Hybrid MPI & OpenMP SC10

New Orleans, LA

Parallel Programming N

MPI + OpenMP and other models
on clusters of SMP nodes

Rolf Rabenseifner?) Georg Hager? Gabriele Jost3

Rabenseifner@hirs.de Georg.Hager@rrze.uni-erlangen.de gjost@tacc.utexas.edu

) High Performance Computing Center (HLRS), University of Stuttgart, Germany
2) Regional Computing Center (RRZE), University of Erlangen, Germany
3) Texas Advanced Computing Center, The University of Texas at Austin, USA

Tutorial M02 at SC10,
November 15, 2010, New Orleans, LA, USA

o Hybrid Parallel Programming = b
% Slide 1 Héchstleistungsrechenzentrum Stuttgart r r A — H L R

Outline | K
© slide number

* Introduction / Motivation 2)

* Programming models on clusters of SMP nodes 6 L 830 — 10:00

« Case Studies / pure MPI vs hybrid MPI+OpenMP 13 ' '

* Practical “How-To” on hybrid programming 48)

« Mismatch Problems o7\

« Opportunities: Application categories that can 126

benefit from hybrid parallelization

» Thread-safety quality of MPI libraries 136 3 10:30 —12:00

« Tools for debugging and profiling MP1+OpenMP 143

» Other options on clusters of SMP nodes 150

Summary 164)

* Appendix 172

» (Content (detailed) 188

.....

% Hybrid Parallel Programming _—
% Slide 2/ 169 Rabenseifner, Hager, Jost r r |L — H L R S %

TACC

Motivation | ®
o)

« Efficient programming of clusters of SMP nodes SMP nodes

SMP nodes: eores
. Dual_/multi core CPUs f::,:,ﬁy

* Multi CPU shared memory Node Interconnect

* Multi CPU ccNUMA
* Any mixture with shared memory programming model

« Hardware range
* mini-cluster with dual-core CPUs

]] CPU(socket)
» large constellations with large SMP nodes

.. with several sockets (CPUs) per SMP node HnlfeEL
.. with several cores per socket ccNUMA node
- Hierarchical system layout 7 Cluster of ccNUMA/SMP nodes

« Hybrid MPIl/OpenMP programming seems natural
* MPI between the nodes
+ OpenMP inside of each SMP node

Hybrid Parallel Programming — —
Slide 3/ 169 Rabenseifner, Hager, Jost r r L u — H L R S

Motivation | ““““““““ i
(o
=P node =P node « Which programming model
Socket 1 Socket 1 is fastest?
| _Quad-core__ | _Quad-core__ « MPI everywhere?
CPU CPU
00000 .
Socket 2 Socket 2 * FuIIy hyb”d
MPI & OpenMP?
I
| Quad-core__ | _ Quad-core__
e chu « Something between?
(Mixed model) E\U’E
« Often hybrid programming
Node Interconnect slower than pure MPI

— Examples, Reasons, ...

Hybrid Parallel Programming — —
Slide 4/ 169 Rabenseifner, Hager, Jost r r L u — H L R S

Goals of this tutorial

o

Sensitize to problems on clusters of SMP nodes

see sections = Case studies
- Mismatch problems

Technical aspects of hybrid programming

see sections - Programming models on clusters
- Examples on hybrid programming

Opportunities with hybrid programming

see section > Opportunities: Application categories
that can benefit from hybrid paralleliz.

Issues and their Solutions

with sections = Thread-safety quality of MPI libraries
—> Tools for debugging and profiling

Less
frustration
&

* More
success

> with your

parallel
program on

clusters of
SMP nodes

for MP1+OpenMP J

oS

Hybrid Parallel Programming — —
Slide 5/169 Rabenseifner, Hager, Jost r r L u — H L R

TACC

.....
........

.....
PR
R

RERREI

........
........
.....

10

Outline I K

* [ntroduction / Motivation

« Programming models on clusters of SMP nodes

« (Case Studies / pure MPI vs hybrid MPl+OpenMP
» Practical “How-To” on hybrid programming
* Mismatch Problems

» Opportunities:
Application categories that can benefit from hybrid parallelization

« Thread-safety quality of MPI libraries

» Tools for debugging and profiling MPI+OpenMP
« Other options on clusters of SMP nodes

« Summary

Hybrid Parallel Programming — i
% Slide 6 /169 Rabenseifner, Hager, Jost r r |L — H L R S %

Major Programming models on hybrid systems | S
o
« Pure MPI (one MPI process on each core)
* Hybrid MP1+OpenMP .
OpenMP inside of the
— shared memory OpenMP [SMP nodes) ’ ’ ’
— distributed memory MPI | MPI between the nodes
Y via node interconnect Node Interconnect

« Other: Virtual shared memory systems, PGAS, HPF, ...
« Often hybrid programming (MPIl+OpenMP) slower than pure MPI

— why?
MPI local data in each process || OpenMP (shared data) /Master thread,
Sequential some_serial _code other threads

program on_> #pragma omp parallel for ')‘
each core r for (j=...;...; j++)

block _ to_be_parallellzed

Explicit Message Passing again_some_serial _code E|S'eepmg|z|
by calling MPI _Send & MP| Recv

Hybrid Parallel Programming — —
Slide 7/ 169 Rabenseifner, Hager, Jost r r L u — H L R S

Parallel Programming Models on Hybrid Platforms

T ———

pure MPI
one MPI process
on each core

hybrid MPl+OpenMP

MPI: inter-node communication
OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Qverlapping Comm. + Comp.
MPI1 communication by one or a few threads
while other threads are computing

Masteronly
MPI only outside
of parallel regions

Hybrid Parallel Programming

Slide 8 /169

e

ﬁ —
Rabenseifner, Hager, Jost H I— R S

TACC

e

_ Problems

Pure MPI
o

pure MPI
one MPI process
on each core

Advantages
— No modifications on existing MPI codes
— MPI library need not to support multiple threads

Major problems
— Does MPI library uses internally different protocols?

Discussed
in detail later on

in the section

» Shared memory inside of the SMP nodes
 Network communication between the nodes

— Does application topology fit on hardware topology?

Mismatch — Unnecessary MPIl-communication inside of SMP nodes!

Hybrid Parallel Programming

Slide 9/ 169

Rabenseifner, Hager, Jost H I— R . S
TACC

o

Hybrid Masteronly

Masteronly
MPI only outside
of parallel regions

Advantages

— No message passing inside of the SMP nodes

— No topology problem

for (iteration)

{

#pragma omp parallel
numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)
MPI_Recv (halo data
from the neighbors)
} /*“end for loop

Major Problems

e

Hybrid Parallel Programming — —
Slide 10/ 169 Rabenseifner, Hager, Jost r r L u — H L R S

— All other threads are sleeping
while master thread communicates!

— Which inter-node bandwidth?

— MPI-lib must support at least
MPI_THREAD_FUNNELED

- Section
Thread-safety
quality of MPI

libraries

e

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Hybrid Parallel Programming

if (my_thread _rank <...){

MPI_Send/Recv....
i.e., communicate all halo data

} else {

Execute those parts of the application
that do not need halo data
(on non-communicating threads)

Execute those parts of the application
that need halo data
(on all threads)

Slide 11 /169

TACC

ﬁ —
Rabenseifner, Hager, Jost H I— R

Pure OpenMP (on the cluster) |
o

OpenMP only
distributed virtual
shared memory

« Distributed shared virtual memory system needed
« Must support clusters of SMP nodes

« e.g., Intel® Cluster OpenMP > Ex“a?;ﬁgi(e:h
— Shared memory parallel inside of SMP nodes section

— Communication of modified parts of pages
at OpenMP flush (part of each OpenMP barrier)

/

l.e., the OpenMP memory and parallelization model
is prepared for clusters!

% Hybrid Parallel Programming _—
% Slide 12/ 169 Rabenseifner, Hager, Jost r r |L — H L R S %

08
;gd
0

Outline l

 Introduction / Motivation
« Programming models on clusters of SMP nodes

« Case Studies / pure MPI vs hybrid MPI+OpenMP
— The Multi-Zone NAS Parallel Benchmarks

— For each application we discuss:

+ Benchmark implementations based on different strategies and
programming paradigms

+ Performance results and analysis on different hardware architectures
— Compilation and Execution Summary

Gabriele Jost (University of Texas,TACC/Naval Postgraduate School, Monterey CA)

« Practical “How-To” on hybrid programming
« Mismatch Problems

« Opportunities: Application categories that can benefit from hybrid paralleli.
« Thread-safety quality of MPI libraries

» Tools for debugging and profiling MP1+OpenMP
« Other options on clusters of SMP nodes

e Summary

Hybrid Parallel Programming — —
Slide 13/169 Rabenseifner, Hager, Jost r r L o — H L R

o
Nested
set up zones MPl/OpenMP sl OpenMP
2 Time step sequential sequential | sequential
oo . MPI MLP
tial -
initialize zones | inter-zones (SN Processes | OPenMP
> exchange data copy+
v : Call MPI OpenMP
B hanae boundaries sync.
boundaries intra-zones OpenMP OpenMP OpenMP

Zohes

The Multi-Zone NAS Parallel Benchmarks

Multi-zone versions of the NAS Parallel Benchmarks
LU,SP, and BT

Two hybrid sample implementations
Load balance heuristics part of sample codes
www.nas.nasa.gov/Resources/Software/software.html

Hybrid Parallel Programming

Rabenseifner, Hager, Jost H L R _
TACC

Slide 14 /169

e

i

10

Using MPI/OpenMP: ADI Method ks

o

call omp_set_numthreads (weight)

do step = 1, itmax

call exch_gbc(u, gbc, nx,..

N

< call mpi_send/recv >

do zone = 1, num_zones

if (iam .eq. pzone_id(zone))

call zsolve (u, rsd,..)
end if
end do

end do

Hybrid Parallel Programming

Slide 15/ 169

e

Rabenseifner, Hager, Jost

subroutine zsolve (u, rsd,..)

!SOMP PARALLEL DEFAULT (SHARED)
'SOMP& PRIVATE (m, i, j,k...)
!'SOMP DO
do k = 2, nz-1
do j = 2, ny-1
do 1 = 2, nx-1
dom=1, 5

then u(m, i, 3,k)=
dt*rsd(m, i, j,k-1)

end do
end do
end do
end do
!SOMP END DO nowait

!SOMP END PARALLEL

10

Pipelined Thread Execution in SSOR |

subroutine ssor
!SOMP PARALLEL DEFAULT (SHARED)
I SOMP & PRIVATE(m,i,j,k...)

o

subbroutine syncl

call syncl () ..neigh = iam -1
do k = 2, nz-1 do while (isync(neigh) .eqg. 0)
'SOMP DO !'SOMP FLUSH (isync)

do 3 = 2, ny-1
do i = 2, nx-1

dom=1, 5
rsd(m,1i, j, k)=
dt*rsd(m, i, 3, k-1)

end do
end do
end do
!SOMP END DO nowait
end do
call sync2 ()

!SOMP END PARALLEL

Hybrid Parallel Programming

Slide 16/ 169 Rabenseifner, Hager, Jost

e

end do
isync (neigh) = 0
!SOMP FLUSH (isync)

subroutine sync2

neigh = iam -1

do while (isync(neigh) .eqg. 1)
'!'SOMP FLUSH (isync)

end do

isync (neigh) = 1

!SOMP FLUSH (isync)

Benchmark Characteristics | S
Lo
» Aggregate sizes:
— Class D: 1632 x 1216 x 34 grid points Expectations:
— Class E: 4224 x 3456 x 92 grid points
 BT-MZ: (Block tridiagonal simulated CFD application) (Pure MPI: Loadw
— Alternative Directions Implicit (ADI) method balancing problems!

— #Zones: 1024 (D), 4096 (E) / Good candidate for
— Size of the zones varies widely: __ MPI+OpenMP

« large/small about 20

 requires multi-level parallelism to achieve a good load-balance

* LU-MZ: (LU decomposition simulated CFD application) Limitted MPI)
— SSOR method (2D pipelined method) Parallelism:
— #Zones: 16 (all Classes) - MPI+OpenMP
— Size of the zones identical: increases
* no load-balancing required Parallelism J

* limited parallelism on outer level
N

» SP-MZ: (Scalar Pentadiagonal simulated CFD application) foad-balanced on
— #Zones: 1024 (D), 4096 (E) MPI level: Pure MPI
— Size of zones identical —should perform best)

* no load-balancing required =

Hybrid Parallel Programming — —
Slide 17 /169 Rabenseifner, Hager, Jost r r L o — H L R S

Benchmark Architectures | 3
o

« Sun Constellation (Ranger)
« Cray XT5
« IBM Power 6

Hybrid Parallel Programming =1
% Slide 18 /169 Rabenseifner, Hager, Jost r r |L — H L R S %

Hybrid code on cc-NUMA architectures | =
0

« OpenMP:
— Support only per MPI process

— Version 2.5 does not provide support to control to map threads onto CPUs.
Support to specify thread affinities was under discussion for 3.0 but has not
been included

« MPI:

— Initially not designed for NUMA architectures or mixing of threads and
processes, MPI-2 supports threads in MPI

— APl does not provide support for memory/thread placement
« Vendor specific APIs to control thread and memory placement:
— Environment variables

— System commands like numactl
- http://www.halobates.de/numaapi3.pdf

Hybrid Parallel Programming — —
Slide 19/ 169 Rabenseifner, Hager, Jost r r L o — H L R S

o

Sun Constellation Cluster Ranger (1) |

19)
z
S

5

Located at the Texas Advanced Computing Center (TACC),
University of Texas at Austin (http://www.tacc.utexas.edu)

3936 Sun Blades, 4 AMD Quad-core 64bit 2.3GHz processors per
node (blade), 62976 cores total

123TB aggregrate memory
Peak Performance 579 Tflops
InfiniBand Switch interconnect
Sun Blade x6420 Compute Node:
— 4 Sockets per node
— 4 cores per socket
— HyperTransport System Bus
— 32GB memory

sJomjou

Hybrid Parallel Programming
Slide 20/ 169 Rabenseifner, Hager, Jost - H I— R S %

.....

Sun Constellation Cluster Ranger (2) | =

« Compilation:
— PGl pgf90 7.1 @ith OpenMP_>
— mpif90 -tp barcelona-64 -r8 -mp
« Cache optimized benchmarks Execution:
— MPI MVAPICH
— setenv OMP_NUM_THREADS nthreads
— Ibrun numactl bt-mz.exe
* numactl controls
— Socket affinity: select sockets to run
— Core affinity: select cores within socket

— Memory policy:where to allocate memory
— http://www.halobates.de/numaapi3.pdf

Hybrid Parallel Programming — —
Slide 21 /169 Rabenseifner, Hager, Jost r r L o — H L R S

SUN: Running hybrid on Sun Constellation af

Cluster Ranger | k

» Highly hierarchical 4‘
« Shared Memory:

— (Cache-coherent, Non-
uniform memory access
(ccNUMA) 16-way Node
(Blade)

« Distributed memory:
— Network of ccNUMA blades

» Core-to-Core

» Socket-to-Socket

- Blade-to-Blade

» Chassis-to-Chassis

e

b
5

3

yiomjau

1o

Hybrid Parallel Programming _—
% Slide 22/ 169 Rabenseifner, Hager, Jost r r |L — H L R S %

MPI ping-pong micro
benchmark results
o-0n_Ranger

* |Inside one node:

1400

1200

1000

800

600

400

On-Node Communication Scaling (between 2 Sockets)

Ping-pong socket 0 with 1, 2, 3

Effe¢tive Bandwidth (MB/s)

and 1, 2, or 4 simultaneous comm.
(quad-core)

» Missing Connection: Communication
between socket 0 and 3 is slow

» Maximum bandwidth:
1 x 1180, 2 x 730, 4 x 300 MB/s

* Node-to-node inside one chassis

2UU

1000

800

600

0.1kB 1kB 10kB 100kB 1mB 10mB

with 1-6 node-pairs (= 2-12 procs)
> Perfect scaling for up to 6
simultaneous communications

> Max. bandwidth : 6 x 900 MB/s

» Chassis to chassis (distance: 7 hops)
with 1 MPI process per node and 1-12
simultaneous communication links

» Max: 2 x 900 up to 12 x 450 MB/s

3 Hybrid Parallel Programming
Slide 23 /169 Rabenseifner, Hager, Jost

“Exploiting Multi-Level Parallelism on the Sun Constellation
System”, L. Koesterke, et al., TACC, TeraGrid08 Paper

Effectivg Bandwidth (MB/s)

Bandwidth per Communication
Channel (MB/s)

200

0

0.1kB 1B 10KkB 100 kB imB 10mB
NEM to NEM Scaling Performance

0.1kB 1KB 10kB 100k8 1vB 10mB
Message Size

SUN: NPB-MZ Class E Scalability on Ranger | ==
o
NPB-MZ Class E Scalability on Sun Constellation (BT \
Significant improve-
5000000 N
4500000 - @ SP-MZ (MPI) _— ment (235 /‘_’)'
4000000 —— O SP-MZ MPI+OpenMP] Load-balancing
& 3000000 W BT-MZ MPI+OpenMP \I MP1+OpenMP J
é 2500000 | / SP \
2000000 L] Pure MPI is already
1500000 load-balanced.
1000000 But hybrid
s B 9.6% faster, due to
0~ | smaller message
1024 \I rate at NIC

« Scalability in Mflops
« MPI/OpenMP outperforms pure MPI

« Use of numactl essential to achieve scalability

Hybrid Parallel Programming

Slide 24 / 169

e

Rabenseifner, Hager, Jost

[==

TACC

' Cannot be build for]

H L

8192 processes!

