybrid case:

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
int mask = (rank % 4);
PLPA_CPU_SET(mask,&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0,

sizeof(cpu_set_t), &msk);

P0
C

P1
C

C C

MI

Memory

P2
C

P3
C

C C

MI

Memory

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
#pragma omp parallel
{
plpa_cpu_set_t msk;
PLPA_CPU_ZERO(&msk);
int cpu = (rank % MPI_PROCESSES_PER_NODE)*omp_num_threads

+ omp_get_thread_num();
PLPA_CPU_SET(cpu,&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);

}

Slide 79 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

How do we figure out the topology?

• … and how do we enforce the mapping without changing the code?
• Compilers and MPI libs may still give you ways to do that

• But LIKWID supports all sorts of combinations:

Like
I
Knew
What
I’m
Doing

• Open source tool collection (developed at RRZE):

http://code.google.com/p/likwid

Slide 80 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Likwid Tool Suite

• Command line tools for Linux:
– works with standard linux 2.6 kernel
– supports Intel and AMD CPUs
– Supports all compilers whose OpenMP implementation is based on

pthreads

• Current tools:
– likwid-topology: Print thread and cache topology

(similar to lstopo from the hwloc package)
– likwid-pin: Pin threaded application without touching code
– likwid-perfCtr: Measure performance counters (similar to SGI‘s perfex or

lipfpm tools)
– likwid-features: View and enable/disable hardware prefetchers (Core2

only at the moment)
– likwid-bench: Low-level benchmark construction tool

Slide 81 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

likwid-topology – Topology information

• Based on cpuid information

• Functionality:
– Measured clock frequency

– Thread topology

– Cache topology

– Cache parameters (-c command line switch)

– ASCII art output (-g command line switch)

• Currently supported:
– Intel Core 2 (45nm + 65 nm)

– Intel Nehalem

– AMD K10 (Quadcore and Hexacore)

– AMD K8

Slide 82 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Output of likwid-topology

CPU name: Intel Core i7 processor
CPU clock: 2666683826 Hz

Hardware Thread Topology

Sockets: 2
Cores per socket: 4
Threads per core: 2

HWThread Thread Core Socket
0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0
4 0 2 0
5 1 2 0
6 0 3 0
7 1 3 0
8 0 0 1
9 1 0 1
10 0 1 1
11 1 1 1
12 0 2 1
13 1 2 1
14 0 3 1
15 1 3 1

Slide 83 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

likwid-topology continued

• … and also try the ultra-cool -g option!

Socket 0: (0 1 2 3 4 5 6 7)
Socket 1: (8 9 10 11 12 13 14 15)

Cache Topology

Level: 1
Size: 32 kB
Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 2
Size: 256 kB
Cache groups: (0 1) (2 3) (4 5) (6 7) (8 9) (10 11) (12 13) (14 15)

Level: 3
Size: 8 MB
Cache groups: (0 1 2 3 4 5 6 7) (8 9 10 11 12 13 14 15)

Slide 84 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

likwid-pin

• Inspired and based on ptoverride (Michael Meier, RRZE) and taskset

• Pins process and threads to specific cores without touching code

• Directly supports pthreads, gcc OpenMP, Intel OpenMP

• Allows user to specify skip mask (i.e., supports many different compiler/MPI
combinations)

• Can also be used as replacement for taskset

• Uses logical (contiguous) core numbering when running inside a restricted set of
cores

• Supports logical core numbering inside node, socket, core

• Usage examples:
– env OMP_NUM_THREADS=6 likwid-pin -t intel -c 0,2,4-6 ./myApp parameters

– env OMP_NUM_THREADS=6 likwid-pin –c S0:0-2@S1:0-2 ./myApp

– env OMP_NUM_THREADS=2 mpirun –npernode 2 \
likwid-pin -s 0x3 -c 0,1 ./myApp parameters

Slide 85 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning

no pinning

Pinning (physical cores first)

Slide 86 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Topology (“mapping”) choices with MPI+OpenMP:
More examples using Intel MPI+compiler & home-grown mpirun

One MPI process per
node

One MPI process per
socket

OpenMP threads
pinned “round robin”
across cores in
node

Two MPI processes
per socket

env OMP_NUM_THREADS=8 mpirun -pernode \
likwid-pin –t intel -c 0-7 ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \
-pin "0,1,2,3_4,5,6,7" ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \
-pin "0,1,4,5_2,3,6,7" \
likwid-pin –t intel -c 0,2,1,3 ./a.out

env OMP_NUM_THREADS=2 mpirun -npernode 4 \
-pin "0,1_2,3_4,5_6,7" \
likwid-pin –t intel -c 0,1 ./a.out

Slide 87 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Case study: 3D Jacobi Solver
Basic implementation (2 arrays; no blocking etc…)

do k = 1 , Nk
do j = 1 , Nj

do i = 1 , Ni
y(i,j,k) = a*x(i,j,k) + b*

(x(i-1,j,k)+ x(i+1,j,k) + x(i,j-1,k)
+x(i,j+1,k)+ x(i,j,k-1) + x(i,j,k+1))

enddo
enddo

enddo

MPI Parallelization by

• Domain Decomposition

• Halo cells

• Data Exchange through cyclic SendReceive operation

Performance metric:
Million Lattice Site Updates per second (MLUPs)

Equivalent MFLOPs:
8 FLOP/LUP * MLUPs

Slide 88 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

MPI/OpenMP Parallelization – 3D Jacobi

i

j

k

1,1,0

0,0,1

1,0,0

0,0,0

1,1,1

• Cubic 3D computational domain with periodic BCs in all directions
• Use single-node IB/GE cluster with one dual-core chip per node
• Homogeneous distribution of workload, e.g. on 8 procs

pure MPI:

000001

010011
100101

110111

hybrid:

000

100

110

010

1,0,1

Slide 89 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Performance Data for 3D MPI/hybrid Jacobi
Strong scaling, N3 = 4803

IB

GE

FullHybrid: Thread 0: Communication + boundary cell updates
Thread 1: Inner cell updates

Performance model

T = TCOMM + TCOMP

TCOMP = N3 / P0

TCOMM = Vdata / BW

P0 = 150 MLUP/s
BW(GE) = 100 MByte/s

Performance estimate (GE) for n nodes:
P(n) = N3 / ((TCOMP/n) + TCOMM(n))

Vdata = Data volume of
halo exchange

Slide 90 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Example: Sparse MVM
JDS parallel sparse matrix-vector multiply – storage scheme

…

column index
ro

w
 in

de
x

1 2 3 4 …
1
2
3
4
…

4 3 2 21 3 36711 7 26 4 651 … col_idx[]9 9

val[]

1 11 21 … jd_ptr[] 2 16 4 953 1087 … perm[]

• val[] stores all the nonzeroes (length
Nnz)

• col_idx[] stores the column index of
each nonzero (length Nnz)

• jd_ptr[] stores the starting index of
each new jagged diagonal in val[]

• perm[] holds the permutation map
(length Nr)

(JDS = Jagged Diagonal Storage)

—
skipped —

Slide 91 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

JDS Sparse MVM – Kernel Code
OpenMP parallelization

• Implement c(:) = m(:,:) * b(:)
• Operation count = 2Nnz

do diag=1, zmax
diagLen = jd_ptr(diag+1) - jd_ptr(diag)
offset = jd_ptr(diag) – 1

!$OMP PARALLEL DO
do i=1, diagLen

c(i) = c(i) + val(offset+i) * b(col_idx(offset+i))
enddo

!$OMP END PARALLEL DO
enddo

• Long inner loop (max. Nr): OpenMP parallelization / vectorization
• Short outer loop (number of jagged diagonals)
• Multiple accesses to each element of result vector c[]

– optimization potential!
• Stride-1 access to matrix data in val[]
• Indexed (indirect) access to RHS vector b[]

—
skipped —

Slide 92 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

JDS Sparse MVM
MPI parallelization

Row-wise distribution

P2

P0

P

P

1

3

Each processor: local JDS (shift&order)

P0

P

P

1

3

P2

Avoid mixing of local and
non-local diagonals:

1. Shift within local subblock

2. Fill local subblock with non-
local elements from the right

P0

P

P

1

3

P2

—
skipped —

Slide 93 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

JDS Sparse MVM
Parallel MVM implementations: MPP

Start: isend/irecv

Release local diags

Compute MVM with
diags released

Test:irecv

Release diags ?

irecv ?

1

2

3

4

5

6

MPI
• One MPI process per processor
• Non-blocking MPI communication
• Potential overlap of communication and

computation
– However, MPI progress is only

possible inside MPI calls on many
implementations

• SMP Clusters: Intra-node and inter-
node MPI

—
skipped —

Slide 94 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

JDS Sparse MVM
Parallel MVM implementations: Hybrid

1

2

3

4

5

6

ThreadsM ThreadsM

1

2

34

5

6

LOCK: Rel. list

LOCK: Rel. list

OMP END PARALLEL

OMP PARALLEL

MPI MPI
VECTOR mode TASK mode

VECTOR mode:

• Automatic parallel. of inner
i loop (data parallel)

• Single threaded MPI calls

TASK mode:

• Functional parallelism:
Simulate asynchronous
data transfer! (OpenMP)

• Release list - LOCK
• Single threaded MPI calls
• Optional: Comm. Thread

executes configurable
fraction of work
(load = 0...1)

—
skipped —

Slide 95 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

JDS Sparse MVM:
Performance and scalability on two different platforms

GBE
P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory

Opteron 270 2 GHz

P
C

Chipset

Memory

P
C

C

P
C

P
C

CSDR IB

Xeon 5160 3 GHz

no NUMA
placement!

hybrid
advantage

71·106
nonzeroes

—
skipped —

Slide 96 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

MPI/OpenMP hybrid “how-to”: Take-home messages

• Do not use hybrid if the pure MPI code scales ok

• Be aware of intranode MPI behavior
• Always observe the topology dependence of

– Intranode MPI
– OpenMP overheads

• Enforce proper thread/process to core binding, using appropriate
tools (whatever you use, but use SOMETHING)

• Multi-LD OpenMP processes on ccNUMA nodes require correct
page placement

• Finally: Always compare the best pure MPI code with the best
OpenMP code!

Slide 97 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary

Slide 98 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Mismatch Problems

• None of the programming models
fits to the hierarchical hardware
(cluster of SMP nodes)

• Several mismatch problems
� following slides

• Benefit through hybrid programming
� Opportunities, see next section

• Quantitative implications
� depends on you application

Examples: No.1 No.2
Benefit through hybrid (see next section) 30% 10%
Loss by mismatch problems –10% –25%
Total +20% –15%

In most
cases:
Both
categories!

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes

Slide 99 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

17 x inter-node connections per node

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

1 x inter-socket connection per node

Sequential ranking of
MPI_COMM_WORLD

Does it matter?

Slide 100 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

A

A

A

A

A

AA

A

B

B

B

B

B

BB

B

C

C

C

C C

CC

C

D

D

D

D D

DD

D

E

E

E

E E

E

E

E

F

F

F

F F

F

F

F

G

GG

G G

G

G

G

H

HH

H H

H

H

H

I

II

I

I

I

I

I

J

JJ

J

J

J

J

J

32 x inter-node connections per node

0 x inter-socket connection per node

Round robin ranking of
MPI_COMM_WORLD

AA
AA

AA

AA

JJ
JJ

JJ

JJ

Never trust the default !!!

Slide 101 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of
domain decomposition

12 x inter-node connections per node

Bad affinity of cores to thread ranks
4 x inter-socket connection per node

Slide 102 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of
domain decomposition

12 x inter-node connections per node

2 x inter-socket connection per node

Good affinity of cores to thread ranks

Slide 103 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Problem
– Does application topology inside of SMP parallelization

fit on inner hardware topology of each SMP node?

Solutions:
– Domain decomposition inside of each thread-parallel

MPI process, and
– first touch strategy with OpenMP

Successful examples:
– Multi-Zone NAS Parallel Benchmarks (MZ-NPB)

Optimal ?

Loop-worksharing
on 8 threads

Exa.: 2 SMP nodes, 8 cores/node

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

MPI process 0 MPI process 1

Optimal ?

Minimizing ccNUMA
data traffic through
domain decomposition
inside of each
MPI process

—
skipped —

Slide 104 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Application example:
• Same Cartesian application aspect ratio: 5 x 16
• On system with 10 x dual socket x quad-core
• 2 x 5 domain decomposition

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

MPI Level

OpenMP

Application

3 x inter-node connections per node, but ~ 4 x more traffic

2 x inter-socket connection per node

Affinity of cores to thread ranks !!!

—
skipped —

Slide 105 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Numerical Optimization inside of an SMP node

2nd level of domain decomposition: OpenMP

3rd level: 2nd level cache

4th level: 1st level cache

Optimizing the
numerical
performance

Slide 106 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Mapping Problem with mixed model

Several multi-threaded MPI
process per SMP node:

Problem
– Where are your processes

and threads really located?

Solutions:
– Depends on your platform,
– e.g., with numactl

hybrid MPI+OpenMP

pure MPI
&

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

Do we have this? … or that?

MPI
pro-
cess

0

MPI
pro-
cess

1

� Case study on
Sun Constellation Cluster

Ranger
with BT-MZ and SP-MZ

Further questions:
– Where is the NIC1) located?
– Which cores share caches?

1) NIC = Network Interface Card

Slide 107 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Unnecessary intra-node communication

Problem:
– If several MPI process on each SMP node

� unnecessary intra-node communication
Solution:

– Only one MPI process per SMP node
Remarks:

– MPI library must use appropriate
fabrics / protocol for intra-node communication

– Intra-node bandwidth higher than
inter-node bandwidth
� problem may be small

– MPI implementation may cause
unnecessary data copying
� waste of memory bandwidth

Quality aspects
of the MPI library

Mixed model
(several multi-threaded MPI
processes per SMP node)

pure MPI

Slide 108 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Sleeping threads and network saturation
with

Problem 1:
– Can the master thread

saturate the network?
Solution:
– If not, use mixed model
– i.e., several MPI

processes per SMP node

Problem 2:
– Sleeping threads are

wasting CPU time
Solution:
– Overlapping of

computation and
communication

Problem 1&2 together:
– Producing more idle time

through lousy bandwidth
of master thread

for (iteration ….)
{
#pragma omp parallel

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside of

parallel regions

Node Interconnect

Master
thread

Socket 1

SMP node SMP node

Socket 2

Master
thread

Socket 1

Socket 2

Master
thread

Master
thread

sle
ep

ing

sle
ep

ing

Slide 109 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

OpenMP: Additional Overhead & Pitfalls

• Using OpenMP
� may prohibit compiler optimization
� may cause significant loss of computational performance

• Thread fork / join overhead

• On ccNUMA SMP nodes:

– Loss of performance due to missing memory page locality
or missing first touch strategy

– E.g. with the masteronly scheme:
• One thread produces data

• Master thread sends the data with MPI

�data may be internally communicated from one memory to the other one

• Amdahl’s law for each level of parallelism

• Using MPI-parallel application libraries? � Are they prepared for hybrid?

See, e.g., the necessary –O4 flag
with mpxlf_r on IBM Power6 systems

Slide 110 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping communication and computation

Three problems:
• the application problem:

– one must separate application into:
• code that can run before the halo data is received
• code that needs halo data

�very hard to do !!!

• the thread-rank problem:
– comm. / comp. via

thread-rank
– cannot use

work-sharing directives
�loss of major

OpenMP support
(see next slide)

• the load balancing problem

if (my_thread_rank < 1) {
MPI_Send/Recv….