Hybrid: R
SP: still scales
BT: does not scale)

<1

NUMA Control: Process Placement g

« Affinity and Policy can be changed externally through numactl at
the socket and core level.

O

b
5

Command: numactl <options> ./a.out

% 3 8,9,10,11 12,13,14,15
coe core | | core core L coe coe || core core L
HE HER HE HER
! !
o) | .|, oo 1 |, .

o))
I 0 4,5,6,7
Socket References Core References

Example: numactl -N 1 ./a.out Example: numactl —c 0,1 ./a.out

Hybrid Parallel Programming —
% Slide 25/ 169 Rabenseifner, Hager, Jost r r |L — H L R S %

0

NUMA Operations: Memory Placement E
o

Memory allocation:
« MPI

— local allocation is best
« OpenMP

— Interleave best for large, completely
shared arrays that are randomly
accessed by different threads

— local best for private arrays

Once allocated,
a memory-structure is fixed

Example: numactl -N 1 -1 ./a.out

Hybrid Parallel Programming — —
% Slide 26 / 169 Rabenseifner, Hager, Jost r r L u — H L R

Memory: Socket References

e

C10

NewOrleans,LA

K

NUMA Operations (cont. 3) l
cmd option arguments description
Only execute
i process on cores
numactl N {0,1,2,3} of this (these)
socket(s).
numactl | {no argument} Allocate on
current socket.
Allocate round
numactl -i {0,1,2,3} robin (interleave)
on these sockets.
Allocate on this
_ 1{0,1,2,3} socket; fallback
numactl --preferred= .
select only one |to any other if
full .
Only allocate on
numactl -m {0,1,2,3} this (these)
socket(s).
| 0.1,2.3, Only execute
4,5,6,7, -
numactl -C process on this
89,10,11, (these) Core(s)
12,13,14,15} __ '
Hybrid Parallel Programming = b
Sl\i/deI 27/169 I Rabenseifner, Hager, Jost H L R 5

TACC

Hybrid Batch Script: 4 tasks, 4 threads/task

o

for mvapich2

Sli

job script (Bourne shell)

4 MPI per

export OMP_NUM_THREADS=4

ibrun numa.sh

job script (C shell)

#! -pe 4way 32

setenv OMP_NUM_THREADS 4

ibrun numa.csh

numa.sh
#!/bin/bash
export MV2 USE_AFFINITY=0
export MV2_ENABLE_AFFINITY=0
export VIADEV_USE_AFFINITY=0

#TasksPerNode

TPN="echo $PE | sed 's/way//"
[1 $TPN] && echo TPN NOT defined!
[1 $TPN] && exit 1

socket=$(($PMI_RANK % $TPN))

numactl -N $socket -m $socket ./a.out

numa.csh
#!/bin/tcsh
setenv MV2_ USE_AFFINITY O
setenv MV2_ENABLE_AFFINITY O
setenv VIADEV_USE_AFFINITY O

#TasksPerNode

set TPN = "echo $PE | sed 's/way//"
if(! ${%TPN}) echo TPN NOT defined!
if(! ${%TPN}) exit 0

@ socket = $PMI_RANK % $TPN

numactl -N $socket -m $socket ./a.out

TACC

e

Numactl - Pitfalls:
Using Threads across Sockets

bt-mz.1024x8 yields

best load-balance

—pe 2way 8192

export OMP_NUM_THREADS=8

my_rank=SPMI_RANK

local_rank=$((Smy_rank % Smyway)) 1‘
numnode=S$ ((Slocal _rank + 1)) -

Original:

numactl —-N S$Snumnode -m Snumnode S$*

Bad performance

« Each process runs 8 threads on 4 cores
 Memory allocated on one socket

Hybrid Parallel Programming

2

Rank 1

Rank 0

Slide 29/ 169

Rabenseifner, Hager, Jost H L R _
TACC

yJomjau

e

° « Suitable for 8 threads 1

Numactl - Pitfalls: <10

Using Threads across Sockets |

bt-mz.1024x8

export OMP_NUM_THREADS=8

INo

my_rank=SPMI_RANK

local_rank=$(($my_rank % Smyway))
numnode=$ ((S$Slocal_rank + 1))
Original:

numactl —-N $Snumnode -m Snumnode S$*

[

Modified:
if [$local_rank -eq 0]; then
numactl -N 0,3 -m 0,3 $*
else
numactl -N 1,2 -m 1,2 $*

INo

fi

Achieves Scalability!
» Process uses cores and memory across 2 sockets

Hybrid Parallel Programming — —
Slide 30/ 169 Rabenseifner, Hager, Jost r r L o — H L R S

yJomjau

i)
‘0

Cray XT5 | S

* Results obtained by the courtesy of the
HPCMO Program and the Engineer Research
and Development Center Major Shared
Resource Center, Vicksburg, MS
(http://www.erdc.hpc.mil/index)

Lo
Node

-]

« Cray XT5 is located at the Arctic Region %
Supercomputing Center (ARSC) S
(http://www.arsc.edu/resources/pingo)

— 432- Cray XT5 compute nodes with NUMA Node
» 32 GB of shared memory per node (4 GB per core) (Socket)

» 2 - quad core 2.3 GHz AMD Opteron processors
per node.

» 1 - Seastar2+ Interconnect Module per node.

— Cray Seastar2+ Interconnect between all
compute and login nodes

Hybrid Parallel Programming =
% Slide 31 /169 Rabenseifner, Hager, Jost r r L u — H L R

Cray XT5: NPB-MZ Class D Scalability 5

Results reported for
Class D on 256-2048 cores

3000

2048 cores

2500 ——
B BT-MZ Gops

best of category

.- SP-MZ pure MPI scales up to
1024 cores

| ~--* SP-MZ MPI/OpenMP scales to

| 2048 cores

2000 ——
= SP-MZ Gops \

1024 cores

1500

Gop/s

512 cores

1000 11756 cores

|+ outperforms pure MPI for

|\ 1024 cores

Unexpected!]
|---* BT-MZ MPI does not scale

N q q ‘e BT-MZ MPI/OpenMP scales to
ks o m""'ﬁr\‘\'*qf?‘" f\?’+ b‘P"' » """,b“’*' 2048 cores, outperforms pure

Q
"], N
MPIxOpenMP MPI

Hybrid Parallel Programming — —
Slide 32/ 169 Rabenseifner, Hager, Jost r r L u — H L
7 TACC .

500

0 - . s B L1

N> N A
R G
B ANV S

Cray XT5: CrayPat Performance Analysis | =
o

module load xt-craypat
« Compilation:

» ftin —fastsse —tp barcelona—64 —r8 —mp=nonuma,[trace]
* Instrument:

» pat_build —-w —T TraceOmp, —g mpi,omp bt.exe bt.exe.pat
« Execution :

> (export PAT_RT _HWPC {0,1,2,..})

> export OMP_NUM_THREADS 4

» aprun —n NPROCS -S 1 —d 4 ./bt.exe.pat
» Generate report:

» pat_report —O

load balance,thread_times,program_time,mpi_callers —-O
profile_pe.th $1

% Hybrid Parallel Programming _—
% Slide 33/ 169 Rabenseifner, Hager, Jost r r |L — H L R S &‘

gL

5

F
)
b

Cray XT5: BT-MZ 32x4 Function Profile

o

1t=1

.
zad="HIIE"

_.LOOPELi, 43

Y 18] P = R
_.LOOPEL:, 46
rh=,HASTERETi, 231

rh=_,LOOPE] 1,187
rhs_,LOOPE]L i, 53
rh= LOOPRLi, /B
rh= LOOPE]i, 28
rhz,LO0PR] i, 297
lize_, LOOPR@I], 40

- 2_th=_,LOOPKHI, 231
I L,&d | W,Ulbéaa | Uugsdrs |0 19,54 | 1bid 1agd_, L00PRE] D, 2

I
' | |::
% ool 2,17 | 0,030491 | - | - | 1040 |MPI
| | =
////// Il 1.8% | 0,026193 | 0,111613 | 81.6% | 105 Impi_waitall_

|

pon |
]
-
-
=]
-
=]
-
=]
-
=]
-
=]
-
=]
-
=]
-

pd TACC

Cray XT5: BT-MZ Load-Balance 32x4 vs 128x1 | >
(o]

Table 2: Load Balance across PE's by FunctionGroup Table 2 Load Balance across PE's by FunctionGroup
Time # | Time | Calls |Experiment=1 Time % | Time | Calls |Group

I I | Group I I | PE[ramm]

I I | PELmmm]

I I | Thread 100,08 | 24,277514 | 28258 |Total

100,08 1 1,782603 | 18662 |Total b8 | 13,166225 | 4545 |MPI

g6.1% | 1,535163 | 773 IUSER 0,52 | 16,454393 | 4846 |pe,9l

I
I
I 0,58 | 14068538 | 2424 |pe.29
I
I

2,78 | 1,535387 | 6813 Ipe.0 0,0% | 0,289479 | 2434 |pe,O

|
|
I
I
1]
11 0,7¢ | 1,535987 | E188 lthread,1
1 0.7¢ | 1535871 | G188 |thread.3 | 44.3% | 10.534508 | 17383 |USER
1 0,7% | 1,535879 | G182 |thread,?

. . . | 0,7% | 23,205797 | 9093 |pe.O
S mafe | TARESaE | 8813 Tthread.? | 0,32 | 10.084200 | 26873 |pe.110
Il 2,72 | 1,535147 | 7783 |pe.1f | 0.3% | 8,0703537 | 17383 lpe,dl
1]
I 0,7 | 1,535147 | 7072 lthread,l bt-mz-C.128x1
11 0,7¢ | 1,534995 | 7072 |thread,3
1 0.7¢ | 1534968 | 7072 |thread,? :) —
3 0,67 | 1,290502 | 7783 lthread,0 maximum, median, minimum PE are shown
1]
II| 2,78 | 1,534239 | 7783 lpe.1B » bt-mz.C.128x1 shows large imbalance in User
I 0,78 | 1,534233 | 7072 lthread,1 and MPI time
1 0.7¢ | 1534101 | 7072 |thread.3 .
I 0,78 | 1,534076 | 7072 |thread,? * bt-mz.C.32x4 shows well balanced times
1 0,62 | 1.268085 | 7783 lthread,o

bt-mz-C.32x4 _

[—
. Hybrid Parallel Programming — I I R
o —
\ Slide 35/ 169 Rabenseifner, Hager, Jost r r |L — I— S

06/
\Q
Running Hybrid on Cray XT4
0

« Shared Memory:
— Cache-coherent 4-way Node Hyperﬁnsport

;
z
b
4

« Distributed memory:

— Network of nodes
 Core-to-Core
* Node-to-Node

yiomiau

Hybrid Parallel Programming —
% Slide 36 /169 Rabenseifner, Hager, Jost r r |L — H L R S %

7 Pitfalls:

N\ <10
A T T U V-
S Process and Thread Placement on Cray XT4 (1) .
export OMP_NUM_THREADS=4
export MPICH_RANK_REORDER_DISPLAY=1
Rank 1
aprun -n 2 sp-mz.B.2
>
1 node, 4 cores, 8 threads Rank 0 '2*
o
=~

[PE_0]: rank 0 is on nid01759;
[PE_0]: rank 1 is on nid01759;

SP-MZ Benchmark Completed,

Clas=s = B

Size = a0dx 208x 17

Iterations =

Time in seconds = 15811.56] .)
Total processes = Z errible execution time
Total threads = g

Mopds total = = 167,45 because both

Mop# s/ thread = 20,93 4-threaded MPI
Operation type = floating point]
Verification = SICCESSFLL processes are running
Verzion = 2.3

Compile date = 28 May 2003 on the same socket

Hybrid Parallel Programming — —
Slide 37 /169 Rabenseifner, Hager, Jost r r L o — H L R S

(<7 Pittalls: o
o Process and Thread Placement on Cray XT4 (2)

export OMP_NUM_THREADS=4

export MPICH_RANK_REORDER_DISPLAY=1
Rank 1
aprun —-n 2 -N 1 sp-mz.B.2
2 nodes, 8 cores, 8 threads

[PE_0]: rank 0 is on nid01759;
[PE_0]: rank 1 is on nid01882; Rank 0

SP-MZ Benchmark Completed,

Class B

Size a0dx 208w 17

Iterations

Time in seconds 47,

Total processzes

L0 T I T I T W T I A T T 1 I

Total threads 3 F F

Hopds total 6427 1B Short execution time
Hopss/thread BBt because both 4-way MPI
Operation type floating point)
Verification SUCCESSFUL processes are running
VMersion 2.3 .

Compile date 28 May 2009 on different sockets

Hybrid Parallel Programming — —
Slide 38 /169 Rabenseifner, Hager, Jost r r L o — H L R S

Example Batch Script Cray XT4 |

Cray XT4 at ERDC:
« 1 gquad-core AMD Opteron per node

« ftn —-fastsse —tp barcelona-64 —mp -o bt-mz.128

#!/bin/csh
#PBS —g standard
#PBS -1 mppwidth=512

#PBS -1 walltime=00:30:00 Maleum Of 4 threads

module load xt-mpt er MPI process on XT4
cd $PBS_O_WORKDIR

setenv OMP_NUM_THREADS 4

aprun -n 128 -N 1 _—-d 4

bt-mz.128

setenv OMP_NUM THREADS 2
aprun -n 256 -N 2 -d 2./bt-mz.

Hybrid Parallel Programming
Slide 39/ 169 Rabenseifner, Hager, Jost

C10

NewOrleans,LA

K

IBM Power 6

o

Hybrid Parallel Programming

Results obtained by the courtesy of the HPCMO Program and the
Engineer Research and Development Center Major Shared
Resource Center, Vicksburg, MS (http://www.erdc.hpc.mil/index)

The IBM Power 6 System is located at
(http://'www.navo.hpc.mil/davinci_about.html)

150 Compute Nodes
32 4.7GHz Power6 Cores per Node (4800 cores total)
64 GBytes of dedicated memory per node
QLOGOC Infiniband DDR interconnect
IBM MPI: MPI 1.2 + MPI-10
> mpxIf_r —qarch=pwr6 —qtune=pwr6é —gsmp=omp

> Flag was essential to achieve full
compiler optimization in
presence of OMP directives!

Execution:
» poe launch $PBS_ O WORKDIR./sp.C.16x4.exe

.....
........

Slide 40/ 169

Rabenseifner, Hager, Jost H L R S %

NPB-MZ Class D on IBM Power 6:

Exploiting SMT for 2048 Core Results |

08
?gd
0

2500

2000 -

1500 -

Gop/s

1000

500

Doubling the number of threads
through hyperthreading (SMT):
#!/bin/csh

1024 cores #PBS -1 select=32:ncpus=64:

2048

best of category

B BT-MZ Gops
B SP-MZ Gops

= N < 00 — N < o0
>x x X X X X X X
00 &N W W 0 < N
~N W M — 1" ~NWOom
—i o

Hybrid Parallel Programming

~~~~~~~ ~ 7 mpiprocs=NP:ompthreads=NT

e Results for 128-2048
cores

e Only 1024 cores were
available for the
experiments

e BT-MZ and SP-MZ
show benefit from
Simultaneous
Multithreading (SMT):
2048 threads

— o~ = 00 W — ™~ = 00 W < o~ = 0
I8 T XTI IS RS NG 02
[T I o' B | M O 1N N 4 W O O n ™~
— (o I |
MPIxOpenMP

Slide 41 /169

Rabenseifner, Hager, Jost H L R _ S
TACC



LU-MZ Class D Scalability IBM Power 6 | %lo
O~ 700
600
W LU-MZ Gops

500

w 400
=1
o

© 300

200

100

NS | |
16x1 16x4 16x8 16x16 16x32
MPIXOMP

e LU-MZ significantly benefits from hybrid mode:
» Pure MPI limited to 16 cores, due to #zones = 16

Hybrid Parallel Programming — —
% Slide 42/ 169 Rabenseifner, Hager, Jost r r L u — H L R




Conventional Multi-Threading

o

Functional

Units

FXO0
FX1
FPO
FP1
LSO
LS1
BRX
CRL

Hybrid Parallel Programming

10

Time

B (L (1]

N pENEENE

>

I
] ]

IO |

] ]

LI I 1] |

gy

R} il

|
|
|
_JENEENEENY § sl
|
|
|

Bl Thread 0

 Threads alternate
— Nothing shared

S

Slide 43/ 169

ﬁ I
Rabenseifner, Hager, Jost H L R

Bl Thread 1

Charles Grassl, IBM

~~~~~~~~~~

.......
........
.....