} else {
my_range = (high-low-1) / (num_threads-1) + 1;
my_low = low + (my_thread_rank+1)*my_range;
my_high=high+ (my_thread_rank+1+1)*my_range;
my_high = max(high, my_high)
for (i=my_low; i<my_high; i++) {

….
}

}

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Slide 111 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping communication and computation

Subteams
• Important proposal

for OpenMP 3.x
or OpenMP 4.x

#pragma omp parallel
{
#pragma omp single onthreads(0)

{
MPI_Send/Recv….

}
#pragma omp for onthreads(1 : omp_get_numthreads()-1)

for (……..)
{ /* work without halo information */
} /* barrier at the end is only inside of the subteam */
…

#pragma omp barrier
#pragma omp for

for (……..)
{ /* work based on halo information */
}

} /*end omp parallel */

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Barbara Chapman et al.:
Toward Enhancing OpenMP’s
Work-Sharing Directives.
In proceedings, W.E. Nagel et
al. (Eds.): Euro-Par 2006,
LNCS 4128, pp. 645-654,
2006.

Slide 112 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each core

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each core

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only

on master-thread

Multiple
more than one thread

may communicate

Funneled &
Reserved

reserved thread
for communication

Funneled
with

Full Load
Balancing

Multiple &
Reserved

reserved threads
for communication

Multiple
with

Full Load
Balancing

Different strategies
to simplify the
load balancing

Slide 113 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Experiment: Matrix-vector-multiply (MVM)

• Jacobi-Davidson-Solver
on IBM SP Power3 nodes
with 16 CPUs per node

• funneled&reserved is
always faster in this
experiments

• Reason:
Memory bandwidth
is already saturated
by 15 CPUs, see inset

• Inset:
Speedup on 1 SMP node
using different
number of threads

funneled &
reserved

Masteronly

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures.
International Journal of High Performance Computing Applications, Vol. 17, No. 1, 2003, Sage Science Press .

fu
nn

el
ed

 &
 r

es
er

ve
d

is
 fa

st
er

m
as

te
ro

nl
y

is
 fa

st
er

pe
rf

or
m

an
ce

 r
at

io
 (

r)

Slide 114 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping: Using OpenMP tasks

NEW OpenMP Tasking Model gives a new way to achieve more parallelism
form hybrid computation.

Slides, courtesy of Alice Koniges, NERSC, LBNL

Alice Koniges et al.:
Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide 115 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Case study: Communication and Computation in
Gyrokinetic Tokamak Simulation (GTS) shift routine

Work on particle array (packing for sending, reordering, adding after
sending) can be overlapped with data independent MPI
communication using OpenMP tasks.

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

�
�

����

�
�
�
�
�
�
�
�
�

GTS shift routine

Slides, courtesy of Alice Koniges, NERSC, LBNL

—
skipped —

Slide 116 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping can be achieved with OpenMP tasks (1st part)

Overlapping MPI_Allreduce with particle work

• Overlap: Master thread encounters (!$omp master) tasking statements and creates
work for the thread team for deferred execution. MPI Allreduce call is immediately
executed.

• MPI implementation has to support at least MPI_THREAD_FUNNELED
• Subdividing tasks into smaller chunks to allow better load balancing and scalability

among threads.
Slides, courtesy of Alice Koniges, NERSC, LBNL

—
skipped —

Slide 117 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping can be achieved with OpenMP tasks (2nd part)

Overlapping particle reordering

Overlapping remaining MPI_Sendrecv

Particle reordering of remaining
particles (above) and adding sent
particles into array (right) & sending
or receiving of shifted particles can
be independently executed.

Slides, courtesy of Alice Koniges, NERSC, LBNL

—
skipped —

Slide 118 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

OpenMP tasking version outperforms original shifter,
especially in larger poloidal domains

• Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI pro-
cess with varying domain decomposition and particles per cell on Franklin Cray XT4.

• MPI communication in the shift phase uses a toroidal MPI communicator
(constantly 128).

• Large performance differences in the 256 MPI run compared to 2048 MPI run!
• Speed-Up is expected to be higher on larger GTS runs with hundreds of thousands

CPUs since MPI communication is more expensive.

256 size run 2048 size run

Slides, courtesy of
Alice Koniges, NERSC, LBNL

Slide 119 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

OpenMP/DSM

• Distributed shared memory (DSM) //
• Distributed virtual shared memory (DVSM) //
• Shared virtual memory (SVM)

• Principles
– emulates a shared memory
– on distributed memory hardware

• Implementations
– e.g., Intel® Cluster OpenMP

OpenMP only

Slide 120 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Intel® Compilers with Cluster OpenMP –
Consistency Protocol
Basic idea:
• Between OpenMP barriers, data exchange is not necessary, i.e.,

visibility of data modifications to other threads only after synchronization.
• When a page of sharable memory is not up-to-date,

it becomes protected.
• Any access then faults (SIGSEGV) into Cluster OpenMP runtime library,

which requests info from remote nodes and updates the page.
• Protection is removed from page.
• Instruction causing the fault is re-started,

this time successfully accessing the data.

OpenMP only

Courtesy of J. Cownie, Intel

Slide 121 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Comparison:
MPI based parallelization � �� �� �� � DSM
• MPI based:

– Potential of boundary exchange between two domains in one large message

� Dominated by bandwidth of the network

• DSM based (e.g. Intel® Cluster OpenMP):
– Additional latency based overhead in each barrier

� May be marginal

– Communication of updated data of pages
� Not all of this data may be needed

� i.e., too much data is transferred

� Packages may be to small

� Significant latency

– Communication not oriented on boundaries
of a domain decomposition

� probably more data must be transferred than
necessary

hybrid MPI+OpenMP OpenMP only

by rule of thumb:

Communication
may be

10 times slower
than with MPI

Slide 122 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Comparing results with heat example

• Normal OpenMP on shared memory (ccNUMA) NEC TX-7

heat_x.c / heatc2_x.c with OpenMP on NEC TX-7

0

2

4

6

8

10

12

14

16

18
se

ria
l 1 2 3 4 6 8 10

threads

S
p

ee
d

up

1000x1000

250x250

80x80

20x20

ideal speedup

—
skipped —

Slide 123 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Heat example: Cluster OpenMP Efficiency

• Cluster OpenMP on a Dual-Xeon cluster

heats2_x.c with Cluster OpenMP on NEC dual Xeon EM64T cluster

0

1

2

3

4

5

6

7
se

ria
l

1/
2 1 2 3 4 5 6 7 8

nodes

S
pe

ed
up

6000x6000 static(default) 1 threads/node

6000x6000 static(default) 2 threads/node
6000x6000 static(1:1) 1 threads/node

6000x6000 static(1:2) 1 threads/node
6000x6000 static(1:10) 1 threads/node

6000x6000 static(1:50) 1 threads/node
3000x3000 static(default) 1 threads/node

3000x3000 static(default) 2 threads/node

1000x1000 static(default) 1 threads/node
1000x1000 static(default) 2 threads/node

250x250 static(default) 1 threads/node
250x250 static(default) 2 threads/node

No speedup with 1000x1000

Second CPU only usable in small cases

Up to 3 CPUs
with 3000x3000

Efficiency only with small
communication foot-print

Terrible with non-default schedule

—
skipped —

Slide 124 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Back to the mixed model – an Example

• Topology-problem solved:
Only horizontal inter-node comm.

• Still intra-node communication
• Several threads per SMP node are

communicating in parallel:
� network saturation is possible

• Additional OpenMP overhead
• With Masteronly style:

75% of the threads sleep while
master thread communicates

• With Overlapping Comm.& Comp.:
Master thread should be reserved
for communication only partially –
otherwise too expensive

• MPI library must support
– Multiple threads
– Two fabrics (shmem + internode)

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

Slide 125 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

No silver bullet

• The analyzed programming models do not fit on hybrid architectures

– whether drawbacks are minor or major

� depends on applications’ needs

– But there are major opportunities � next section

• In the NPB-MZ case-studies

– We tried to use optimal parallel environment

• for pure MPI

• for hybrid MPI+OpenMP

– i.e., the developers of the MZ codes and we
tried to minimize the mismatch problems

� the opportunities in next section dominated the comparisons

Slide 126 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming
• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid
parallelization

• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary

Slide 127 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Nested Parallelism

• Example NPB: BT-MZ (Block tridiagonal simulated CFD application)
– Outer loop:

• limited number of zones ���� limited parallelism
• zones with different workload ���� speedup <

– Inner loop:
• OpenMP parallelized (static schedule)
• Not suitable for distributed memory parallelization

• Principles:
– Limited parallelism on outer level
– Additional inner level of parallelism
– Inner level not suitable for MPI
– Inner level may be suitable for static OpenMP worksharing

Sum of workload of all zones
Max workload of a zone

Slide 128 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Load-Balancing
(on same or different level of parallelism)

• OpenMP enables
– Cheap dynamic and guided load-balancing
– Just a parallelization option (clause on omp for / do directive)
– Without additional software effort
– Without explicit data movement

• On MPI level
– Dynamic load balancing requires

moving of parts of the data structure through the network
– Significant runtime overhead
– Complicated software / therefore not implemented

• MPI & OpenMP
– Simple static load-balancing on MPI level, medium quality

dynamic or guided on OpenMP level cheap implementation

#pragma omp parallel for schedule(dynamic)
for (i=0; i<n; i++) {
/* poorly balanced iterations */ …

}

Slide 129 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Memory consumption

• Shared nothing
– Heroic theory
– In practice: Some data is duplicated

• MPI & OpenMP
With n threads per MPI process:
– Duplicated data may be reduced by factor n

Slide 130 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Using more
OpenMP threads
could reduce the
memory usage
substantially,
up to five times on
Hopper Cray XT5
(eight-core nodes).

Case study: MPI+OpenMP memory usage of NPB

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger,
Alice Koniges, Nicholas J. Wright:
Analyzing the Effect of Different Programming Models Upon
Performance and Memory Usage on Cray XT5 Platorms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide, courtesy of
Alice Koniges, NERSC, LBLN

Always same
number of cores

Slide 131 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Memory consumption (continued)

• Future:
With 100+ cores per chip the memory per core is limited.
– Data reduction through usage of shared memory

may be a key issue
– Domain decomposition on each hardware level

• Maximizes
– Data locality
– Cache reuse

• Minimizes
– ccNUMA accesses
– Message passing

– No halos between domains inside of SMP node
• Minimizes

– Memory consumption

Slide 132 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

How many threads per MPI process?

• SMP node = with m sockets and n cores/socket
• How many threads (i.e., cores) per MPI process?

– Too many threads per MPI process
� overlapping of MPI and computation may be necessary,
� some NICs unused?

– Too few threads
� too much memory consumption (see previous slides)

• Optimum
– somewhere between 1 and m x n threads per MPI process,
– Typically:

• Optimum = n, i.e., 1 MPI process per socket
• Sometimes = n/2 i.e., 2 MPI processes per socket
• Seldom = 2n, i.e., each MPI process on 2 sockets

Slide 133 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Opportunities, if MPI speedup is limited due to
algorithmic problems

• Algorithmic opportunities due to larger physical domains inside of
each MPI process
� If multigrid algorithm only inside of MPI processes
� If separate preconditioning inside of MPI nodes and between

MPI nodes
� If MPI domain decomposition is based on physical zones

Slide 134 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

To overcome MPI scaling problems

compared to pure MPI
• Reduced number of MPI messages,

reduced aggregated message size

• MPI has a few scaling problems

– Handling of more than 10,000 MPI processes

– Irregular Collectives: MPI_....v(), e.g. MPI_Gatherv()

� Scaling applications should not use MPI_....v() routines

– MPI-2.1 Graph topology (MPI_Graph_create)

� MPI-2.2 MPI_Dist_graph_create_adjacent

– Creation of sub-communicators with MPI_Comm_create

� MPI-2.2 introduces a new scaling meaning of MPI_Comm_create

– … see P. Balaji, et al.: MPI on a Million Processors. Proceedings EuroPVM/MPI 2009.

• Hybrid programming reduces all these problems (due to a smaller number of processes)

Slide 135 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary: Opportunities of hybrid parallelization
(MPI & OpenMP)
• Nested Parallelism

� Outer loop with MPI / inner loop with OpenMP

• Load-Balancing
� Using OpenMP dynamic and guided worksharing

• Memory consumption
� Significantly reduction of replicated data on MPI level

• Opportunities, if MPI speedup is limited due to algorithmic problem
� Significantly reduced number of MPI processes

• Reduced MPI scaling problems
� Significantly reduced number of MPI processes

Slide 136 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities:

Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary

Slide 137 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread-safety of MPI Libraries

• Make most powerful usage of hierarchical structure of hardware:
• Efficient programming of clusters of SMP nodes

SMP nodes:
• Dual/multi core CPUs
• Multi CPU shared memory
• Multi CPU ccNUMA
• Any mixture with shared memory programming model

Node Interconnect

Threads inside of the
SMP nodes

MPI between the nodes
via node interconnect

• No restriction to the usage of OpenMP for intranode-parallelism:
– OpenMP does not (yet) offer binding threads to processors
– OpenMP does not guarantee thread-ids to stay fixed.

• OpenMP is based on the implementation dependant thread-library:
LinuxThreads, NPTL, SolarisThreads.

Courtesy of Rainer Keller, HLRS and ORNL

Slide 138 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

MPI rules with OpenMP /
Automatic SMP-parallelization
• Special MPI-2 Init for multi-threaded MPI processes:

• REQUIRED values (increasing order):
– MPI_THREAD_SINGLE: Only one thread will execute
– THREAD_MASTERONLY: MPI processes may be multi-threaded,

(virtual value, but only master thread will make MPI-calls
not part of the standard) AND only while other threads are sleeping

– MPI_THREAD_FUNNELED: Only master thread will make MPI-calls
– MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,

but only one at a time
– MPI_THREAD_MULTIPLE: Multiple threads may call MPI,

with no restrictions
• returned provided may be less than REQUIRED by the application

int MPI_Init_thread(int * argc, char ** argv[],
int thread_level_required,
int * thead_level_provided);

int MPI_Query_thread(int * thread_level_provided);
int MPI_Is_main_thread(int * flag);

Slide 139 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Calling MPI inside of OMP MASTER

• Inside of a parallel region, with “OMP MASTER”

• Requires MPI_THREAD_FUNNELED,
i.e., only master thread will make MPI-calls

• Caution: There isn’t any synchronization with “OMP MASTER”!
Therefore, “OMP BARRIER” normally necessary to
guarantee, that data or buffer space from/for other
threads is available before/after the MPI call!

!$OMP BARRIER #pragma omp barrier
!$OMP MASTER #pragma omp master

call MPI_Xxx(...) MPI_Xxx(...);
!$OMP END MASTER
!$OMP BARRIER #pragma omp barrier

• But this implies that all other threads are sleeping!
• The additional barrier implies also the necessary cache flush!