TACC

e

o

Simultaneous Multi-Threading

FXO0
FX1
FPO
FP1
LSO
LS1
BRX
CRL

I 1

B T]

D-HHHH-D
m il | Im
R N s
il § 1 |
|y | .
l §F Iy 1
HiEEl .

- Thread O - Thread 1

 Simultaneous execution
— Shared registers
— Shared functional units

Hybrid Parallel Programming

Slide 44 / 169

Rabenseifner, Hager, Jost H L R _
TACC

Charles Grassl, IBM

o

Simultaneous Multi-Threading

FXO0
FX1
FPO
FP1
LSO
LS1
BRX
CRL

I 1

__JENREN) |EEiEmp

) I I.l:l
] mE | .
LI I I]
| R]
B[([/e 1]
[1T [|
LI I

- Thread O - Thread 1

Simultaneous execution

— Shared registers
— Shared functional units

Rabenseifner, Hager, Jost H I— R i
TACGC

b
Ed
:

Charles Grassl, IBM

Performance Analysis on IBM Power 6 | =
o

« Compilation:

> mpxlf_r -O4 —qgarch=pwr6 —qtune=pwr6é —qsmp=omp —pg
« Execution :

> export OMP_NUM_ THREADS 4

» poe launch $PBS O WORKDIR./sp.C.16x4.exe

> Generates a file gmount.MPI_RANK.out for each MPI Process
« Generate report:

> gprof sp.C.16x4.exe gmon*

% cumulative self self total
time seconds seconds calls ms/call ms/call name
16.7 117.94 117.94 205245 0.57 0.57 .@10@x_solve@OL@1l [2]
14.6 221.14 103.20 205064 0.50 0.50 .@15@z_solve@OL@1l [3]
12.1 307.14 86.00 205200 0.42 0.42 .Q@12Q@y_solve@OL@1 [4]
6.2 350.83 43.69 205300 0.21 0.21 .Q@8QRcompute_rhs@OL@IQROLR6 [5]

Hybrid Parallel Programming — —
Slide 46 / 169 Rabenseifner, Hager, Jost r r L o — H L R S

Conclusions: | =
o
- BT-MZ:

> Inherent workload imbalance on MPI level

> #nprocs = #nzones yields poor performance

> #nprocs < #zones => better workload balance, but decreases parallelism

» Hybrid MP1/OpenMP yields better load-balance,

maintains amount of parallelism

« SP-MZ:

> No workload imbalance on MPI level, pure MPI should perform best

» MPI/OpenMP outperforms MPI on some platforms due contention to

network access within a node
 LU-MZ:
> Hybrid MP1/OpenMP increases level of parallelism
« “Best of category” depends on many factors
» Depends on many factors
> Hard to predict
» Good thread affinity is essential

Hybrid Parallel Programming — —
Slide 47 / 169 Rabenseifner, Hager, Jost r r L o — H L R S

10

Outline I i

Introduction / Motivation
Programming models on clusters of SMP nodes
Case Studies / pure MPI vs hybrid MPI+OpenMP

Practical “How-To” on hybrid programming

Georg Hager, Regionales Rechenzentrum Erlangen (RRZE)

Mismatch Problems

Application categories that can benefit from hybrid parallelization
Thread-safety quality of MPI libraries

Tools for debugging and profiling MPI+OpenMP

Other options on clusters of SMP nodes

Summary

.....

Hybrid Parallel Programming — S
Slide 48 / 169 Rabenseifner, Hager, Jost r r |L — H L R S ﬁ’

Hybrid Programming How-To: Overview
)

« A practical introduction to hybrid programming
— How to compile and link
— Getting a hybrid program to run on a cluster

* Running hybrid programs efficiently on multi-core clusters

— Affinity issues
« ccNUMA
 Bandwidth bottlenecks

— Intra-node MPI/OpenMP anisotropy
* MPI communication characteristics
+ OpenMP loop startup overhead

— Thread/process binding

A Hybrid Parallel Programming _—
% Slide 49/ 169 Rabenseifner, Hager, Jost r r |L — H L R

How to compile, link and run | 2
o

» Use appropriate OpenMP compiler switch (-openmp, -xopenmp,
-mp, -qgsmp=openmp, ...) and MPI compiler script (if available)
« Link with MPI library
— Usually wrapped in MPI compiler script

— If required, specify to link against thread-safe MPI library
+ Often automatic when OpenMP or auto-parallelization is switched on

* Running the code
— Highly non-portable! Consult system docs! (if available...)
— If you are on your own, consider the following points

— Make sure OMP_NUM_THREADS etc. is available on all MPI

processes
» Start “env VAR=VALUE ... <YOUR BINARY>" instead of your binary alone

» Use Pete Wyckoff’'s mpiexec MPI launcher (see below):
http://www.osc.edu/~pw/mpiexec

— Figure out how to start less MPI processes than cores on your
nodes _

3 Hybrid Parallel Programming _—
% Slide 50 / 169 Rabenseifner, Hager, Jost r r |L — H L R

Some examples for compilation and execution (1) | ®

o

« NEC SX9
— NEC SX9 compiler
- mpif90 -C hopt -P openmp .. # —ftrace for profiling info
— Execution:

$ export OMP_NUM THREADS=<num threads>
$ MPIEXPORT=“OMP_NUM THREADS”
$ mpirun -nn <# MPI procs per node> —-nnp <# of nodes> a.out

Standard Intel Xeon cluster (e.g. @HLRS):

— Intel Compiler
- mpif90 -openmp ..
— Execution (handling of OMP_NUM_THREADS, see next slide):

$ mpirun_ssh —-np <num MPI procs> -hostfile machines a.out

Hybrid Parallel Programming — —
Slide 51 /169 Rabenseifner, Hager, Jost r r L u — H L R S

e

o

Some examples for compilation and execution (2) | i~

10

NNNNNNNNN

Handling of OMP_NUM_THREADS
« without any support by mpirun:

Hybrid Parallel Programming

E.g. with mpich-1

Problem:
mpirun has no features to export environment variables to the via ssh
automatically started MPI processes

Solution: Set
export OMP_NUM THREADS=<# threads per MPI process>

in ~/.bashrc (if a bash is used as login shell)
If you want to set OMP_NUM_THREADS individually when starting the MPI

processes:
Add
test -s ~/myexports && . ~/myexports
in your ~/.bashrc
Add

echo '$OMP_NUM THREADS=<# threads per MPI process>' > ~/myexports
before invoking mpirun

Caution: Several invocations of mpirun cannot be executed at the same time with this trick!

ﬁ —
Slide 52 /169 Rabenseifner, Hager, Jost H L R S

TACC

10

NNNNNNNNN

Some examples for compilation and execution (3) | -
0

Handling of OMP_NUM_THREADS (continued)
« with support by OpenMPI —x option:
export OMP_NUM THREADS= <# threads per MPI process>
mpiexec —-x OMP_NUM_THREADS -n <# MPI processes> ./executable

%< Hybrid Parallel Programming —
% Slide 53/ 169 Rabenseifner, Hager, Jost r r |L — H L R S %

Some examples for compilation and execution (4) | ®

 Sun Constellation Cluster:

- mpif90 —-fastsse -tp barcelona-64 -mp ..
« SGE Batch System
setenv OMP_NUM_ THREADS

o

ibrun numactl.sh a.out

» Details see TACC Ranger User Guide
(www.tacc.utexas.edu/services/userguides/ranger/#numactl)
« Cray XT5:

ftn -fastsse -tp barcelona-64 -mp=nonuma ..

aprun -n nprocs -N nprocs per node a.out

s Hybrid Parallel Programming —
% Slide 54 / 169 Rabenseifner, Hager, Jost r r |L — H L R

Interlude: Advantages of mpiexec C
or similar mechanisms

3
0

« Uses PBS/Torque Task Manager (“TM”) interface to spawn MPI
processes on nodes

— As opposed to starting remote processes with ssh/rsh:
« Correct CPU time accounting in batch system
» Faster startup
» Safe process termination
* Understands PBS per-job nodefile
+ Allowing password-less user login not required between nodes

— Support for many different types of MPI
« All MPICHs, MVAPICHs, Intel MPI, ...

— Interfaces directly with batch system to determine number of procs
— Downside: If you don’t use PBS or Torque, you're out of luck...
* Provisions for starting less processes per node than available cores
— Required for hybrid programming
— “-pernode” and “-npernode #” options — does not require messing
around with nodefiles

Hybrid Parallel Programming — —
Slide 55/ 169 Rabenseifner, Hager, Jost r r L u — H L R S

Running the code 10
Examples with mpiexec

« Example for using mpiexec on a dual-socket quad-core cluster:

$ export OMP_NUM THREADS=8
$ mpiexec -pernode ./a.out

« Same but 2 MPI processes per node:

$ export OMP_NUM THREADS=4
$ mpiexec -npernode 2 ./a.out

 Pure MPI:

$ export OMP_NUM THREADS=1 # or nothing if serial code
$ mpiexec ./a.out

Hybrid Parallel Programming — —
Slide 56 / 169 Rabenseifner, Hager, Jost r r L u — H L R S

Running the code efficiently? | R
o
« Symmetric, UMA-type compute nodes have become rare animals
— NEC SX
— Intel 1-socket (“Port Townsend/Melstone/Lynnfield”) — see case
studies
— Hitachi SR8000, IBM SP2, single-core multi-socket Intel Xeon...
(all dead)

* Instead, systems have become “non-isotropic” on the node level

— ccNUMA (AMD Opteron, SGI Altix,
IBM Power6 (p575), Intel Nehalem)

— Multi-core, multi-socket

» Shared vs. separate caches MQQIEQQI

+ Multi-chip vs. single-chip e T e I
» Separate/shared buses ﬁmﬁi

[Memory |

Hybrid Parallel Programming =1
% Slide 57 /169 Rabenseifner, Hager, Jost r r |L — H L R S %

Issues for running code efficiently

o
* ccNUMA locality effects
— Penalties for inter-LD access
— Impact of contention
— Consequences of file |/O for page placement
— Placement of MPI buffers

» Multi-core / multi-socket anisotropy effects
— Bandwidth bottlenecks, shared caches

— Intra-node MPI performance
« Core < core vs. socket — socket
— OpenMP loop overhead depends on mutual position of threads
in team

Hybrid Parallel Programming — —
% Slide 58 /169 raberseiner tager ot (M= H L R

on “non-isotropic” nodes | >

i)
‘0

g

A short introduction to ccNUMA l P

« ccNUMA:

— whole memory is transparently accessible by all processors
— but physically distributed

— with varying bandwidth and latency

— and potential contention (shared memory paths)

Hybrid Parallel Programming e a
% Slide 59/ 169 Rabenseifner, Hager, Jost r r |_ — H L R S & =

TACC

Example: HP DL585 G5 4
4-socket ccNUMA Opteron 8220 Server I g

o

CPU

— 64 kB L1 per core
— 1 MB L2 per core
— No shared caches

— On-chip memory controller (M) Memory Memory
— 10.6 GB/s local memory bandwidth | Hl
HyperTransport 1000 network Aiowapy Kiowapy

— 4 GB/s per link per direction

3 distance categories for
core-to-memory connections:

— same LD
— 1 hop

— 2 hops
Q1: What are the real penalties for non-local accesses?
Q2: What is the impact of contention?

HT

.....

S

Hybrid Parallel Programming —
Slide 60/ 169 Rabenseifner, Hager, Jost r r |L — H I— R S % o

Effect of non-local access on HP DL585 G5

A
X

@)
|—l
(11]

]

A
©
©
-
)
| &
O
[P}
o
(]
>
©
=
Q
(/p)

(/)]
— o
[} o
(&] i -
o o
) < I S))
~ ™ ~ Q — =
s/sdof.JIN

=N €=O
=N €=D
I=IN £€=D
0=IN £=D
=N T=D
FINT=D
I=IN =D
0=IN T=D0
=N T=D
CCFINT=D
=N T=D
0= T=D
=N 0=D
=N 0=D
I=IN 0=D

0= 0=D

28

Contention vs. parallel access on HP DL585 Gb5: sc%

OpenMP vector triad A(:)=B(:)+C(:)*D(:)

o

nnnnnnnnnn

6000 I T TTTTH

5000 =

In-cache performance
unharmed by ccNUMA

4000 —

MFlops/s
[
o
o
o

T=1 T = # threads

T=2 S=1 S =# sockets
T=4 S=2 parallel access

T=8 S=4 parallel access

T=4 S=2 serial access
T=8 S=4 serial access

1000

500

W)

1000 —

Single LD saturated
by 2 cores!

O - L1 IIIIII|
‘ 10™ 10

2000~ A -
u u 0
Affinity matters! 10 “—[Perfect scaling
LY AN across LDs
1 1 ||||||| 1 1 ||||||| 1 |||||'||| I'I |v||||\|.|v |v I'ITIIII 1 1 1
3 10" 10° 10° 10’ 10° g
N

e

ccNUMA Memory Locality Problems

o

Hybrid Parallel Programming

o

Slide 63 / 169

Locality of reference is key to scalable performance on ccNUMA
— Less of a problem with pure MPI, but see below
What factors can destroy locality?
MPI programming:
— processes lose their association with the CPU the mapping took
place on originally
— OS kernel tries to maintain strong affinity, but sometimes fails
Shared Memory Programming (OpenMP, hybrid):
— threads losing association with the CPU the mapping took place on
originally
— improper initialization of distributed data
— Lots of extra threads are running on a node, especially for hybrid
All cases:

— Other agents (e.g., OS kernel) may fill memory with data that
prevents optimal placement of user data

ﬁ —
Rabenseifner, Hager, Jost r r |L — H L R

TACC

Avoiding locality problems
)

« How can we make sure that memory ends up where it is close to
the CPU that uses it?

— See the following slides

 How can we make sure that it stays that way throughout program
execution?

— See end of section

3 Hybrid Parallel Programming _—
% Slide 64 / 169 Rabenseifner, Hager, Jost r r |L — H L R

Solving Memory Locality Problems: First Touch
o

« "Golden Rule" of ccNUMA:

A memory page gets mapped into the local memory of the
M processor that first touches it!

— Except if there is not enough local memory available
— this might be a problem, see later

— Some OSs allow to influence placement in more direct ways
» cf. libnuma (Linux), MPO (Solaris), ...

e (Caveat: "touch" means "write", not "allocate"
« Example:

double *huge = (double*)malloc (N*sizeof (double));
// memory not mapped yet
for (i=0; i<N; i++) // or i+=PAGE_SIZE

huge[i] = 0.0; // mapping takes place here!

» It is sufficient to touch a single item to map the entire page

3 Hybrid Parallel Programming _—
% Slide 65/ 169 Rabenseifner, Hager, Jost r r |L — H L R

ccNUMA problems beyond first touch ks

o
« OS uses part of main memory for

disk buffer (FS) cache

— If FS cache fills part of memory,
apps will probably allocate from
foreign domains

— =2 non-local access!

— Locality problem even on hybrid
and pure MPI with “asymmetric”
file /0, i.e. if not all MPI processes
perform 1/O

« Remedies

— Drop FS cache pages after user job has run (admin’s job)
» Only prevents cross-job buffer cache “heritage”

— “Sweeper” code (run by user)
— Flush buffer cache after I/O if necessary (“sync” is not sufficient!)

Hybrid Parallel Programming —
% Slide 66 / 169 Rabenseifner, Hager, Jost r r |L — H I— R S &

ccNUMA problems beyond first touch | =

o
» Real-world example: ccNUMA vs. UMA and the Linux buffer cache

« Compare two 4-way systems: AMD Opteron ccNUMA vs. Intel UMA, 4 GB
main memory

500 T T T ' T

. i
* Run 4 concurrent 4501 .
riads (512 MB each) ol . ¢ .
after writing a large - ;
file e]
85300 -
ﬁ |]
* Report perfor- S 250 .
Ll Ll Fc B N
mance vs. file size ;8200 u -
150 -
« Drop FS cache after I o0 ccNUMA (2-socket Opteron 275) |
50 .
ol | . | . | |

0 1000 2000 3000 4000

Disk Cache Size [MB] before running benchmark

Hybrid Parallel Programming — —
Slide 67 / 169 Rabenseifner, Hager, Jost r r L u — H L R S

e

Intra-node MPI characteristics: IMB Ping-Pong benchmark

o

Code (to be run on 2 processors):
wc = MPI_WTIME ()

do i=1, NREPEAT

if (rank.eq.0) then
MPI_SEND (buffer,N,MPI BYTE,1l,0,MPI_COMM WORLD, ierr)

MPI_ RECV (buffer,N,MPI_BYTE,1,0,MPI_ COMM WORLD,

else
MPI_RECV(...)
MPI_SEND (...)
endif

enddo

wc = MPI WTIME() - wc

status, ierr)

z
H
2 ?
:

b

&

Memory

Intranode (1S): mpirun -np 2 -pin “1 3” ./a.out
Intranode (2S): mpirun -np 2 -pin “2 3” ./a.out

Internode: mpirun -np 2 -pernode ./a.out

Hybrid Parallel Programming

Slide 68/ 169

ﬁ —
Rabenseifner, Hager, Jost r r = H L R S

TACC

IMB Ping-Pong: Latency 10

Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (intel MPi 3.1) I i

IB internode IB intranode 2S IB intranode 1S

Affinity matters!

Hybrid Parallel Programming
Slide 69/ 169 Rabenseifner, Hager, Jost _ H L R S

e TACC

2
0

IMB Ping-Pong: Bandwidth Characteristics 1
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (intel MP1 3.1) I

o
3m0 [IIIIIII | IIIIIII [IIIIIII [IIIIIII [IIIIIII | IIIIIII [IIIIIII
- — inter-node {
2500 ___Inter-socket "
revolving buffers Shared cache
— intra-socket adva}ntage

g

Between two nodes
via InfiniBand

DDR-IB/PCle 8x

Between two cores of
1500 one socket

fith [MBytes/s]

Between two sockets

of one node
Memory -
IDD “ 2 3I I”””Ir—ll III””I-T.I IH””I{-I IH””IT
10 10 10 10 10 10 10 10

Message length [bytes] . .
Hybrid Parallel Programming Affl n Ity m atte rS !

Slide 70/ 169 Rabenseifner, Hager, Jost I.IE T peed

OpenMP Overhead | %10
)

« As with intra-node MPI, OpenMP loop start overhead varies with the
mutual position of threads in a team

* Possible variations
— Intra-socket vs. inter-socket
— Different overhead for “parallel for” vs. plain “for”

— If one multi-threaded MPI process spans multiple sockets,
» ... are neighboring threads on neighboring cores?
* ... or are threads distributed “round-robin” across cores?

« Test benchmark: Vector triad
#pragma omp parallel
for (int j=0; j < NITER; 3j++) {
#pragma omp (parallel) for
for (i=0; i < N; ++i) Look at performance for small
af[i]=b[i]+c[i]*d[i]; array sizes!
if (OBSCURE)
dummy (a, b, c,d);

}
Hybrid Parallel Programming — —
Slide 71 /169 Rabenseifner, Hager, Jost r r L u — H L R S

pd TACC

OpenMP Overhead

§8
?gd
0

— 1 1
T T T T T ie']"na Nomenclature:
4000 — —— 2T 1S
— 2T2S
:g gg 1S/2S
4T RR inner 1-/2-socket
4T SS inner
g 3000 —— 2T2Sinner | RR
% —~ 2T 15 mner round-robin
5 IT inner
% - Fit: T =157 us| SS
o L > - Fit T =071 us| socket-socket
8 2000 .
g / ~
s / [e _
- L7 / —t—___| inner
& L7 T parallel on
1000 = L7 / Z” —| inner loop
-~ s pa
-’ - - - :’.
B -7 - ';;:/ - % T =
SR YY1 Lo | OMP overhead can be
0 e e ==)] | [COmparable tO MPI Ia’[encyl

10°

10

Array length N

. :
== Affinity Tatters.
TACC)

Hybrid Parallel Programming
Slide 72/ 169

Rabenseifner, Hager, Jost

e

e

Thread synchronization overhead

Barrier overhead in CPU cycles: pthreads vs. OpenMP vs. spin loop

SElE

Sl

2 Threads Q9550 (shared L2) i7 920 (shared L3)
pthreads_barrier_wait 23739 6511
omp barrier (icc 11.0) 399 469
Spin loop 231 270
4 Threads Q9550 i7 920 (shared L3)
pthreads_barrier_wait 42533 9820
omp barrier (icc 11.0) 977 814
Spin loop 1106 475

pthreads > OS kernel call ‘
Spin loop does fine for shared cache sync

Hybrid Parallel Programming

Slide 73/ 169

ﬁ —
Rabenseifner, Hager, Jost H I— R S

OpenMP & Intel compiler

TACC

-
%
-~

e

o

Thread synchronization overhead
Barrier overhead: OpenMP icc vs. gcc

A

EEEE

gcc obviously uses a pthreads barrier for the OpenMP barrier:

2 Threads Q9550 (shared L2) i7 920 (shared L3)
gcc 4.3.3 22603 7333

icc 11.0 399 469

4 Threads Q9550 i7 920 (shared L3)
gcc 4.3.3 64143 10901

icc 11.0 977 814

Correct pinning of threads:

» Manual pinning in source code (see below) or

» likwid-pin: http://code.google.com/p/likwid/

Hybrid Parallel Programming

Slide 74/ 169

ﬁ —
Rabenseifner, Hager, Jost H I— R

TACC

=

,
||!,!!,!

=

Memory

|_Memory |

|_Memory |

Thread synchronization overhead

Barrier overhead: Topology influence

Xeon E5420 2 Threads shared L2 | same socket different socket
pthreads_barrier_wait 5863 27032 27647
omp barrier (icc 11.0) 576 760 1269
Spin loop 259 485 11602
Nehalem 2 Threads Shared SMT shared L3 different socket
threads
pthreads_barrier_wait 23352 4796 49237
omp barrier (icc 11.0) 2761 479 1206
Spin loop 17388 267 787

« SMT can be a big performance problem for synchronizing threads

» Well known for a long time...

Hybrid Parallel Programming

Slide 75/ 169

ﬁ —
Rabenseifner, Hager, Jost H I— R S

TACC

Thread/Process Affinity (“Pinning”)

o

Highly OS-dependent system calls
— But available on all systems

Linux;
Solaris:

Windows:

sched setaffinity (), PLPA (see below) - hwloc
processor_bind()
SetThreadAffinityMask ()

« Support for “semi-automatic” pinning in some compilers/environments
— Intel compilers > V9.1 (KMP_AFFINITY environment variable)

— Pathscale

— SGI Altix dplace (works with logical CPU numbers!)
— Generic Linux: taskset, numactl, likwid-pin (see below)

Affinity awareness in MPI libraries

— SGI MPT
— OpenMPI
— Intel MPI

Hybrid Parallel Programming

Seen on SUN Ranger slides:|

Widely usable example: Using PLPA
under Linux!

..........
..........

S

Slide 76 / 169

Rabenseifner, Hager, Jost H I— R |
TACC

Explicit Process/Thread Binding With PLPA on Linux: <10

http://www.open-mpi.org/software/plpa/

« Portable Linux Processor Affinity

» Wrapper library for sched_*affinity () functions

— Robust against changes in kernel API
« Example for pure OpenMP: Pinning of threads

#include <plpa.h>

Care about correct
core numbering!
0...N-1 is not always

#pragma omp parallel
{

Pinning
available?

contiguous! If
required, reorder by

#fpragma omp critical

{

if (PLPA_NAME (api_probe) () !=PLPA_PROBE_OK) {
cerr << "PLPA failed!" << endl; exit(1l);

plpa_cpu_set_t msk;

PLPA CPU_ZERO (&msk) ;

int cpu = omp_get_thread num();
PLPA CPU_SET (cpu, &msk) ;

PLPA_NAME (sched setaffinity) ((pid_t)O0,

}

Hybrid Parallel Programming — —
Slide 77 / 169 Rabenseifner, Hager, Jost r r L u — H L R S

a map:
cpu = map[cpu];

Which CPU
to run on?

sizeof (cpu_set_t), &msk);

Pin “me”

TACC

Process/Thread Binding With PLPA ks

- Example for pure MPI: Process pinning oo

— Bind MPI processes to cores in a cluster
of 2x2-core machines

o

MPI_Comm_rank (MPI_COMM WORLD, &rank);

int mask = (rank % 4);

PLPA_CPU_SET (mask, &msk) ; Memory Memory

PLPA_NAME (sched_setaffinity) ((pid_t)O,
sizeof (cpu_set_t), &msk);

* Hybrid case:

MPI Comm_ rank (MPI_COMM WORLD, &rank) ;
#pragma omp parallel
{
pPlpa_cpu_set_t msk;
PLPA_CPU_ZERO (&msk) ;
int cpu = (rank % MPI_PROCESSES_ PER NODE) *omp_ num_threads
+ omp_get_thread num();
PLPA_CPU_SET (cpu, &msk) ;
PLPA_NAME (sched_setaffinity) ((pid_t)0, sizeof(cpu_set_t), &msk);
}

Hybrid Parallel Programming — —
Slide 78 /169 Rabenseifner, Hager, Jost r r L o — H L R S

08
?gd
0

How do we figure out the topology? l

« ... and how do we enforce the mapping without changing the code?
« Compilers and MPI libs may still give you ways to do that

« But LIKWID supports all sorts of combinations:

» Open source tool collection (developed at RRZE):
http://code.google.com/p/likwid

Hybrid Parallel Programming —|—
% Slide 79/ 169 Rabenseifner, Hager, Jost r r |L — H I— R 5 &

e

o

Likwid Tool Suite

« Command line tools for Linux:
— works with standard linux 2.6 kernel
— supports Intel and AMD CPUs

— Supports all compilers whose OpenMP implementation is based on
pthreads

« Current tools:

— likwid-topology: Print thread and cache topology
(similar to Istopo from the hwloc package)

— likwid-pin: Pin threaded application without touching code

— likwid-perfCtr: Measure performance counters (similar to SGl‘s perfex or
lipfpm tools)

— likwid-features: View and enable/disable hardware prefetchers (Core2
only at the moment)

— likwid-bench: Low-level benchmark construction tool

Hybrid Parallel Programming — —
Slide 80/ 169 Rabenseifner, Hager, Jost r r L u — H L R S

e

o

likwid-topology — Topology information

« Based on cpuid information

* Functionality:
— Measured clock frequency
— Thread topology
— Cache topology
— Cache parameters (-c command line switch)
— ASCII art output (-g command line switch)

« Currently supported:
— Intel Core 2 (45nm + 65 nm)
— Intel Nehalem
— AMD K10 (Quadcore and Hexacore)
— AMD K8

Hybrid Parallel Programming — —
Slide 81 /169 Rabenseifner, Hager, Jost r r L u : H L R

e

o

10

Output of likwid-topology =

CPU name: Intel Core i7 processor
CPU clock: 2666683826 Hz
hkhkhkhkhkhkkkkkkhkkkhkhkhkhkhkhkhkkkkkkkhkkhkhkhkhkhkhkhkkkkkkkkkhkhkhkhkhkhkhkhkkkkkkhkkkhkhkhkhkkkk

Hardware Thread Topology
khkhkhkhkhkkkkkkhkkhkkhkhkhkhkhkhkhkkkkkkkhkkhkhkhkhkhkhkhkkkkkkkkhkkhkhkhkhkhkhkhkhkkkkkkhkkhkkhkkhkhkhkhkkkk

Sockets: 2

Cores per socket: 4

Threads per core: 2

HWThread Thread Core Socket
0 0 0 0
1 1 0 0
2 0 1 0
3 1 1 0
4 0 2 0
5 1 2 0
6 0 3 0
7 1 3 0
8 0 0 1
9 1 0 1
10 0 1 1
11 1 1 1
12 0 2 1
13 1 2 1
14 0 3 1
15 1 3 1

Hybrid Parallel Programming — —
Slide 82/ 169 Rabenseifner, Hager, Jost r r L u — H L R S

e

likwid-topology continued | 5

Socket 0: (01 23456 7))
Socket 1: (8 9 10 11 12 13 14 15)

hkkhkhkkkkhkhkkhkkhkkhkhkkhkkhkkhkhkhkkkhkhkhkkkhkhkhkkkhkhkhkkhkkhkhkhkkhkkhkhkhkkhkkhkhkhkkkhkhkhkkkhkhkkkx

Cache Topology
hkhkkhkhkhkhkhkkkkkkkkhkhkhkhkhkhkhkkkkkhkkhkkhkkhkhkhkhkhkhkhkkkkkkkhkkhkhkhkhkhkhkhkkkkkkkkkkkkkk

Level: 1

Size: 32 kB

Cache groups: (01) (23) (45) (67) (89) (1011) (12 13) (14 15)
Level 2

Size: 256 kB

Cache groups: (01) (23) (45) (67) (89) (1011) (12 13) (14 15)
Level 3

Size: 8 MB

Cache groups: (01234567) (89 10 11 12 13 14 15)

e ... and also try the ultra-cool —g option!

Hybrid Parallel Programming — —
Slide 83/ 169 Rabenseifner, Hager, Jost r r L u — H L R S

likwid-pin B
(o]
» Inspired and based on ptoverride (Michael Meier, RRZE) and taskset

» Pins process and threads to specific cores without touching code

» Directly supports pthreads, gcc OpenMP, Intel OpenMP

» Allows user to specify skip mask (i.e., supports many different compiler/MPI
combinations)

« Can also be used as replacement for taskset

» Uses logical (contiguous) core numbering when running inside a restricted set of
cores

« Supports logical core numbering inside node, socket, core

» Usage examples:
- env OMP_NUM THREADS=6 likwid-pin -t intel -c 0,2,4-6 ./myApp parameters
- env OMP_NUM_THREADS=6 likwid-pin -c S0:0-2@S1:0-2 ./myApp

- env OMP_NUM_THREADS=2 mpirun -npernode 2 \
likwid-pin -s 0x3 -c 0,1 ./myApp parameters

Hybrid Parallel Programming — —
Slide 84 / 169 Rabenseifner, Hager, Jost r r L u — H L R S

45000

Example: STREAM benchmark on 12-core Intel Westmere:

Anarchy vs. thread pinning

40000

35000

30000

25000

20000

N|
1
1
1

NN

45000

i

10

NewOrleans,LA

bandwidth [MB/s]

15000

10000

5000

no pinning

e

na
N
fo]

8 10 12 14 16
number of threads

18 20

bandwidth [MB/s]

Hybrid Parallel Programming

40000

35000

30000

25000

20000

15000

10000

5000

0

Slide 85/ 169

ﬁ I
Rabenseifner, Hager, Jost H I— R

- Tf%{=--

10 12 14

number of threads

16

TACC

N

Topology (“mapping”) choices with MPI+OpenMP: ?c%

More examples using Intel MPl+compiler & home-grown mpirun I

{| Mp| Mp| Mg| Mpfi i Mg) Mgl Mg Mg oMy (M) Mg Myl M) My M) My

One MPI process per Lto|] ta| tafi fl ta] ts) te| U7 | Do Ul taftsfil ta) ts| te] b7)
node ! i i 1 . i

env OMP_NUM THREADS=8 mpirun -pernode \
likwid-pin -t intel -c 0-7 ./a.out

Tmo[mg| mg| Mot {[m,[m,[m,| m,] T my| my| My || mg] mg| ma| My

One MPlprocess per | vdmtotl nIn[nlnl [(5w
socket |

env OMP_NUM THREADS=4 mpirun —-npernode 2 \
-pin "0,1,2,3.4,5,6,7" ./a.out

OpenMP threads

pinned “round robin” |t) |t] |) 1T e T e
across cores in | 8 | | | |
node env OMP_NUM THREADS=4 mpirun —-npernode 2 \

-pin "0,1,4,5 2,3,6,7" \
likwid-pin -t intel -c 0,2,1,3 ./a.out

Two MPI processes T — e — , —— e ,

| Mg Mg My My My Mo Mg Mg | My| My Mg Mgl 1) Mgl Mg My My

per socket il to| 14| 1o t1|| To[t4] To 115 | to| By To| By '. o] 44| T tli

Hybrid Parallel Programming i . i | B :
Slide 86 / 169 env OMP_NUM THREADS=2 mpirun —-npernode 4 \

-pin "0,1_2,3_4,5_6,7" \

likwid-pin -t intel -c 0,1 ./a.out

o

Case study: 3D Jacobi Solver
Basic implementation (2 arrays, no blocking etc...)

do k =1, Nk Performance metric:

do j =1, Nj Million Lattice Site Updates per second (MLUPS)
do i =1, Ni
yv(i,j, k) = a*x(i,3j,k) + b*
(x(i-1,j,k)+ x(i+1,3j,k) + x(i,J-1,k)
+x (i, j+1,k)+ x(i,3j,k-1) + x(i,]j,k+1))
enddo

enddo
enddo Equivalent MFLOPs:

8 FLOP/LUP * MLUPs
MPI Parallelization by
« Domain Decomposition
« Halo cells

« Data Exchange through cyclic SendReceive operation

Hybrid Parallel Programming — —
Slide 87 /169 Rabenseifner, Hager, Jost r r L o — H L R

. . . <10
MPI1/OpenMP Parallelization — 3D Jacobi K
« Cubic 3D computational domain with periodic BCs in all directions
« Use single-node IB/GE cluster with one dual-core chip per node
« Homogeneous distribution of workload, e.g. on 8 procs

pure MPI:

J

Hybrid Parallel Proqramml%q
Slide 88 /169 Rabenseifner, Hager, Jost

2500

2000

1500

MLUP/s

1000

500

Thread 1: Inner cell updates

a—a PureMPI (GE)
#*-— PureMPI (IB)

<— FullHybrid (GE)
#--# FullHybrid (IB)

e—a OpenMPMPI (GE)
=--= OpenMPMPI (IB)

— — Perfect Scalability
» =+ Scalability: GE model

-1

8 12 16
tmodes

20

Performance estimate (GE) for n nodes:

e

P(n) = N3/ ((Tgomp/N) + Teomm(N))

Performance Data for 3D MPIl/hybrid Jacobi g%
o Strong scaling, N° = 480°

FullHybrid: Thread 0: Communication + boundary cell updates

Performance model

T=Tecomm + Tcomp
TCOMP = N3/ I:)o

TCOMM = Vdata/ BW

=150 MLUP/s
)= 100 MByte/s

V4ata = Data volume of
halo exchange

L

5

Example: Sparse MVM
JDS parallel sparse matrix-vector multiply — storage scheme

S

column index
1 2 3 4 ..