Slide 140 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

… the barrier is necessary –
example with MPI_Recv

!$OMP PARALLEL
!$OMP DO

do i=1,1000
a(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP MASTER

call MPI_RECV(buf,...)
!$OMP END MASTER
!$OMP BARRIER
!$OMP DO

do i=1,1000
c(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP END PARALLEL

#pragma omp parallel
{
#pragma omp for nowait

for (i=0; i<1000; i++)
a[i] = buf[i];

#pragma omp barrier
#pragma omp master

MPI_Recv(buf,...);
#pragma omp barrier

#pragma omp for nowait
for (i=0; i<1000; i++)

c[i] = buf[i];

}
/* omp end parallel */

—
skipped —

Slide 141 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread support in MPI libraries

• The following MPI libraries offer thread support:

Always announces MPI_THREAD_FUNNELED.

ch3:sock supports MPI_THREAD_MULTIPLE

ch:nemesis has “Initial Thread-support”
ch3:nemesis (default) has MPI_THREAD_MULTIPLE

Full MPI_THREAD_MULTIPLE
MPI_THREAD_FUNNELED

Full MPI_THREAD_MULTIPLE (with libmtmpi)

Not thread-safe?
Full MPI_THREAD_MULTIPLE

MPI_THREAD_SERIALIZED

MPIch-1.2.7p1

MPIch2-1.0.8

MPIch2-1.1.0a2
Intel MPI 3.1

SciCortex MPI

HP MPI-2.2.7

SGI MPT-1.14

IBM MPI

Nec MPI/SX

Thread support levelImplementation

• Testsuites for thread-safety may still discover bugs in the
MPI libraries

Courtesy of Rainer Keller, HLRS and ORNL

Slide 142 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread support within Open MPI

• In order to enable thread support in Open MPI, configure with:

configure --enable-mpi-threads

• This turns on:
– Support for full MPI_THREAD_MULTIPLE
– internal checks when run with threads (--enable-debug)

configure --enable-mpi-threads --enable-progress-threads

• This (additionally) turns on:
– Progress threads to asynchronously transfer/receive data per

network BTL.
• Additional Feature:

– Compiling with debugging support, but without threads will
check for recursive locking

Courtesy of Rainer Keller, HLRS and ORNL

Slide 143 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities:

Application categories that can benefit from hybrid parallelization
• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes
• Summary

Slide 144 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread Correctness – Intel ThreadChecker 1/3

• Intel ThreadChecker operates in a similar fashion to helgrind,
• Compile with –tcheck, then run program using tcheck_cl:

Application finished

|ID|Short De|Sever|C|Contex|Description |1st Acc|2nd Acc|

| |scriptio|ity |o|t[Best| |ess[Bes|ess[Bes|

| |n |Name |u|] | |t] |t] |

| | | |n| | | | |

| | | |t| | | | |

|1 |Write ->|Error|1|"pthre|Memory write of global_variable at|"pthrea|"pthrea|

| |Write da| | |ad_rac|"pthread_race.c":31 conflicts with|d_race.|d_race.|

| |ta-race | | |e.c":2|a prior memory write of |c":31 |c":31 |

| | | | |5 |global_variable at | | |

| | | | | |"pthread_race.c":31 (output | | |

| | | | | |dependence) | | |

Courtesy of Rainer Keller, HLRS and ORNL

Slide 145 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread Correctness – Intel ThreadChecker 2/3

• One may output to HTML:
tcheck_cl --format HTML --report pthread_race.html pthread_race

Courtesy of Rainer Keller, HLRS and ORNL

Slide 146 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread Correctness – Intel ThreadChecker 3/3

• Then run with:
mpirun --mca tcp,sm,self -np 2 tcheck_cl \

--reinstrument -u full --format html \
--cache_dir '/tmp/my_username_$$__tc_cl_cache' \
--report 'tc_mpi_test_suite_$$' \
--options 'file=tc_my_executable_%H_%I, \

pad=128, delay=2, stall=2' -- \

./my_executable my_arg1 my_arg2 …

configure --enable-mpi-threads
--enable-debug
--enable-mca-no-build=memory-ptmalloc2

CC=icc F77=ifort FC=ifort
CFLAGS=‘-debug all –inline-debug-info tcheck’
CXXFLAGS=‘-debug all –inline-debug-info tcheck’
FFLAGS=‘-debug all –tcheck’ LDFLAGS=‘tcheck’

• If one wants to compile with threaded Open MPI (option for IB):

Courtesy of Rainer Keller, HLRS and ORNL

Slide 147 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Performance Tools Support for Hybrid Code

• Paraver examples have already
been shown, tracing is done with
linking against (closed-source)
omptrace or ompitrace

• For Vampir/Vampirtrace performance analysis:
./configure –enable-omp

–enable-hyb
–with-mpi-dir=/opt/OpenMPI/1.3-icc

CC=icc F77=ifort FC=ifort
(Attention: does not wrap MPI_Init_thread!)

Courtesy of Rainer Keller, HLRS and ORNL

Slide 148 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Scalasca – Example “Wait at Barrier”

Indication of
non-optimal load

balance

Screenshots, courtesy of KOJAK JSC, FZ Jülich

Slide 149 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Scalasca – Example “Wait at Barrier”, Solution

Better load balancing
with dynamic
loop schedule

Screenshots, courtesy of KOJAK JSC, FZ Jülich

Slide 150 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities:

Application categories that can benefit from hybrid parallelization
• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary

Slide 151 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Pure MPI – multi-core aware

• Hierarchical domain decomposition
(or distribution of Cartesian arrays)

Domain decomposition:
1 sub-domain / SMP node

Further
partitioning:

1 sub-domain /
socket

1 / core

Cache
optimization:

Blocking inside of
each core,

block size relates
to cache size.

1-3 cache levels.
Example on 10 nodes, each with 4 sockets, each with 6 cores.

Slide 152 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

How to achieve a
hierarchical domain decomposition (DD)?
• Cartesian grids:

– Several levels of subdivide
– Ranking of MPI_COMM_WORLD – three choices:

a) Sequential ranks through original data structure
+ locating these ranks correctly on the hardware
� can be achieved with one-level DD on finest grid

+ special startup (mpiexec) with optimized rank-mapping
b) Sequential ranks in comm_cart (from MPI_CART_CREATE)

� requires optimized MPI_CART_CREATE,
or special startup (mpiexec) with optimized rank-mapping

c) Sequential ranks in MPI_COMM_WORLD
+ additional communicator with sequential ranks in the data structure
+ self-written and optimized rank mapping.

• Unstructured grids:
� next slide

Slide 153 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

How to achieve a
hierarchical domain decomposition (DD)?
• Unstructured grids:

– Multi-level DD:

• Top-down: Several levels of (Par)Metis
• Bottom-up: Low level DD + higher level recombination

– Single-level DD (finest level)

• Analysis of the communication pattern in a first run
(with only a few iterations)

• Optimized rank mapping to the hardware before production run
• E.g., with CrayPAT + CrayApprentice

Slide 154 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Top-down – several levels of (Par)Metis

Steps:
– Load-balancing (e.g., with

ParMetis) on outer level,
i.e., between all SMP nodes

– Independent (Par)Metis
inside of each node

– Metis inside of each socket

� Subdivide does not care on
balancing of the outer boundary

� processes can get a lot of
neighbors with inter-node
communication

� unbalanced communication

Slide 155 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Bottom-up –
Multi-level DD through recombination
1. Core-level DD: partitioning of application’s data grid
2. Socket-level DD: recombining of core-domains
3. SMP node level DD: recombining of socket-domains

• Problem:
Recombination
must not
calculate patches
that are smaller
or larger than the
average

• In this example
the load-balancer
must combine
always
� 6 cores, and
� 4 sockets

• Advantage:
Communication
is balanced!

Slide 156 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Profiling solution

• First run with profiling
– Analysis of the communication pattern

• Optimization step
– Calculation of an optimal mapping of ranks in MPI_COMM_WORLD

to the hardware grid (physical cores / sockets / SMP nodes)
• Restart of the application with this optimized locating of the ranks on the

hardware grid

• Example: CrayPat and CrayApprentice

Slide 157 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The vendors will
(or must) deliver

scalable MPI
libraries for their
largest systems!

Scalability of MPI to hundreds of thousands …

Weak scalability of pure MPI
• As long as the application does not use

– MPI_ALLTOALL
– MPI_<collectives>V (i.e., with length arrays)

and application
– distributes all data arrays

one can expect:
– Significant, but still scalable memory overhead for halo cells.
– MPI library is internally scalable:

• E.g., mapping ranks ���� hardware grid
– Centralized storing in shared memory (OS level)
– In each MPI process, only used neighbor ranks are stored (cached) in

process-local memory.
• Tree based algorithm wiith O(log N)

– From 1000 to 1000,000 process O(Log N) only doubles!