>
- wval[] stores all the nonzeroes (length

Nrz)

col_ idx[] stores the column index of
each nonzero (length N_,)

- jd_ptr[] stores the starting index of
each new jagged diagonal in vall[]

perm[] holds the permutation map
(length N,)

5 W N =

row index

val[]

411(1]|1(3|1|3(5]|7|7|6|2(3]|2|6(2|4(6(9|9(.. col_idx[]

111121 ... jd_ptrl] 216(3|7(4|5|1(8]|9(10] ... perm[]

Hybrid Parallel P i ——]
Sl\i/d;I 90 7?696 S Rabenseifner, Hager, Jost H L R S
/ (JDS = Jagged Diagonal Storage) TACC

z
H
2 ?
:

JDS Sparse MVM - Kernel Code
OpenMP parallelization

 Implemente(:) m(:,:) * b(:)
« Operation count = 2N,

b

do diag=1l, zmax
diagLen = jd_ptr(diag+l) - jd_ptr(diag)
offset = jd_ptr(diag) -1

!SOMP PARALLEL DO
do i=1, diagLen

c(i) = c(1) + * b(col_idx (offset+i))
enddo
!SOMP END PARALLEL DO
enddo

* Long inner loop (max. N,): OpenMP parallelization / vectorization
- Short outer loop (number of jagged diagonals)
» Multiple accesses to each element of result vector e[1]
— optimization potential!
to matrix data in
* Indexed (indirect) access to RHS vectorb[]

Hybrid Parallel Programming =
Slide 91 /169 Rabenseifner, Hager, Jost r r L o — H L R S

pd TACC

e/
9@
/

e

JDS Sparse MVM <10
MPI parallelization .
Row-wise distribution ‘ Each processor: local JDS (shift&order)
HEEEEEEEE [EEEEEEEE [,
EEEEEEEE (] HEEEEEEEE [
HEEEEEEENE [b HEEEEEEEE [b
EEEEEEEE EEEEEEEE [
EEEEEEEE HEEEEBEEEE [,
EEEEEEEE [HEEEEEEEE [-
EEEEEEEE L EEEEEEENE [
EEEEEEEE (] HEEEEEEEE [
Avoid mixing of local and [.------- 1,
non-local diagonals: _1 1 1 1 1 1 1 ENEE.
9 EEEEEEEE [b
PR HEEEEREEEEE [
1. Shift within local subblock- EEEEEEEE [,
2. Fill local subblock with non- ======== %
local elements from the right EEEEEEEE
gl\i/gngg?:engel Hrogramming Rabenseifner, Hager, Jost H L R __5

TACC

e

JDS Sparse MVM
Parallel MVM implementations: MPP

* One MPI process per processor
* Non-blocking MPl communication

« Potential overlap of communication and
computation

— However, MPI progress is only
possible inside MPI calls on many
implementations

« SMP Clusters: Intra-node and inter-

node MPI

Hybrid Parallel Programming — —
Slide 93/ 169 Rabenseifner, Hager, Jost r r L u — H L R S

MPI

Compute MVM with
diags released

TACC

C10

e

JDS Sparse MVM <C1C

Parallel MVM implementations: Hybrid .

VECTOR mode: VECTOR mode TASK mode
MPI MPI

« Automatic parallel. of inner M Threads M Threads

| loop (data parallel)
» Single threaded MPI calls

OMP PARALLEL

TASK mode:

» Functional parallelism:
Simulate asynchronous
data transfer! (OpenMP)

* Release list - LOCK
» Single threaded MPI calls

» Optional: Comm. Thread
executes configurable
fraction of work
(load = 0...1)

Hybrid Parallel Programming — —
Slide 94 / 169 Rabenseifner, Hager, Jost r r L u — H L R

JDS Sparse MVM: 2
Performance and scalability on two different platforms .

il
o

o]
4000 | ' I ' | ' — = N "
-1 (6
B — pure MPI no pin N 7 1 1 O
3500l | ure MPI pin i nonzeroes
L —— VECTOR 2T good pin G B E
| —— VECTOR 4T nopin
3000 i — TASK 2T lead=0.2 pin
2500 - Memory Memory
= -
S B .
= 2000 hybrid
15001 advantage
» T T T T T
1000
500
0
Xeon 5160 3 GHz
no NUMA .
placement! . |
L pure MPI no pin .
. - — pure MPI pin -
: | VECTOR 2T bad pin |
I —— VECTOR 2T good pin
M : B —— VECTOR 4T no pin 7
B —— TASK load=0.2 2T pin B
— — — best Opteron (GBE) —]
Hybrid Parallel Progran [| | | , | , L
Slide 95/ 169 4 8 12 16

/ # nodes

o

MPI/OpenMP hybrid “how-to”: Take-home messages | ”

Do not use hybrid if the pure MPI code scales ok

Be aware of intranode MPI| behavior

Always observe the topology dependence of
— Intranode MPI
— OpenMP overheads

Enforce proper thread/process to core binding, using appropriate
tools (whatever you use, but use SOMETHING)

Multi-LD OpenMP processes on ccNUMA nodes require correct
page placement

Finally: Always compare the best pure MPI code with the best
OpenMP code!

.....

Hybrid Parallel Programming —
Slide 96 / 169 Rabenseifner, Hager, Jost r r |L — H L R S %

TACC

10

Outline | K

* Introduction / Motivation

* Programming models on clusters of SMP nodes

« Case Studies / pure MPI vs hybrid MP1+OpenMP
* Practical “How-To” on hybrid programming

« Mismatch Problems

» Opportunities:
Application categories that can benefit from hybrid parallelization

« Thread-safety quality of MPI libraries

» Tools for debugging and profiling MPI+OpenMP
« Other options on clusters of SMP nodes

e Summary

Hybrid Parallel Programming — g
% Slide 97 /169 Rabenseifner, Hager, Jost r r |L — H I— R 5 %

Mismatch Problems

o

None of the programming models

fits to the hierarchical hardware
(cluster of SMP nodes)

Several mismatch problems

CPU(socket)

SMP board
ccNUMA node

Cluster of ccNUMA/SMP nodes

58
9_

3
‘0

—> following slides
Benefit through hybrid programming
- Opportunities, see next section
Quantitative implications
—> depends on you application

Examples: No.1 No.2
Benefit through hybrid (see next section) 30% 10%
Loss by mismatch problems —10% | —25%
Total +20% | —15%

Hybrid Parallel Programming

o

Slide 98 / 169

TACC

ﬁ —
Rabenseifner, Hager, Jost H I— R

In most
cases:
Both
categories!

.........
.........
.........

..............
........
.....

The Topology Problem with

o

Application example on 80 cores:
Cartesian application with 5 x 16 = 80 sub-domains

pure MPI

one MPI process

on each core

On system with 10 x dual socket x quad-core

o] [1] [2] [3]-4] [5] [6] [Z]|~L8] [9] [1d [11~h2 [13 [14 [15
| | | | | | | | | | | | | | | |
16| 17 [18 [19=—20| [21] [22| [23]|-[[24] (29 |26 [27—28| [29 (30| (31
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
32] [33 [34 [35—36] 7] [38] [39)|-([40 [41 [4d [43—a4] [a5] [a6] [47
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
48] [4d [50 [51—52] [53 [54] [55l|-([56] [57 [59 [59—60] [61 [62] [63
| | | | | | | | | | | | | | | |
l64] [69 [66 [67—68] [69] [70] [7ili=[[72 [7d [74 [75—76] [77] [78] [79

4 17 xinter-node connections per node

1 x inter-socket connection per node

Does it matter?

Hybrid *ara

S

Slide 99/ 169

Rabenseifner, Hager, Jost

| | ==

TACC

H L R

Sequential ranking of
MPI_COMM_WORLD

The Topology Problem with | pure MPI | 3

(o] one MPI process
on each core

Application example on 80 cores:
« Cartesian application with 5 x 16 = 80 sub-domains
« On system with 10 x dual socket x quad-core

AHBHCHDHEHFHGHHHTHJIHA W\ EFE
b et]
| 1 1 | ed 1
CHDHEHE ‘\\\ DHEHFHGHH
BTt i i
L ANeV© [T T 1L I T T
EF{F [HJHAHBHCHDHEHFHGHH-{

4 32 x inter-node connections per node 'Round robin ranking of
— 0 x inter-socket connection per node MP|_ COMM_WORLD

Hybrid Parallel Programming —
% Slide 100/ 169 Rabenseifner, Hager, Jost r r |L — H L R S %

TACC

The Topology Problem with | pure MPI

(o] one MPI process
on each core

Application example on 80 cores:
« Cartesian application with 5 x 16 = 80 sub-domains
« On system with 10 x dual socket x quad-core

0| [1 3liHll4] 5] [6] [7ZlH|8] [9] [1d [11|H[12 [1d [14 [15
L | = f ¥ 1r 1 1§+ 1 1 |
16] [17 19]H|Ro] 1 P2 [3|H[Ra] 5| [26] P7||HIR8] 29 [0 [B1

2
[
18
34 [35(M(36| |37 [39 |[39|H(40| [41] (42 [43|H(44| [45 |46 |47
L 1T T T T T T T T T T 1
500 [51]|H|52]| [53] [54] [55]H(56] 7] [58] [B9lH|6o] [61] [62] [63

33
1]
48| [a9)

64| |65 |66 |67—68| [69] [70| [71||M(72| |73 |74 |79t—{76| (77| (78 |79

4 12 x inter-node connections per node Two levels of
=+ 4 x inter-socket connection per node 'domain decomposition

Bad affinity of cores to thread ranks

A Hybrid Parallel Programming = b
% Slide 101/ 169 Rabenseifner, Hager, Jost r r |L — H L R S %

The Topology Problem with | pure MPI

o

one MPI process
on each core

Application example on 80 cores:
« Cartesian application with 5 x 16 = 80 sub-domains
« On system with 10 x dual socket x quad-core

o] [1m2] (34l Lsiel L7]n|8] om0 [11A|12

16] [17r=18] [19|H[20] (2122 [23||H([24| [251=t(26| [27||M|28 [29f=f30| [31

32| [33m34| [35|H|[36| (3738 [39||H|40| [41r=42 |43|H|[44| [45t=46| (47

48| (4950 [51||M(52 (53154 [55|H|[56] (5758 [59|H|[60| [61=762 (63

64| |65 |66 |67—68| [69] [70| [71||M(72| |73 |74 |79t—{76| (77| (78 |79

4 12 x inter-node connections per node Two levels of
=+ 2 x inter-socket connection per node 'domain decomposition

Good affinity of cores to thread ranks

.....

o

Hybrid Parallel Programming = S
Slide 102 / 169 rr. - H L R S i

Rabenseifner, Hager, Jost | N —tummmy f §f G= TR} w=F o

.....

o

Exa.: 2 SMP nodes, 8 cores/node

Optimal ?

T O
Loop-worksharing
on 8 threads

Optimal ?

f)i]
(JI\)
Minimizing ccNUMA

data traffic through

domain decomposition
inside of each
MPI process

Hybrid Parallel Programming

The Topology Problem with | hybrid MPl+OpenMP | ==

MPI: inter-node communication
OpenMP: inside of each SMP node

Problem

— Does application topology inside of SMP parallelization
fit on inner hardware topology of each SMP node?

Solutions:
— Domain decomposition inside of each thread-parallel
MPI process, and

— first touch strategy with OpenMP

Successful examples:
— Multi-Zone NAS Parallel Benchmarks (MZ-NPB)

Slide 103/ 169

e

Rabenseifner, Hager, Jost H I— R 1 S
TACC

e
e®

¥ : : <10
/2| The Topology Problem with | hybrid MPI+OpenMP | =~
(o] MP1I: inter-node communication
OpenMP: inside of each SMP node

Application example:
« Same Cartesian application aspect ratio: 5 x 16
* On system with 10 x dual socket x quad-core =~ <+——
« 2 x5 domain decomposition .

L
L

application| TOHI 0 (DO 0O DD O 0O O D CHO C
mPiLevel | O D O O D 000D 00O oo
O :_"[H :_"[H :_"[HodOHI C

B

OpenMP ||

Do ooobpoodpooe

4+ 3 xinter-node connections per node, but ~ 4 x more traffic

<+ 2 xinter-socket connection per node

% saesoaries =™ Affinity of cores to thread ranks !!! .
pd TACC

Numerical Optimization inside of an SMP node

o

HRNiERE

][]

< 2nd level of domain decomposition: OpenMP

Hybrid Parallel Programming

3rd level: 2nd level cache

4th level: 1st level cache

— Optimizing the
numerical
performance

S
.........
.....

o

Slide 105/ 169

..........
........
.....

Rabenseifner, Hager, Jost H I— R |
TACC

. . . pure MPI
The Mapping Problem with mixed model
(o] hybrid MPI+OpenMP
Do we have this? ... or that?
SMP node SMP node Several multi-threaded MPI
Socket 1 Socket 1 process per SMP node:
MPI MPI1 || IMPI Problem
process pro- H4 pro- — Where are your processes
4 x multi- cess|Plcess and threads really located?
threaded 0 1 L
X eee Solutions:
Socketlz Sl_letZ H — Depends on your platform,
MPI ‘ — e.g., with numactl
process 3,', —~ Case study on
4 x multi- Sun Constellation Cluster
threaded Ranger
with BT-MZ and SP-MZ
| | | | | | Further questions:
Node Intergonnect Néde Interconnect — Where is the NIC" located?

— Which cores share caches?

Hybrid Parallel Programming — —
Slide 106/ 169 Rabenseifner, Hager, Jost r r L u — H L R S
/ TA@@ " NIC = Network Interface Card

=

pure MPI

Unnecessary intra-node communication | Mixed model

(o) (several multi-threaded MPI
processes per SMP node)

Problem:

— If several MPI process on each SMP node
—> unnecessary intra-node communication

Solution:
— Only one MPI process per SMP node
Remarks:

— MPI library must use appropriate
fabrics / protocol for intra-node communication

— Intra-node bandwidth higher than
inter-node bandwidth X Quality aspects
- problem may be small of the MPI library

— MPI implementation may cause
unnecessary data copying
-~ waste of memory bandwidth |

% Hybrid Parallel Programming _—
% Slide 107 / 169 Rabenseifner, Hager, Jost r r |L — H L R S &‘

\

Sleeping threads and network saturation

o with

Masteronly

MPI only outside of
parallel regions

for (iteration)

{

#pragma omp parallel
numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)
MPI_Recv (halo data
from the neighbors)
} /*end for loop

Hybrid Parallel Programming

7

Problem 1:

MP n SMP node
Socket 1 Socket 1
Mastern Master
thread fthread
.\QQ o0000 .&Q
el QQQ =l QQQ
> 2

— Can the master thread
saturate the network?

Solution:

— If not, use mixed model

— I.e., several MPI
processes per SMP node

Problem 2:

— Sleeping threads are
wasting CPU time

Solution:

— Overlapping of
computation and
communication

Problem 1&2 together:

Node Interconnect

Slide 108 / 169

e

Rabenseifner, Hager, Jost

[==

H L R | S

— Producing more idle time
through lousy bandwidth

of master thread o

TACC

OpenMP: Additional Overhead & Pitfalls | K
o

« Using OpenMP
- may prohibit compiler optimization
- may cause significant loss of computational performance

* Thread fork / join overhead See, e.g., the necessary —04 flag:l
« On ccNUMA SMP nodes: with mpxIf_r on IBM Power6 systems

— Loss of performance due to missing memory page locality
or missing first touch strategy

— E.g. with the masteronly scheme:
* One thread produces data
« Master thread sends the data with MPI
—> data may be internally communicated from one memory to the other one

« Amdahl’s law for each level of parallelism
« Using MPI-parallel application libraries? - Are they prepared for hybrid?