Slide 158 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Remarks on Cache Optimization

• After all parallelization domain decompositions (DD, up to 3 levels)
are done:

• Additional DD into data blocks
– that fit to 2nd or 3rd level cache.
– It is done inside of each MPI process (on each core).
– Outer loops over these blocks
– Inner loops inside of a block
– Cartesian example: 3-dim loop is split into

do i_block=1,ni,stride_i
do j_block=1,nj,stride_j

do k_block=1,nk,stride_k
do i=i_block,min(i_block+stride_i-1, ni)

do j=j_block,min(j_block+stride_j-1, nj)
do k=k_block,min(k_block+stride_k-1, nk)

a(i,j,k) = f(b(i±0,1,2, j±0,1,2, k±0,1,2))
… … … end do

end do
Access to 13-point stencil

Slide 159 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Remarks on Cost-Benefit Calculation

Costs
• for optimization effort

– e.g., additional OpenMP parallelization
– e.g., 3 person month x 5,000 � = 15,000 � (full costs)

Benefit
• from reduced CPU utilization

– e.g., Example 1:
100,000 � hardware costs of the cluster
x 20% used by this application over whole lifetime of the cluster
x 7% performance win through the optimization
= 1,400 � ���� total loss = 13,600 �

– e.g., Example 2:
10 Mio � system x 5% used x 8% performance win
= 40,000 � ���� total win = 25,000 �

Slide 160 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• Parallelization always means
– expressing locality.

• If the application has no locality,
– Then the parallelization needs not to model locality
� UPC with its round robin data distribution may fit

• If the application has locality,
– then it must be expressed in the parallelization

• Coarray Fortran (CAF) expresses data locality explicitly through “co-
dimension”:
– A(17,15)[3]

= element A(17,13) in the distributed array A in process with rank 3

—
skipped —

Slide 161 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• Future shrinking of memory per core implies
– Communication time becomes a bottleneck
� Computation and communication must be overlapped,

i.e., latency hiding is needed

• With PGAS, halos are not needed.
– But it is hard for the compiler to access data such early that the

transfer can be overlapped with enough computation.

• With MPI, typically too large message chunks are transferred.
– This problem also complicates overlapping.

• Strided transfer is expected to be slower than contiguous transfers
– Typical packing strategies do not work for PGAS on compiler level
– Only with MPI, or with explicit application programming with PGAS

—
skipped —

Slide 162 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• Point-to-point neighbor communication
– PGAS or MPI nonblocking may fit

if message size makes sense for overlapping.

• Collective communication
– Library routines are best optimized
– Non-blocking collectives (comes with MPI-3.0)

versus calling MPI from additional communication thread
– Only blocking collectives in PGAS library?

—
skipped —

Slide 163 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF)

• For extreme HPC (many nodes x many cores)
– Most parallelization may still use MPI
– Parts are optimized with PGAS, e.g., for better latency hiding
– PGAS efficiency is less portable than MPI
– #ifdef … PGAS
– Requires mixed programming PGAS & MPI

� will be addressed by MPI-3.0

—
skipped —

Slide 164 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities:

Application categories that can benefit from hybrid parallelization
• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes

• Summary

Slide 165 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Acknowledgements

• We want to thank
– Gerhard Wellein, RRZE
– Alice Koniges, NERSC, LBNL
– Rainer Keller, HLRS and ORNL
– Jim Cownie, Intel
– KOJAK project at JSC, Research Center Jülich
– HPCMO Program and the Engineer Research and

Development Center Major Shared Resource Center,
Vicksburg, MS (http://www.erdc.hpc.mil/index)

Slide 166 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary – the good news

MPI + OpenMP
• Significant opportunity � higher performance on smaller number of threads
• Seen with NPB-MZ examples

– BT-MZ � strong improvement (as expected)
– SP-MZ � small improvement (none was expected)

• Usable on higher number of cores
• Advantages

– Load balancing
– Memory consumption
– Two levels of parallelism

• Outer ���� distributed memory ���� halo data transfer ���� MPI
• Inner ���� shared memory ���� ease of SMP parallelization ���� OpenMP

• You can do it � “How To”

Slide 167 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary – the bad news

MPI+OpenMP: There is a huge amount of pitfalls
• Pitfalls of MPI
• Pitfalls of OpenMP

– On ccNUMA � e.g., first touch
– Pinning of threads on cores

• Pitfalls through combination of MPI & OpenMP
– E.g., topology and mapping problems
– Many mismatch problems

• Tools are available
– It is not easier than analyzing pure MPI programs

• Most hybrid programs � Masteronly style
• Overlapping communication and computation with several threads

– Requires thread-safety quality of MPI library
– Loss of OpenMP worksharing support � using OpenMP tasks

as workaround

Slide 168 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary – good and bad

• Optimization
– 1 MPI process 1 MPI process

per core ……………………………………..… per SMP node
^– somewhere between

may be the optimum

• Efficiency of MPI+OpenMP is not for free:
The efficiency strongly depends on
the amount of work in the source code development

mismatch
problem

Slide 169 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary – Alternatives

Pure MPI
+ Ease of use
– Topology and mapping problems may need to be solved

(depends on loss of efficiency with these problems)

– Number of cores may be more limited than with MPI+OpenMP
+ Good candidate for perfectly load-balanced applications

Pure OpenMP
+ Ease of use
– Limited to problems with tiny communication footprint
– source code modifications are necessary

(Variables that are used with “shared” data scope
must be allocated as “sharable”)

± (Only) for the appropriate application a suitable tool

Slide 170 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary

• This tutorial tried to
– help to negotiate obstacles with hybrid parallelization,
– give hints for the design of a hybrid parallelization,
– and technical hints for the implementation � “How To”,
– show tools if the application does not work as designed.

• This tutorial was not an introduction into other parallelization models:
– Partitioned Global Address Space (PGAS) languages

(Unified Parallel C (UPC), Co-array Fortran (CAF), Chapel, Fortress, Titanium,
and X10).

– High Performance Fortran (HPF)
� Many rocks in the cluster-of-SMP-sea do not vanish

into thin air by using new parallelization models
� Area of interesting research in next years

Slide 171 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Conclusions
• Future hardware will be more complicated

– Heterogeneous � GPU, FPGA, …
– ccNUMA quality may be lost on cluster nodes
– ….

• High-end programming � more complex
• Medium number of cores � more simple

(if #cores / SMP-node will not shrink)
• MPI+OpenMP � work horse on large systems
• Pure MPI � still on smaller cluster
• OpenMP � on large ccNUMA nodes

(not ClusterOpenMP)

Thank you for your interest

Q & A
Please fill in the feedback sheet – Thank you

Slide 172 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Appendix

• Abstract
• Authors
• References (with direct relation to the content of this tutorial)
• Further references

Slide 173 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Abstract

Half-Day Tutorial (Level: 20% Introductory, 50% Intermediate, 30% Advanced)
Authors. Rolf Rabenseifner, HLRS, University of Stuttgart, Germany

Georg Hager, University of Erlangen-Nuremberg, Germany
Gabriele Jost, Texas Advanced Computing Center, The University of Texas at Austin, USA

Abstract. Most HPC systems are clusters of shared memory nodes. Such systems can be PC
clusters with single/multi-socket and multi-core SMP nodes, but also "constellation" type systems with
large SMP nodes. Parallel programming may combine the distributed memory parallelization on the
node inter-connect with the shared memory parallelization inside of each node.
This tutorial analyzes the strength and weakness of several parallel programming models on clusters
of SMP nodes. Various hybrid MPI+OpenMP programming models are compared with pure MPI.
Benchmark results of several platforms are presented. The thread-safety quality of several existing
MPI libraries is also discussed. Case studies will be provided to demonstrate various aspects of
hybrid MPI/OpenMP programming. Another option is the use of distributed virtual shared-memory
technologies. Application categories that can take advantage of hybrid programming are identified.
Multi-socket-multi-core systems in highly parallel environments are given special consideration.
Details. https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-hybrid.html

Slide 174 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Rolf Rabenseifner

Dr. Rolf Rabenseifner studied mathematics and physics at the University of
Stuttgart. Since 1984, he has worked at the High-Performance Computing-
Center Stuttgart (HLRS). He led the projects DFN-RPC, a remote procedure
call tool, and MPI-GLUE, the first metacomputing MPI combining different
vendor's MPIs without loosing the full MPI interface. In his dissertation, he
developed a controlled logical clock as global time for trace-based profiling of
parallel and distributed applications. Since 1996, he has been a member of
the MPI-2 Forum and since Dec. 2007, he is in the steering committee of the
MPI-3 Forum. From January to April 1999, he was an invited researcher at the
Center for High-Performance Computing at Dresden University of Technology.