% Hybrid Parallel Programming _—
% Slide 109 / 169 Rabenseifner, Hager, Jost r r |L — H L R S &‘

Overlapping Communication and Computation <C10
MP| communication by one or a few threads while other threads are computing | 2=

Three problems:
» the application problem:

— one must separate application into:
« code that can run before the halo data is received
e code that needs halo data

= very hard to do !!!

if (my_thread_rank < 1) {
 the thread-rank problem: MPL_Send/Recv....
— comm. / comp. via }else {
thread-rank my_range = (high-low-1) / (num_threads-1) + 1;
— cannot use my_low = low + (my_thread_rank+1)*my_range;
work-sharing directives my_high=high+ (my_thread_rank+1+1)*my_range;
=> loss of major my_high = max(high, my_high)
OpenMP support for (i=my_low; i<my_high; i++) {
(see next slide)
}
« the load balancing problem |}

Hybrid Parallel Programming — —
Slide 110/ 169 Rabenseifner, Hager, Jost r r L u — H L R S

e

o

Overlapping Communication and Computation <C10

MP| communication by one or a few threads while other threads are computing | 2=
Subteams #pragma omp parallel
) Important proposal i{# ragma omp single onthreads(0)
for OpenMP 3.x F; g P sing
or OpenMP 4.x MPI_Send/Recv....
}

Barbara Chapman et al.:

Toward Enhancing OpenMP’s
Work-Sharing Directives.

In proceedings, W.E. Nagel et
al. (Eds.): Euro-Par 2006,
LNCS 4128, pp. 645-654,
2006.

#pragma omp for onthreads(1 : omp_get_numthreads()-1)

{ /* work without halo information */
} /* barrier at the end is only inside of the subteam */

#pragma omp barrier
#pragma omp for

for (........)
{ /* work based on halo information */
}

} /*end omp parallel */

Hybrid Parallel Programming — —
Slide 111 /169 Rabenseifner, Hager, Jost r r L u — H L R S

TACC

Parallel Programming Models on Hybrid Platforms

pure MPI

§8
ggd

hybrid MPl+OpenMP

MPI: inter-node communication

OpenMP only

distributed virtual

one MPI process
on each core

OpenMP: inside of each SMP node

shared memory

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Qverlapping Comm. + Comp.
MPI1 communication by one or a few threads
while other threads are computing

— ——

Masteronly J| Multiple/only
MPI only outside * appl. threads
of parallel regions * inside of MPI

Funneled Multiple
MPI only more than one thread
on master-thread may communicate

Different strategies
to simplify the
load balancing

N\

/

Hybrid Parallel Programming
Slide 112/ 169

Funneled & || Funneled| | Multiple & || Multiple
Reserved with Reserved with
reserved thread || FUll Load | | reserved threads || Full Load
for communicationfl Balancing| |for communication Balancinjg}]
——
Rabenseifner, Hager, Jost r r |L — H I— R S

B

Masteronl

- - - [
Experiment: Matrix-vector-multiply (MVM) reserved
o]
18 : , . Jacobi-Davidson-Solver
| On,.=4 Ll nangsxan on IBM SP Power3 nodes
=8 . g i § with 16 CPUs per node
L8[OnsiE B / o « funneled&reserved is
- ' 0 - - @ o) always faster in this
= 14 0 8 16 s &8 experiments
T Ul 3 P « Reason:
8 1ol = Memory bandwidth
& = is already saturated
g = y v by 15 CPUs, see inset
T = * Inset:
Q g 5 Speedup on 1 SMP node
08 l . . = "g using different
0 16 32 48 64 @+ number of threads
n loc g n
k

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures.
International Journal of High Performance Computing Applications, Vol. 17, No. 1, 2003, Sage Science Press .

Hybrid Parallel Programming — —
Slide 113/ 169 Rabenseifner, Hager, Jost r r L u — H L R S

——)

pd TACC

Overlapping: Using OpenMP tasks =
o
MPI_Init .
I [- ' MPI _Init
MPI process MPI process MPI process | r |
Start g l l — MPI process MPI process MPI process
threads i c Start
pC;I::IT;f Eﬂ -— utgrt'?gr; thready l = OpenMP- l - l ‘H\:““\«Eomp-
Merge__ = Tasking . <.— utation
threads - 2 # V -
= o o s . Merge X ¥ ¥ Y v v y
v v ¥ inicaton throads” [T
MPI comm-
Y_ ¥ ¥ v Yo v W W " ul ¥ LT—l '_l]:'_l unication
l MPI_Finalize

MPI_Finalize

NEW OpenMP Tasking Model gives a new way to achieve more parallelism

form hybrid computation.

Alice Koniges et al.:
Application Acceleration on Current and Future Cray Platforms.

Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.
Slides, courtesy of Alice Koniges, NERSC, LBNL

Hybrid Parallel Programming — —
Rabenseifner, Hager, Jost r r L u — H L R S

Slide 114 /169

pd TACC

do iterations=1,N

Ycompute particles to be shifted

!$omp parallel do

1

shift_p=particles_to_shift (p_array);

== ! communicate amount of shifted
! particles and return if equal
shift p=x+v

MPI_ALLREDUCE(shift_p , sum_shift_p)

% if (sum_shitt_p==0) { return;
m/
r?l I'pack particle to move right and left
< !$omp parallel do
2 | do m=1.x
Z \ sendright (m)=p_array (f(m)):
= enddo
{$omp parallel do
do n=1,y
sendleft(n)=p_array (f(n));
enddo

11
13
15
17

19

21
GTS shift

Case study: Communication and Computation in
o Gyrokinetic Tokamak Simulation (GTS) shift routine

!reorder remaining particles: fill holes

fill_hole(p_array);

!'send number of particles to move right
MPI SENDRECV(x, length=2,..);
!send to right and receive from left

MPI SENDRECV(sendright ,length=g(x) ,..);

!'send number of particles to move left
MPI_SENDRECV (v, length=2_...);

!'send to left and receive from right
MPI SENDRECV(sendleft ,length=g(y) ,..):

ladding shifted particles from right
!$omp parallel do
do m=1,x
p_array (h(m))=sendright (m);
enddo
ladding shifted particles from left
!$omp parallel do
do n=1,y
p_array (h(n))=sendleft(n);
enddo
}

routine

Work on particle array (packing for sending, reordering, adding after

sending) can be overlapped with data independent MPI
communication using OpenMP tasks.

Hybrid Parallel Programming

Slides, courtesy of Alice Koniges, NERSC, LBNL

Slide 115/ 169

ﬁ I
Rabenseifner, Hager, Jost r r IL — H L R

TACC

41

43

LNIAN3dIANI-IA3S

10

NewOrleans,LA

s
Overlapping can be achieved with OpenMP tasks (15t part) | w
integer stride=1000 Ipack _parricie to move left
!$omp parallel 2 do n=1,y—stride ,stride 18
! $omp master !$omp task '
!pack particle to move right 4 do nn=0,stride —1,1 20
do m=1.x—stride , stride sendleft(n+nn)=p_array (f(n+nn));
!$omp task 6 enddo 2

!
do mm=0, stride —1,1 - emp ARt ua &

sendright (mtmm)=p_array (f (mtmm)) ; 3 ?ggiﬂ 24
] p task

enddo do n=n,y 2%
!$omp end task 10 sendleft(n)=p_array(f(n));

enddo enddo 28

! $omp task 12 !'Somp_end task

do m=m, x MPI_ALILREDUCE(shift_p ,sum_shift_p); 30
sendright (m)=p_array (f(m)); 14 !$Somp end master

enddo !8omp end parallel 32

!$omp end task 16 if (sum_shift_p==0) { return; }

Overlapping MPI_Allreduce with particle work
« Overlap: Master thread encounters (I$omp master) tasking statements and creates
work for the thread team for deferred execution. MPI Allreduce call is immediately
executed.

« MPI implementation has to support at least MPI_THREAD_FUNNELED

» Subdividing tasks into smaller chunks to allow better load balancing and scalability
among threads.

Slides, courtesy of Alice Koniges, NERSC, LBNL

Hybrid Parallel Programming — —
Slide 116/ 169 Rabenseifner, Hager, Jost r r L o — H L R S

pd TACC

e

r
i

o
i

}

Overlapping can be achieved with OpenMP tasks (2" part) |

$omp parallel

$omp master

!Somp task
fill_hole (p_array);
!Somp end task

MPI SENDRECV(x, length=2,..);
MPI_SENDRECV(sendright ,length=g(x) ,..); !'$omp end task
MPI SENDRECV(y,length=2 ,..);:

$omp end master
Somp end parallel

Overlapping particle reordering

Particle reordering of remaining

particles (above) and adding sent

{ !Somp parallel
!'$omp master
3 ladding shifted particles from right
do m=1.x—stride , stride
I'Somp task

3 do mm=0, stride —1,1
p_array (h(m))=sendright(m);
7 enddo
9 enddo
ISomp task

11 do m=m. x
p_array (h(m))=sendright(m);
enddo
!Somp end task

MPI_SENDRECV (sendleft ,length=g(y) ...):
!'$Somp end master
!'$Somp end parallel

ladding shifted particles from left

particles into array (right) & sending !Somp parallel do

or receiving of shifted particles can

be independently executed.

Hybrid Parallel Programming

Slide 117 /169

Rabenseifner, Hager, Jost

do n=1.,y
p_array (h(n))=sendleft(n);
enddo

Overlapping remaining MPI_Sendrecv
Slides, courtesy of Alice Koniges, NERSC, LBNL
Bt H L R | S

nnnnnnnnnn

10

12

14

16

18

20

22

24

OpenMP tasking version outperforms original shifter, $10
o especially in larger poloidal domains

256 size run 2048 size run
(mzetamax=) 128 x 2 [=npartdom) (mzetamax=) 128 x 16 (=npartdom)
300 250
250
. a0 B Tasking
T 200 B Tazking =
a & Original i 150 O Original
= 150 rigina "
E E 100
= 100 =
g 1 n ’ m |
| o e

Shifter Allreduce FillingHole SendRecv Shifter Allreduce FillingHole SendRecv

Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI pro-
cess with varying domain decomposition and particles per cell on Franklin Cray XT4.

MPI communication in the shift phase uses a toroidal MPI communicator
(constantly 128).

Large performance differences in the 256 MPI run compared to 2048 MPI run!

Speed-Up is expected to be higher on larger GTS runs with hundreds of thousands
CPUs since MPI communication is more expensive.

Hybrid Parallel Programming — —
Slide 118/ 169 Rabenseifner, Hager, Jost r r L o — H L R S

TA@@ S—Iides, courtesy of

Alice Koniges, NERSC, LBNL

o

\

OpenMP on!;l

OpenMP/DSM | il

Distributed shared memory (DSM) //
Distributed virtual shared memory (DVSM) //
Shared virtual memory (SVM)

Principles
— emulates a shared memory

— on distributed memory hardware

Implementations
— e.g., Intel® Cluster OpenMP

.....

Hybrid Parallel Programming —
Slide 119/ 169 Rabenseifner, Hager, Jost r r |L — H L R S %

]] OpenMP on!;l
Intel® Compilers with Cluster OpenMP - <io

o-consistency Protocol

Basic idea:

« Between OpenMP barriers, data exchange is not necessary, i.e.,
visibility of data modifications to other threads only after synchronization.

« When a page of sharable memory is not up-to-date,
it becomes protected.

» Any access then faults (SIGSEGV) into Cluster OpenMP runtime library,
which requests info from remote nodes and updates the page.

» Protection is removed from page.

» Instruction causing the fault is re-started,
this time successfully accessing the data.

.....

% Hybrid Parallel Programming
% Slide 120/ 169 Rabenseifner, Hager, Jost - H L R S &‘
/ TA@@ourtesy of J Cownie, Intel

hybrid MP1+OpenMP OpenMP ogl.yj

Comparison: <10
o MPI based parallelization <-> DSM |
« MPI based:

— Potential of boundary exchange between two domains in one large message
- Dominated by bandwidth of the network

- DSM based (e.g. Intel® Cluster OpenMP): R
— Additional latency based overhead in each barrier
- May be marginal

— Communication of updated data of pages Tov rule of thumb:
= Not all of this data may be needed 3|0y AU @i iAo
> i.e., too much data is transferred . | Communication
- Packages may be to small ez be
- Significant latency 10 times slower

than with MPI

— Communication not oriented on boundaries

of a domain decomposition

- probably more data must be transferred than
necessary >

A Hybrid Parallel Programming _—
% Slide 121 /169 Rabenseifner, Hager, Jost r r |L — H L R S

7
[\
3

g Comparing results with heat example

o

Normal OpenMP on shared memory (ccNUMA) NEC TX-7

18
16

Speedup

heat_x.c / heatc2_x.c with OpenMP on NEC TX-7

14

o N B~ OO ©
! !

—a— 1000x1000
m— 250x250
——80x80
—O—20x20
m O & = = ——ideal speedup
— =0
@ ~ v (30} W © %] S
L
threads

Hybrid Parallel Programming

S

Slide 122/ 169

ﬁ —
Rabenseifner, Hager, Jost H I— R

TACC

i

Heat example: Cluster OpenMP Efficiency | o

. Efficiency only with small
Cluster OpenMP on a Dual-Xeon cluster / communication foot-print

heats2_x.c with Cluster OpenMP on NEC d/ue/Xeon EM64T cluster

7
¥ —@— 6000x6000 static(default) 1 threads/node
6 - - -O- - 6000x6000 static(default) 2 threads/node
Up to 3 CPUs —x—6000x6000 static(1:1) 1 threads/node
5+ with 3000x3000 —x—6000x6000 static(1:2) 1 threads/node
o ——+—6000x6000 static(1:10) 1 threads/node
§ 4 - —o—6000x6000 static(1:50) 1 threads/node
8_ 3 —@— 3000x3000 static(default) 1 threads/node
0 - =¢0- = 3000x3000 static(default) 2 threads/node
2 - —a— 1000x1000 static(default) 1 threads/node
- =A= = 1000x1000 static(default) 2 threads/node
1 m— 250x250 static(default) 1 threads/node
0 - - 250x250 static(default) 2 threads/node
T T T T T T T T T
@ N v ™y N N @ Terrible with non-default schedule
(%)) .
) No speedup with 1000x1000
nodes Second CPU only usable in small cases

3 Hybrid Parallel Programming _—
Slide 123/ 169 Rabenseifner, Hager, Jost r r |L — H L R S

Back to the mixed model — an Example

(o
SMP node SMP node

-

Socket 1

MPI
process

AW |

4 x multi- 4xmmw/
threaded / | threade

(XXXX)
SocketE

MPI
process process
4 x multi- 4 x multi-
threaded | threaded

Node Interconnect

Hybrid Parallel Programming — —
Slide 124/ 169 Rabenseifner, Hager, Jost r r L u — H L R S

e

gL

5

g
b=

Topology-problem solved:
Only horizontal inter-node comm.

Still intra-node communication

Several threads per SMP node are
communicating in parallel:
- network saturation is possible

Additional OpenMP overhead

With Masteronly style:
75% of the threads sleep while
master thread communicates

With Overlapping Comm.& Comp.:
Master thread should be reserved

for communication only partially —

otherwise too expensive

MPI library must support
— Multiple threads

— Two fabrics (shmem + internode)
=

TACC

No silver bullet
o
» The analyzed programming models do not fit on hybrid architectures

— whether drawbacks are minor or major
> depends on applications’ needs

— But there are major opportunities = next section

* |[n the NPB-MZ case-studies

— We tried to use optimal parallel environment
« for pure MPI
« for hybrid MP1+OpenMP

— I.e., the developers of the MZ codes and we
tried to minimize the mismatch problems

—> the opportunities in next section dominated the comparisons

A Hybrid Parallel Programming _—
% Slide 125/ 169 Rabenseifner, Hager, Jost r r |L — H L R S

9)

% o

5

Outline l S

* Introduction / Motivation

* Programming models on clusters of SMP nodes

« Case Studies / pure MPI vs hybrid MP1+OpenMP
* Practical “How-To” on hybrid programming

« Mismatch Problems

« Opportunities:
Application categories that can benefit from hybrid
parallelization

« Thread-safety quality of MPI libraries

» Tools for debugging and profiling MPI+OpenMP
» Other options on clusters of SMP nodes

& Summary

Hybrid Parallel Programming — i
% Slide 126 / 169 Rabenseifner, Hager, Jost r r |L — H L R S %

Nested Parallelism | S
(o
« Example NPB: BT-MZ (Block tridiagonal simulated CFD application)
— QOuter loop:
 limited number of zones - limited parallelism

. . Sum of workload of all zones
- zones with different workload - speedup < ~—axworkioad of a zone

— Inner loop:
« OpenMP parallelized (static schedule)
* Not suitable for distributed memory parallelization

» Principles:
— Limited parallelism on outer level
— Additional inner level of parallelism
— Inner level not suitable for MPI
— Inner level may be suitable for static OpenMP worksharing

A Hybrid Parallel Programming _—
% Slide 127 / 169 Rabenseifner, Hager, Jost r r |L — H L R

Load-Balancing
o (on same or different level of parallelism)

58
9

3
‘30

« OpenMP enables
— Cheap dynamic and guided load-balancing
— Just a parallelization option_(clause on omp for / do directive)
— Without additional software effort
— Without explicit data movement

« On MPI level }

— Dynamic load balancing requires
moving of parts of the data structure through the network

— Significant runtime overhead
— Complicated software / therefore not implemented

#pragma omp parallel for schedule(dynamic)
for (i=0; i<n; i++) {
/* poorly balanced iterations */ ...

- MPI & OpenMP

— Simple static load-balancing on MPI level, medium quality
dynamic or guided on OpenMP level cheap implementation

% Hybrid Parallel Programming _—
% Slide 128 / 169 Rabenseifner, Hager, Jost r r |L — H L R S &‘

Memory consumption | 3
o

« Shared nothing
— Heroic theory
— In practice: Some data is duplicated

 MPI & OpenMP
With n threads per MPI process:

— Duplicated data may be reduced by factor n

% Hybrid Parallel Programming _—
% Slide 129/ 169 Rabenseifner, Hager, Jost r r |L — H L R S %

nnnnnnnnn

Case study: MPI+OpenMP memory usage of NPB | S

o
1.2
Using more
HO OpenMP threads
os I BT-MZ | could reduce the
B SP-MZ memaory usage
0.6 | substantially,

up to five times on

e Hopper Cray XT5
0.2 +— I (eight-core nodes).

256*1 128%*2 64*4 32*8 Always same j
S

Relative Memory Usage
to MPI

MPI * OpenMP number of core

Hongzhang Shan, Haoqgiang Jin, Karl Fuerlinger,

Alice Koniges, Nicholas J. Wright:

Analyzing the Effect of Different Programming Models Upon
Performance and Memory Usage on Cray XT5 Platorms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Hybrid Parallel Programming — —
Slide 130/ 169 Rabenseifner, Hager, Jost H L R S :
/ TACC Slide, courtesy of

Alice Koniges, NERSC, LBLN

Memory consumption (continued) | ==
o

« Future:
With 100+ cores per chip the memory per core is limited.

— Data reduction through usage of shared memory
may be a key issue
— Domain decomposition on each hardware level
 Maximizes
— Data locality
— Cache reuse
* Minimizes
— ccNUMA accesses
— Message passing
— No halos between domains inside of SMP node
* Minimizes
— Memory consumption

A Hybrid Parallel Programming _—
% Slide 131/ 169 Rabenseifner, Hager, Jost r r |L — H L R S

How many threads per MPI process?

o

SMP node = with m sockets and n cores/socket
How many threads (i.e., cores) per MPI process?

— Too many threads per MPI process

—> overlapping of MPI and computation may be necessary,
- some NICs unused?

— Too few threads
—> too much memory consumption (see previous slides)
Optimum
— somewhere between 1 and m x n threads per MPI process,

— Typically:
« Optimum =n, Ii.e.,1MPIprocess per socket
+ Sometimes =n/2 i.e., 2 MPI processes per socket
+ Seldom = 2n, i.e., each MPI process on 2 sockets

o

Hybrid Parallel Programming — —
Slide 132 /169 Rabenseifner, Hager, Jost r r L u — H L R

Opportunities, if MPI speedup is limited due to gc%
o algorithmic problems

« Algorithmic opportunities due to larger physical domains inside of
each MPI process

- If multigrid algorithm only inside of MPI processes

—> If separate preconditioning inside of MPI nodes and between
MPI nodes

- If MPl domain decomposition is based on physical zones

% Hybrid Parallel Programming _—
% Slide 133/ 169 Rabenseifner, Hager, Jost r r |L — H L R S &‘

To overcome MPI scaling problems | =
o

* Reduced number of MPI messages, 41 MP|
reduced aggregated message size compared to pure
« MPI has a few scaling problems
— Handling of more than 10,000 MPI processes

— lrregular Collectives: MPI_....v(), e.g. MPI_Gatherv()

> Scaling applications should not use MPI_....v() routines

— MPI-2.1 Graph topology (MPI_Graph_create)
> MPI-2.2 MPI_Dist_graph_create_adjacent

— Creation of sub-communicators with MPI_Comm_create

» MPI-2.2 introduces a new scaling meaning of MPI_Comm_create
— ... see P. Balaji, et al.: MPI on a Million Processors. Proceedings EuroPVM/MPI 2009.

« Hybrid programming reduces all these problems (due to a smaller number of processes)

Hybrid Parallel Programming — —
Slide 134/ 169 Rabenseifner, Hager, Jost r r L u — H L R S

Summary: Opportunities of hybrid parallelization
o{MPI & OpenMP)

Nested Parallelism
—> Outer loop with MPI / inner loop with OpenMP

Load-Balancing
- Using OpenMP dynamic and guided worksharing

Memory consumption
—> Significantly reduction of replicated data on MPI level

Opportunities, if MPI speedup is limited due to algorithmic problem
—> Significantly reduced number of MPI processes

Reduced MPI scaling problems
—> Significantly reduced number of MPI processes

Hybrid Parallel Programming —
Slide 135/ 169 Rabenseifner, Hager, Jost r r |L — H L R S &‘

i

&10

NNNNNNNNN

10

Outline | S

* Introduction / Motivation

* Programming models on clusters of SMP nodes

« Case Studies / pure MPI vs hybrid MP1+OpenMP
* Practical “How-To” on hybrid programming

« Mismatch Problems

* Opportunities:
Application categories that can benefit from hybrid parallelization

- Thread-safety quality of MPI libraries

» Tools for debugging and profiling MPI+OpenMP
» Other options on clusters of SMP nodes
e Summary

Hybrid Parallel Programming — g
% Slide 136 /169 Rabenseifner, Hager, Jost r r |L — H L R S %

Thread-safety of MPI Libraries | ®
)

« Make most powerful usage of hierarchical structure of hardware:

« Efficient programming of clusters of SMP nodes
SMP nodes:
* Dual/multi core CPUs
* Multi CPU shared memory
* Multi CPU ccNUMA
* Any mixture with shared memory programming model

[Threads inside of the)
SMP nodes J
MPI between the nodes
[via node interconnect /—1—Node Interconnect
« No restriction to the usage of OpenMP for intranode-parallelism:
— OpenMP does not (yet) offer binding threads to processors

— OpenMP does not guarantee thread-ids to stay fixed.

« OpenMP is based on the implementation dependant thread-library:
LinuxThreads, NPTL, SolarisThreads. -

Hybrid Parallel Programming — —
Slide 137 /169 Rabenseifner, Hager, Jost r r L o — H L R S

Courtesy of Rainer Keller, HLRS and ORNL

MPI rules with OpenMP / 7
oAutomatic SMP-parallelization

« Special MPI-2 Init for multi-threaded MPI processes:

int MPI _TInit_thread(int * argc, char ** argv/([],
int thread_level_required,
int * thead_level_provided);
int MPI_Query_thread(int * thread_level_provided);
int MPI_Is_main_thread(int * flag);

 REQUIRED values (increasing order):
— MPI_THREAD SINGLE: Only one thread will execute
— THREAD_MASTERONLY: MPI processes may be multi-threaded,
(virtual value, but only master thread will make MPI-calls
not part of the standard) @ AND only while other threads are sleeping
— MPI_THREAD FUNNELED: Only master thread will make MPI-calls
— MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,
but only one at a time
— MPI_THREAD_ MULTIPLE: Multiple threads may call MPI,
with no restrictions
« returned provided may be less than REQUIRED by the application

Hybrid Parallel Programming — —
Slide 138 /169 Rabenseifner, Hager, Jost r r L u — H L R S

pd TACC

........
.....

Calling MPI inside of OMP MASTER

o

Hybrid Parallel Programming

Inside of a parallel region, with “OMP MASTER”

Requires MPI_THREAD FUNNELED,
l.e., only master thread will make MPI-calls

Caution: There isn’'t any synchronization with “OMP MASTER”!
Therefore, “OMP BARRIER” normally necessary to
guarantee, that data or buffer space from/for other
threads is available before/after the MPI call!

ISOMP BARRIER
ISOMP MASTER

call MPI_Xxx(...)
ISOMP END MASTER
ISOMP BARRIER

But this implies that all other threads are sleeping!
The additional barrier implies also the necessary cache flush!

#pragma omp barrier
#pragma omp master
MPI_Xxx(...);

#pragma omp barrier

.....

Slide 139/ 169

Rabenseifner, Hager, Jost H L R S %

e
[\
3

< example with MPI_Recv

o

... the barrier is necessary —

ISOMP PARALLEL
ISOMP DO
do i=1,1000
a(i) = buf(i)
end do
ISOMP END DO NOWAIT
ISOMP BARRIER
ISOMP MASTER
call MPI_RECV(buf,...)
ISOMP END MASTER
ISOMP BARRIER
ISOMP DO
do i=1,1000
c(i) = buf(i)
end do
ISOMP END DO NOWAIT
ISOMP END PARALLEL

oS

Hybrid Parallel Programming — —
Slide 140/ 169 Rabenseifner, Hager, Jost r r L u — H L R

#pragma omp parallel
{
#pragma omp for nowait
for (i=0; i<1000; i++)
afi] = bufi];

#pragma omp barrier

#pragma omp master
MPI1_Recv(buf,...);

#pragma omp barrier

#pragma omp for nowait
for (i=0; i<1000; i++)
c[i] = buf]i];

}

/* omp end parallel */

TACC

R
3

..........
. o

.........
........
.....

e

Thread support in MPI libraries

gL

5

S

The following MPI libraries offer thread support:

Implementation

Thread support level

MPIch-1.2.7p1
MPIch2-1.0.8

MPIch2-1.1.0a2
Intel MPI 3.1
SciCortex MPI
HP MPI-2.2.7
SGI MPT-1.14
IBM MPI

Nec MPI/SX

Not thread-safe?

Always announces MPI_THREAD_FUNNELED.
ch3:sock supports MPI_THREAD_MULTIPLE
ch:nemesis has “Initial Thread-support”
ch3:nemesis (default) has MPI_THREAD_MULTIPLE
Full MPI_THREAD_MULTIPLE
MPI_THREAD_FUNNELED

Full MPI_THREAD _MULTIPLE (with libmtmpi)

Full MPT_ THREAD MULTIPLE
MPI_ THREAD SERIALIZED

Testsuites for thread-safety may still discover bugs in the

MPI libraries

Hybrid Parallel Programming

Slide 141 /169

ﬁ —
Rabenseifner, Hager, Jost H I— R S

TACG

Courtesy of Rainer Keller, HLRS and ORNL

Thread support within Open MPI s
0

» In order to enable thread support in Open MPI, configure with:

configure —--enable-mpi-threads

« This turns on:
— Support for full MPI_THREAD_MULTIPLE

— internal checks when run with threads (——enable—-debug)

configure —--enable-mpi-threads —--enable-progress—-threads

« This (additionally) turns on:

— Progress threads to asynchronously transfer/receive data per
network BTL.

 Additional Feature:

— Compiling with debugging support, but without threads will
check for recursive locking

A Hybrid Parallel Programming _—
% Slide 142/ 169 Rabenseifner, Hager, Jost r r |L — H L R S

Courtesy of Rainer Keller, HLRS and ORNL

10

Outline I S

* Introduction / Motivation

* Programming models on clusters of SMP nodes

« Case Studies / pure MPI vs hybrid MP1+OpenMP
* Practical “How-To” on hybrid programming

« Mismatch Problems

* Opportunities:
Application categories that can benefit from hybrid parallelization

« Thread-safety quality of MPI libraries

« Tools for debugging and profiling MPI+OpenMP

» Other options on clusters of SMP nodes
e Summary

Hybrid Parallel Programming = b a
% Slide 143 /169 Rabenseifner, Hager, Jost r r |L — H L R S ﬁ‘

Thread Correctness — Intel ThreadChecker 1/3 | >
o

» Intel ThreadChecker operates in a similar fashion to helgrind,
« Compile with -t check, then run program using tcheck_c1:

Application finished

| ID| Short De|Sever|C|Contex|Description |1st Acc|2nd Acc|
| |scriptio|ity |olt[Best] |ess[Bes|ess[Bes|
I I n |Name [ul] I It] It] I
I I In| | I I |
I I It | I I |

1 |Write —->|Error|l]|"pthre|Memory write of global_variable at|"pthrea|"pthrea|

|[Write da| | lad_rac|"pthread_race.c":31 conflicts with|d_race.|d_race. |
|ta-race | le.c":2|a prior memory write of [c":31 |c":31 |
I I |5 |global_variable at | |

I
I
I I

I | |
[I || | "pthread_race.c":31 (output | | |
[I I |

| | dependence) I I

Hybrid Parallel Programming — —
Slide 144 /169 Rabenseifner, Hager, Jost r r L o — H L R S

e TAGC '

Courtesy of Rainer Keller, HLRS and ORNL

s

Thread Correctness — Intel ThreadChecker 2/3 |

« One may output to HTML.:

tcheck_cl ——-format HTML —--report pthread_race.html pthread_race

Bl Thread Checker Output - Konqueror

Dokument Bearbeiten Ansicht Gehe zu Lesezeichen Extras Einstellungen Eenster Hilfe

B Adresse: [home/hpcraink/C/PTHREAD/DEBUGGING/pthread_race_pcglap 12.htm |'] = [3. |']

Short Severity count

Description Name ContextIBest] Description 1st Access[Best] 2nd AccessIBest]

Memory write of
global_variable at
"pthread_race.c"31

write -> conflicts with a prior
1 Write 1 "pthread_race.c" 25) "pthread_race.c"31 “pthread_race.c"31
datarace memory write of

global_variable at
"pthread_race.c"31
(output dependence)

Thread termination at
Thread "pthread_race.c":43 -
2 I Information 1 Whole Program 1 includes stack "pthread_race.c"43 "pthread_race.c"43
termination .
allocation of 8,004 MB
and use of 4,672 KB

Thread termination at
Thread "pthread_race.c"43 -
3 Information 1 Whole Program 2 includes stack "pthread_race.c"43 "pthread_race.c":43

termination allocation of 8,004 MB
and use of 4,672 KB
Thread termination at

Thread pthread_race.c"37 -

4 P Information 1 Whole Program 3 includes stack "pthread_race.c":37 "pthread_race.c":37
termination i - -
allocation of & MB and
use of 4,25 KB

Hybrid Parallel Programming — —
Slide 145/ 169 Rabenseifner, Hager, Jost r r L u — H L R 5

Courtesy of Rainer Keller, HLRS and ORNL

Thread Correctness — Intel ThreadChecker 3/3 | >

o
» If one wants to compile with threaded Open MPI (option for IB):

configure —--enable-mpi-threads
——enable-debug
——enable-mca-no-build=memory-ptmalloc?
CC=icc F77=ifort FC=ifort
CFLAGS=‘'-debug all —-inline-debug-info tcheck’
CXXFLAGS='-debug all -inline-debug—-info tcheck’
FFLAGS='-debug all -tcheck’ LDFLAGS=‘tcheck’

* Then run with:
mpirun —--mca tcp,sm,self —np 2 tcheck_cl
——reinstrument -u full —--format html
——cache_dir '"/tmp/my_username_SS__ tc_cl_cache'
——report 'tc_mpi_test_suite_$S'
——options 'file=tc_my_executable_%H_5%T,

pad=128, delay=2, stall=2" -

./my_executable my_argl my_arg2 ..

Hybrid Parallel P i m— —
Sl\i/dtreI 146a;a1 669 OIS Rabenseifner, Hager, Jost H L R S
/ Courtesy of Rainer Keller, HLRS and ORNL

o

» Paraver examples have already
been shown, tracing is done with
linking against (closed-source)
omptrace Of ompitrace

Lt
F;’i Avg. Vector length @ imd_mpi_nve_wvec-bench_cu3au_1048k-16procs-16;: — O X

« For Vampir/Vampirtrace performance analysis:
./configure —-enable-omp
—enable-hyb
—with-mpi-dir=/opt/OpenMPI/1.3-1icc
CC=icc F77=ifort FC=ifort
(Attention: does not wrap MPI_Init_thread!)