Currently, he is head of Parallel Computing - Training and Application
Services at HLRS. He is involved in MPI profiling and benchmarking, e.g., in
the HPC Challenge Benchmark Suite. In recent projects, he studied parallel
I/O, parallel programming models for clusters of SMP nodes, and optimization
of MPI collective routines. In workshops and summer schools, he teaches
parallel programming models in many universities and labs in Germany.

Slide 175 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Georg Hager

Georg Hager holds a PhD in computational physics from
the University of Greifswald. He has been working with high performance
systems since 1995, and is now a senior research scientist in the HPC
group at Erlangen Regional Computing Center (RRZE). His daily work
encompasses all aspects of HPC user support and training, assessment
of novel system and processor architectures, and supervision of student
projects and theses. Recent research includes architecture-specific
optimization for current microprocessors, performance modeling on
processor and system levels, and the efficient use of hybrid parallel
systems. A full list of publications, talks, and other HPC-related stuff he is
interested in can be found in his blog: http://blogs.fau.de/hager.

Slide 176 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Gabriele Jost

Gabriele Jost obtained her doctorate in Applied Mathematics from the
University of Göttingen, Germany. For more than a decade she worked
for various vendors (Suprenum GmbH, Thinking Machines Corporation,
and NEC) of high performance parallel computers in the areas of
vectorization, parallelization, performance analysis and optimization of
scientific and engineering applications.
In 2005 she moved from California to the Pacific Northwest and joined
Sun Microsystems as a staff engineer in the Compiler Performance
Engineering team, analyzing compiler generated code and providing
feedback and suggestions for improvement to the compiler group. She
then decided to explore the world beyond scientific computing and joined
Oracle as a Principal Engineer working on performance analysis for
application server software. That was fun, but she realized that her real
passions remains in area of performance analysis and evaluation of
programming paradigms for high performance computing and that she
really liked California. She is now a Research Scientist at the Texas
Advanced Computing Center (TACC), working remotely from Monterey,
CA on all sorts of exciting projects related to large scale parallel
processing for scientific computing.

Slide 177 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

References (with direct relation to the content of this tutorial)

• NAS Parallel Benchmarks:
http://www.nas.nasa.gov/Resources/Software/npb.html

• R.v.d. Wijngaart and H. Jin,
NAS Parallel Benchmarks, Multi-Zone Versions,
NAS Technical Report NAS-03-010, 2003

• H. Jin and R. v.d.Wijngaart,
Performance Characteristics of the multi-zone NAS Parallel Benchmarks,
Proceedings IPDPS 2004

• G. Jost, H. Jin, D. an Mey and F. Hatay,
Comparing OpenMP, MPI, and Hybrid Programming,
Proc. Of the 5th European Workshop on OpenMP, 2003

• E. Ayguade, M. Gonzalez, X. Martorell, and G. Jost,
Employing Nested OpenMP for the Parallelization of Multi-Zone CFD Applications,
Proc. Of IPDPS 2004

Slide 178 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

References
• Rolf Rabenseifner,

Hybrid Parallel Programming on HPC Platforms.
In proceedings of the Fifth European Workshop on OpenMP, EWOMP '03,
Aachen, Germany, Sept. 22-26, 2003, pp 185-194, www.compunity.org.

• Rolf Rabenseifner,
Comparison of Parallel Programming Models on Clusters of SMP Nodes.
In proceedings of the 45nd Cray User Group Conference, CUG SUMMIT 2003,
May 12-16, Columbus, Ohio, USA.

• Rolf Rabenseifner and Gerhard Wellein,
Comparison of Parallel Programming Models on Clusters of SMP Nodes.
In Modelling, Simulation and Optimization of Complex Processes (Proceedings of
the International Conference on High Performance Scientific Computing,
March 10-14, 2003, Hanoi, Vietnam) Bock, H.G.; Kostina, E.; Phu, H.X.;
Rannacher, R. (Eds.), pp 409-426, Springer, 2004.

• Rolf Rabenseifner and Gerhard Wellein,
Communication and Optimization Aspects of Parallel Programming Models
on Hybrid Architectures.
In the International Journal of High Performance Computing Applications,
Vol. 17, No. 1, 2003, pp 49-62. Sage Science Press.

Slide 179 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

References
• Rolf Rabenseifner,

Communication and Optimization Aspects on Hybrid Architectures.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface, J.
Dongarra and D. Kranzlmüller (Eds.), Proceedings of the 9th European PVM/MPI
Users' Group Meeting, EuroPVM/MPI 2002, Sep. 29 - Oct. 2, Linz, Austria, LNCS,
2474, pp 410-420, Springer, 2002.

• Rolf Rabenseifner and Gerhard Wellein,
Communication and Optimization Aspects of Parallel Programming Models on
Hybrid Architectures.
In proceedings of the Fourth European Workshop on OpenMP (EWOMP 2002),
Roma, Italy, Sep. 18-20th, 2002.

• Rolf Rabenseifner,
Communication Bandwidth of Parallel Programming Models on Hybrid
Architectures.
Proceedings of WOMPEI 2002, International Workshop on OpenMP: Experiences
and Implementations, part of ISHPC-IV, International Symposium on High
Performance Computing, May, 15-17., 2002, Kansai Science City, Japan, LNCS
2327, pp 401-412.

Slide 180 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

References
• Georg Hager and Gerhard Wellein:

Introduction to High Performance Computing for Scientists and Engineers.
CRC Press, ISBN 978-1439811924.

• Barbara Chapman et al.:
Toward Enhancing OpenMP’s Work-Sharing Directives.
In proceedings, W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 645-654, 2006.

• Barbara Chapman, Gabriele Jost, and Ruud van der Pas:
Using OpenMP.
The MIT Press, 2008.

• Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Sameer Kumar, Ewing
Lusk, Rajeev Thakur and Jesper Larsson Traeff:
MPI on a Million Processors.
EuroPVM/MPI 2009, Springer.

• Alice Koniges et al.: Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

• H. Shan, H. Jin, K. Fuerlinger, A. Koniges, N. J. Wright: Analyzing the Effect of
Different Programming Models Upon Performance and Memory Usage on Cray XT5
Platorms. Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide 181 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

References
• J. Treibig, G. Hager and G. Wellein:

LIKWID: A lightweight performance-oriented tool suite for x86 multicore
environments.
Proc. of PSTI2010, the First International Workshop on Parallel Software Tools and Tool
Infrastructures, San Diego CA, September 13, 2010.
Preprint: http://arxiv.org/abs/1004.4431

• H. Stengel:
Parallel programming on hybrid hardware: Models and applications.
Master’s thesis, Ohm University of Applied Sciences/RRZE, Nuremberg, 2010.
http://www.hpc.rrze.uni-erlangen.de/Projekte/hybrid.shtml

Slide 182 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Further references
• Sergio Briguglio, Beniamino Di Martino, Giuliana Fogaccia and Gregorio Vlad,

Hierarchical MPI+OpenMP implementation of parallel PIC applications on
clusters of Symmetric MultiProcessors,
10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,
29 Sep - 2 Oct, 2003

• Barbara Chapman,
Parallel Application Development with the Hybrid MPI+OpenMP Programming
Model,
Tutorial, 9th EuroPVM/MPI & 4th DAPSYS Conference, Johannes Kepler University
Linz, Austria September 29-October 02, 2002

• Luis F. Romero, Eva M. Ortigosa, Sergio Romero, Emilio L. Zapata,
Nesting OpenMP and MPI in the Conjugate Gradient Method for Band Systems,
11th European PVM/MPI Users' Group Meeting in conjunction with DAPSYS'04,
Budapest, Hungary, September 19-22, 2004

• Nikolaos Drosinos and Nectarios Koziris,
Advanced Hybrid MPI/OpenMP Parallelization Paradigms for Nested Loop
Algorithms onto Clusters of SMPs,
10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,
29 Sep - 2 Oct, 2003

Slide 183 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Further references
• Holger Brunst and Bernd Mohr,

Performance Analysis of Large-scale OpenMP and Hybrid MPI/OpenMP
Applications with VampirNG
Proceedings for IWOMP 2005, Eugene, OR, June 2005.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

• Felix Wolf and Bernd Mohr,
Automatic performance analysis of hybrid MPI/OpenMP applications
Journal of Systems Architecture, Special Issue "Evolutions in parallel distributed
and network-based processing", Volume 49, Issues 10-11, Pages 421-439,
November 2003.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

• Felix Wolf and Bernd Mohr,
Automatic Performance Analysis of Hybrid MPI/OpenMP Applications
short version: Proceedings of the 11-th Euromicro Conference on Parallel,
Distributed and Network based Processing (PDP 2003), Genoa, Italy, February
2003.
long version: Technical Report FZJ-ZAM-IB-2001-05.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

Slide 184 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Further references

• Frank Cappello and Daniel Etiemble,
MPI versus MPI+OpenMP on the IBM SP for the NAS benchmarks,
in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/cappello00mpi.html
www.sc2000.org/techpapr/papers/pap.pap214.pdf

• Jonathan Harris,
Extending OpenMP for NUMA Architectures,
in proceedings of the Second European Workshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

• D. S. Henty,
Performance of hybrid message-passing and shared-memory parallelism for
discrete element modeling,
in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/henty00performance.html
www.sc2000.org/techpapr/papers/pap.pap154.pdf

Slide 185 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Further references

• Matthias Hess, Gabriele Jost, Matthias Müller, and Roland Rühle,
Experiences using OpenMP based on Compiler Directed Software DSM on a
PC Cluster,
in WOMPAT2002: Workshop on OpenMP Applications and Tools, Arctic Region
Supercomputing Center, University of Alaska, Fairbanks, Aug. 5-7, 2002.
http://www.hlrs.de/people/mueller/papers/wompat2002/wompat2002.pdf

• John Merlin,
Distributed OpenMP: Extensions to OpenMP for SMP Clusters,
in proceedings of the Second EuropeanWorkshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

• Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka,
Design of OpenMP Compiler for an SMP Cluster,
in proceedings of the 1st European Workshop on OpenMP (EWOMP'99), Lund,
Sweden, Sep. 1999, pp 32-39. http://citeseer.nj.nec.com/sato99design.html

• Alex Scherer, Honghui Lu, Thomas Gross, and Willy Zwaenepoel,
Transparent Adaptive Parallelism on NOWs using OpenMP,
in proceedings of the Seventh Conference on Principles and Practice of Parallel
Programming (PPoPP '99), May 1999, pp 96-106.

Slide 186 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Further references

• Weisong Shi, Weiwu Hu, and Zhimin Tang,
Shared Virtual Memory: A Survey,
Technical report No. 980005, Center for High Performance Computing,
Institute of Computing Technology, Chinese Academy of Sciences, 1998,
www.ict.ac.cn/chpc/dsm/tr980005.ps.

• Lorna Smith and Mark Bull,
Development of Mixed Mode MPI / OpenMP Applications,
in proceedings of Workshop on OpenMP Applications and Tools (WOMPAT 2000),
San Diego, July 2000. www.cs.uh.edu/wompat2000/

• Gerhard Wellein, Georg Hager, Achim Basermann, and Holger Fehske,
Fast sparse matrix-vector multiplication for TeraFlop/s computers,
in proceedings of VECPAR'2002, 5th Int'l Conference on High Performance Computing
and Computational Science, Porto, Portugal, June 26-28, 2002, part I, pp 57-70.
http://vecpar.fe.up.pt/

Slide 187 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Further references

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,
Load Balanced Parallel Simulated Annealing on a Cluster of SMP Nodes.
In proceedings, W. E. Nagel, W. V. Walter, and W. Lehner (Eds.): Euro-Par 2006,
Parallel Processing, 12th International Euro-Par Conference, Aug. 29 - Sep. 1,
Dresden, Germany, LNCS 4128, Springer, 2006.

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,
Nesting OpenMP in MPI to Implement a Hybrid Communication Method of
Parallel Simulated Annealing on a Cluster of SMP Nodes.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Beniamino Di Martino, Dieter Kranzlmüller, and Jack Dongarra (Eds.), Proceedings
of the 12th European PVM/MPI Users' Group Meeting, EuroPVM/MPI 2005,
Sep. 18-21, Sorrento, Italy, LNCS 3666, pp 18-27, Springer, 2005

Slide 188 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Content
slide

• Introduction / Motivation . 1
• Programming models on clusters of SMP nodes . . 6

– Major programming models 7
– Pure MPI 9
– Hybrid Masteronly Style 10
– Overlapping Communication and Computation 11
– Pure OpenMP 12

• Case Studies / pure MPI vs. hybrid MPI+OpenMP . 13
– The Multi-Zone NAS Parallel Benchmarks 14
– Benchmark Architectures 18
– On the Sun Constellation Cluster Ranger 20
– NUMA Control (numactl) 25
– On a Cray XT5 cluster 31
– On a Cray XT4 cluster 36
– On a IBM Power6 system 40
– Conclusions 47

• Practical “How-To” on hybrid programming 48
– How to compile, link and run 50
– Running the code efficiently? 57
– A short introduction to ccNUMA 59
– ccNUMA Memory Locality Problems / First Touch 63
– ccNUMA problems beyond first touch 66
– Bandwidth and latency 68

slide
– OpenMP and Threading overhead 71
– Thread/Process Affinity (“Pinning”) 76
– Example: 3D Jacobi Solver 87
– Example: Sparse Matrix-Vector-Multiply with JDS 90
– Hybrid MPI/OpenMP: “how-to” 96

• Mismatch Problems . 97
– Topology problem 99
– Mapping problem with mixed model 106
– Unnecessary intra-node communication 107
– Sleeping threads and network saturation problem 108
– Additional OpenMP overhead 109
– Overlapping communication and computation 110
– Communication overhead with DSM 119
– Back to the mixed model 124
– No silver bullet 125

• Opportunities: Application categories that can 126
benefit from hybrid parallelization

– Nested Parallelism 127
– Load-Balancing 128
– Memory consumption 129
– Opportunities, if MPI speedup is limited due 133

to algorithmic problem
– To overcome MPI scaling problems 134
– Summary 135

Slide 189 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Content

• Thread-safety quality of MPI libraries. 136
– MPI rules with OpenMP 138
– Thread support of MPI libraries 141
– Thread Support within OpenMPI 142

• Tools for debugging and profiling MPI+OpenMP . . 143
– Intel ThreadChecker 144
– Performance Tools Support for Hybrid Code 146

• Other options on clusters of SMP nodes 150
– Pure MPI – multi-core aware 151
– Hierarchical domain decomposition 152
– Scalability of MPI to hundreds of thousands 157
– Remarks on Cache Optimization 158
– Remarks on Cost-Benefit Calculation 159
– Remarks on MPI and PGAS (UPC & CAF) 160

• Summary . 164
– Acknowledgements 165
– Summaries 166
– Conclusions 171

• Appendix . 172
– Abstract 173
– Authors 174
– References (with direct relation to the

content of this tutorial) 177
– Further references 181

• Content . 188