Hybrid Parallel Programming — —
Slide 147 /169 Rabenseifner, Hager, Jost r r L o — H L R S

Courtesy of Rainer Keller, HLRS and ORNL

o

Scalasca — Example “Wait at Barrier”

o
IM

Lxll EXPERT: sweep3d.eap =R
Fle View Help
Performance Properties . 1 Dynamic Call Tree " Locations
=1 0.0 Total =1 0.0 driver =1 0.0 Linw: Cluster

= 47.1 Execution - 0.0 task_init e 00 zamO0%e3
f—]—.— 2.4 hPI = 0.0 read_input =0 0.0 Process [
B 0.0 Communication - 0.0 decomp —- 8.0 Thread 0
0.0 Collective - 0.0 inner_auto —l- 20 Thread 1
D.D Early Reduce = 0.0 inner - 6.0 Thread 2
D.EI Late Broadcast 0.0 initialize [87 Thread 3
0.6 Mait at M x N 0.0 barrier_sync zamOBed
27’ PZP 0.0 timers_ 0.0 Process 1
0.0 Late Receiver 0.5 source —- 8.0 Thread O
2.3 Late Sender 0.0 sweep —l- 18 Thread 1
L®- 0.3 Messages in Wrong Order [} 0.0 octant —O- 6.7 Thread 2
- 0.0 1o [+ 0.0 rev_real ~O0- 3.1 Thread 3
EHT- 0.0 Synchronization EH- 0.0 $omp parallel zam(08e5
= 0.0 CkiAP [37.5 Formp do | 0.0 Process &
— 0.0 Flush O 7.3 Romp ibarrier - 8.1 Thread 0
—l- 1.7 Fork [0.0 snd_real —l- 1.8 Thread 1
EH- 0.0 Synchronization - 0.0 global_int_sum —- 7.0 Thread 2
0.0 Barrier - 0.3 flu err [87 Thread 3
0.0 Explicit s 0.0 global_real_sum £ 0.0 zam003e6
1.0 Implict - 0.0 task end e 0.0 Process 3
2.8 Walt at Earrier | - 7.9 Thread 0O
[+ 0.0 Lock Competition . d _.—I— 2.4 Thread 1
O 375 Idie Threads Indication of O 55 Thread 2
. O B2 Thread 3
non-optimal load
(| [}
1u| 20 30 40| k balance
4x4 |

OMPI |
1

Hybrid Parallel Programming
Slide 148 / 169

Rabenseifner, Hager, Jost H L i
pd TACC

Screenshots, courtesy of KOJAK JSC, FZ Jilich

o

Scalasca — Example “Wait at Barrier”

Solution

o
Iw\

Hle View

EXPERT: sweep3d dynamic 1.eap

Performance Properties

" Dynamic Call Tree

" Locations

= 0.0 Total
B0 49.0 Execution
f—]—l— 2.3 WP
B 0.0 Communication
0.0 Collective
D 0 Early Reduce
D.D Late Broadcast
0.6 YWait at Mx M
2 7 P2P
0.0 Late Receiver
2.3 Late Sender

0.0 1o

-
1 0.0 Synchronization

Fork
Synchronization
0.0 Barrier
0.0 Explicit
1.4 Implict

LW 73 Wal at Bagrier
[0.0 Lock Competition H

0.9 kessages in Wrong Order

1 36.5 ldle Threads

[[} ‘ ‘
10 20 30

4u|

=1 0.0 driver

- 0.0 task init

- 0.0 read_input

—[1 0.0 decomp

- 00 inner_auto

= 0.0 inner

0.0 initialize

0.0 barrier_sync
0.5 source

0.0 timers_

0.0 sweep

- 0.0 octant
- 0.0 rev_real
= 0.0 l$omp parallel

O 5.2 !$omp ibarrier
[0.0 snd_real

- 0.0 global int sum

- 0.3 flw_err

= 0.0 global_real _sum

- 00 task end

Better load balancing
with dynamic
loop schedule

4x4|

= 0.0 Linwe Cluster

B0 0.0 zam0O02e3
0.0 Process
- 5.2 Thread 0
- 7.9 Thread 1
- 4.9 Thread 2
[+ &7 Thread 3
008e4
Process 1
3.3 Thread 0
/.7 Thread 1
3.1 Thread 2
7.
]

:

[
as
o)
=3

¢#¢¢

1 Thread 3
003es
Process ¢
5.2 Thread 0
. Thread 1
2.1 Thread 2
7.
]

:

[
as
=3
=3

¢#¢#

0 Thread 3
003ek
Process 4

3.3 Thread 0
7.6 Thread 1
a.2 Thread 2
[7.0 Thread 3

}

[
0g
=
(=3}

#¢¢

OMPI |
1

Hybrid Parallel Programming

Slide 149/ 169

ﬁ —
Rabenseifner, Hager, Jost H I— R S

TACC

Screenshots, courtesy of KOJAK JSC, FZ Jilich

Introduction / Motivation

Programming models on clusters of SMP nodes
Case Studies / pure MPI vs hybrid MPI+OpenMP
Practical “How-To” on hybrid programming
Mismatch Problems

Opportunities:

10

Outline | ==

Application categories that can benefit from hybrid parallelization

Thread-safety quality of MPI libraries
Tools for debugging and profiling MP1+OpenMP

Other options on clusters of SMP nodes

Summary

.....
PR

.....
R
.....

Hybrid Parallel Programming — —
Slide 150/ 169 Rabenseifner, Hager, Jost r r L o — H L R

gL

5

S

Pure MPI — multi-core aware |
o

* Hierarchical domain decomposition
(or distribution of Cartesian arrays)

Domain decomposition:
1 sub-domain / SMP node

Further
partitioning:
1 sub-domain /
_ Ssocket

-

= -
SIS SN SN S
- == - -

ol

o 1/core |

/ Cache
optimization:

Blocking inside of
each core,
block size relates
to cache size.

\1-3 cache levels./

1
1
1
1
1
1
1
1
+
1
1
1
1
1
1
]
1
I
— ’ —
1
L
1
1
1
1
1
1
I
T
1
L
1
1

S SIS WS —————
-4--:-:-
el
-*--;-;-

BN B —

- s B i D e e e e - e e

ST —
1
1

Example on 10 nodes, each with 4 sockets, each with 6 cores.

Hybrid Parallel Programming =
% Slide 151 /169 Rabenseifner, Hager, Jost r r L u — H L R S

L

5

How to achieve a
o-hierarchical domain decomposition (DD)?

S

« Cartesian grids:
— Several levels of subdivide

— Ranking of MPI_COMM_WORLD - three choices:

a) Sequential ranks through original data structure
+ locating these ranks correctly on the hardware

» can be achieved with one-level DD on finest grid
+ special startup (mpiexec) with optimized rank-mapping

b) Sequential ranks in comm_cart (from MPI_CART_CREATE)

> requires optimized MPI_CART_CREATE,
or special startup (mpiexec) with optimized rank-mapping

c) Sequential ranks in MPI_COMM_WORLD
+ additional communicator with sequential ranks in the data structure
+ self-written and optimized rank mapping.

« Unstructured grids:
- next slide

A Hybrid Parallel Programming _—
% Slide 152/ 169 Rabenseifner, Hager, Jost r r |L — H L R

How to achieve a sc%
o-hierarchical domain decomposition (DD)?

« Unstructured grids:

— Multi-level DD:
« Top-down: Several levels of (Par)Metis
» Bottom-up: Low level DD + higher level recombination

— Single-level DD (finest level)

« Analysis of the communication pattern in a first run
(with only a few iterations)

» Optimized rank mapping to the hardware before production run
« E.g., with CrayPAT + CrayApprentice

% Hybrid Parallel Programming _—
% Slide 153/ 169 Rabenseifner, Hager, Jost r r |L — H L R S &‘

Top-down — several levels of (Par)Metis |

— Load-balancing (e.g., with

ParMetis) on outer level,
l.e., between all SMP nodes

~— Independent (Par)Metis
inside of each node

--- — Metis inside of each socket

» Subdivide does not care on
balancing of the outer boundary

» processes can get a lot of
neighbors with inter-node
communication

> unbalanced communication

Hybrid Parallel Programming —
% Slide 154 / 169 Rabenseifner, Hager, Jost r r |L — H L R S %

o

Bottom-up -
Multi-level DD through recombination

1. Core-level DD: partitioning of application’s data grid
2. Socket-level DD: recombining of core-domains
3. SMP node level DD: recombining of socket-domains

Problem:

Recombination\

must not

calculate patches
that are smaller
or larger than the

average

* In this example
the load-balancer

must combine
always

= 6 cores, and

y,

Iy = 4 sockets
1|+ Advantage:
g Communicatio
_____ > L) is balanced!
gl\llgtrelj 5PSa;a1”E?SI) ogramming Rabenseifner, Hager, Jost r r E E H I— R

TACC

Profiling solution | S
o

» First run with profiling
— Analysis of the communication pattern
« Optimization step

— Calculation of an optimal mapping of ranks in MPI_COMM_WORLD
to the hardware grid (physical cores / sockets / SMP nodes)

» Restart of the application with this optimized locating of the ranks on the
hardware grid

« Example: CrayPat and CrayApprentice

% Hybrid Parallel Programming _—
% Slide 156 / 169 Rabenseifner, Hager, Jost r r |L — H L R S %

Scalability of MPI to hundreds of thousands ... | S
)

Weak scalability of pure MPI
» As long as the application does not use
— MPI_ALLTOALL
— MPI_<collectives>V (i.e., with length arrays)
and application
— distributes all data arrays
one can expect:
— Significant, but still scalable memo

— MPI library is internally scalable:
+ E.g., mapping ranks - hardware grid
— Centralized storing in shared memory (OS level)

— In each MPI process, only used neighbor ranks are stored (cached) in
process-local memory.

+ Tree based algorithm wiith O(log N)
— From 1000 to 1000,000 process O(Log N) only doubles!

Hybrid Parallel Programming — —
Slide 157 /169 Rabenseifner, Hager, Jost r r L u — H L R S

\

The vendors will
(or must) deliver
scalable MPI
libraries for their
largest systems!/

erhead for halo cells.

Remarks on Cache Optimization | =
0

« After all parallelization domain decompositions (DD, up to 3 levels)
are done:

« Additional DD into data blocks
— that fit to 2" or 3 level cache.
— It is done inside of each MPI process (on each core).
— Outer loops over these blocks
— Inner loops inside of a block

— Cartesian example: 3-dim loop is split into
do i_block=1,ni,stride i
do j_block=1,nj,stride_j
do k_block=1,nk,stride_k
do i=i_block,min(i_block+stride _i-1, ni)
do j=j_block,min(j_block+stride_j-1, nj)
do k=k_block,min(k_block+stride_k-1, nk)
a(i,j,k) = f(b(i0,1,2, j+0,1,2, k0,1,2))
......... end do

Access to 13-Ypoint stencil

Hybrid Parallel Programming — —
Slide 158 / 169 Rabenseifner, Hager, Jost r r L u — H L R S

o

Remarks on Cost-Benefit Calculation | A

Costs

for optimization effort
— e.g., additional OpenMP parallelization
— e.g., 3 person month x 5,000 € = 15,000 € (full costs)

Benefit

from reduced CPU utilization
— e.g., Example 1:
100,000 € hardware costs of the cluster
X 20% used by this application over whole lifetime of the cluster
X 7% performance win through the optimization
=1,400€ - total loss = 13,600 €

— e.g., Example 2:
10 Mio € system x 5% used x 8% performance win
= 40,000 € -> total win = 25,000 €

.....
........

o

Hybrid Parallel Programming = b
Slide 159/ 169 Rabenseifner, Hager, Jost r r |L — H L R S %

/2| Remarks on MPI and PGAS (UPC & CAF) | =

Parallelization always means
— expressing locality.

If the application has no locality,
— Then the parallelization needs not to model locality
- UPC with its round robin data distribution may fit

If the application has locality,
— then it must be expressed in the parallelization

Coarray Fortran (CAF) expresses data locality explicitly through “co-
dimension”:
— A(17,15)[3]
= element A(17,13) in the distributed array A in process with rank 3

.....
........

o

Hybrid Parallel Programming =
Slide 160/ 169 Rabenseifner, Hager, Jost r r |L — H L R S &‘

TACC

a0
.| Remarks on MPI and PGAS (UPC & CAF)
» Future shrinking of memory per core implies
— Communication time becomes a bottleneck

- Computation and communication must be overlapped,
l.e., latency hiding is needed

 With PGAS, halos are not needed.

— But it is hard for the compiler to access data such early that the
transfer can be overlapped with enough computation.

« With MPI, typically too large message chunks are transferred.
— This problem also complicates overlapping.

« Strided transfer is expected to be slower than contiguous transfers

— Typical packing strategies do not work for PGAS on compiler level

— Only with MPI, or with explicit application programming with PGAS

S
.........
.....

Hybrid Parallel Programming
Slide 161 /169

..........
........
.....

Rabenseifner, Hager, Jost H I— R |
TACC

S

gL

5

Q°°/

/%2 Remarks on MPI and PGAS (UPC & CAF)

o

* Point-to-point neighbor communication

— PGAS or MPI nonblocking may fit
if message size makes sense for overlapping.

» Collective communication
— Library routines are best optimized
— Non-blocking collectives (comes with MPI-3.0)

versus calling MPI from additional communication thread

— Only blocking collectives in PGAS library?

A Hybrid Parallel Programming
Slide 162/ 169

RY
3

Rabenseifner, Hager, Jost H I— R |
TACC

.........
.........
.....

.........
........
.....

Q°°/

/%2 Remarks on MPI and PGAS (UPC & CAF)

o

For extreme HPC (many nodes x many cores)
— Most parallelization may still use MPI

— Parts are optimized with PGAS, e.g., for better latency hiding
— PGAS efficiency is less portable than MPI

— #ifdef ... PGAS

— Requires mixed programming PGAS & MPI

- will be addressed by MPI-3.0

Hybrid Parallel Programming

o

Slide 163/ 169

ﬁ —
Rabenseifner, Hager, Jost H I— R

TACC

.....
.............
.........

..............
........
.....

Outline | K

* Introduction / Motivation

« Programming models on clusters of SMP nodes

« (Case Studies / pure MPI vs hybrid MPl+OpenMP
« Practical “How-To” on hybrid programming

« Mismatch Problems

* Opportunities:
Application categories that can benefit from hybrid parallelization

« Thread-safety quality of MPI libraries
» Tools for debugging and profiling MPI+OpenMP
» Other options on clusters of SMP nodes

« Summary

Hybrid Parallel Programming H L R S ﬁ
Slide 164 /169 Rabenseifner, Hager, Jost

TACC

o

Acknowledgements 5

« We want to thank

Hybrid Parallel Programming

Gerhard Wellein, RRZE

Alice Koniges, NERSC, LBNL

Rainer Keller, HLRS and ORNL

Jim Cownie, Intel

KOJAK project at JSC, Research Center Jilich

HPCMO Program and the Engineer Research and
Development Center Major Shared Resource Center,
Vicksburg, MS (http://www.erdc.hpc.mil/index)

.....

o

Slide 165/ 169 Rabenseifner, Hager, Jost r r |L — H L R S i

.....

TACC

Summary - <} the good news | =
o

MPI + OpenMP
« Significant opportunity - higher performance on smaller number of threads
Seen with NPB-MZ examples
— BT-MZ - strong improvement (as expected)
— SP-MZ - small improvement (none was expected)
Usable on higher number of cores
Advantages
— Load balancing
— Memory consumption

— Two levels of parallelism
* Outer - distributed memory - halo data transfer - MPI
* Inner - shared memory - ease of SMP parallelization > OpenMP

Youcando it 2 “How To”

A Hybrid Parallel Programming _—
% Slide 166 / 169 Rabenseifner, Hager, Jost r r |L — H L R

o

Summary - the bad news | a

MPI+OpenMP: There is a huge amount of pitfalls

Pitfalls of MPI
Pitfalls of OpenMP
— On ccNUMA - e.g., first touch
— Pinning of threads on cores
Pitfalls through combination of MPI & OpenMP
— E.g., topology and mapping problems
— Many mismatch problems
Tools are available
— It is not easier than analyzing pure MPI programs
Most hybrid programs - Masteronly style
Overlapping communication and computation with several threads
— Requires thread-safety quality of MPI library

— Loss of OpenMP worksharing support 2 using OpenMP tasks
as workaround _

Hybrid Parallel Programming —
Slide 167 / 169 Rabenseifner, Hager, Jost r r |L — H L R S &‘

Summary - good and bad 5
o
« Optimization |
— 1 MPI process ggg;::ﬁh 1 MPI process

OL<T g oT0] £ T per SMP node
A— somewhere between
may be the optimum

- (©Efficiency of MPI+OpenMP is not for free:
- 4
The efficiency strongly depends on ’/%;L

) the amount of work in the source code development Y7«

% Hybrid Parallel Programming _—
% Slide 168 / 169 Rabenseifner, Hager, Jost r r |L — H L R S %

o

Nw%

Pure MPI

+ Ease of use

— Topology and mapping problems may need to be solved
(depends on loss of efficiency with these problems)

— Number of cores may be more limited than with MPI+OpenMP

Summary - ?2 Alternatives

+ Good candidate for perfectly load-balanced applications

Pure OpenMP

+ Ease of use

— Limited to problems with tiny communication footprint

— source code modifications are necessary
(Variables that are used with “shared” data scope
must be allocated as “sharable’)

I+

(Only) for th

Hybrid Parallel Programming

e appropriate application a suitable tool

o

Slide 169/ 169

Rabenseifner, Hager, Jost H I— R |
TACC

[,

o

Summary s

This tutorial tried to
— help to negotiate obstacles with hybrid parallelization,
— give hints for the design of a hybrid parallelization,
— and technical hints for the implementation - “How To”,
— show tools if the application does not work as designed.

This tutorial was not an introduction into other parallelization models:

— Partitioned Global Address Space (PGAS) languages
(Unified Parallel C (UPC), Co-array Fortran (CAF), Chapel, Fortress, Titanium,

and X10).
— High Performance Fortran (HPF) e

- Many rocks in the cluster-of-SMP-sea do not vanis
into thin air by using new parallelization models

—> Area of interesting research in next years

oS

Hybrid Parallel Programming — —
Slide 170 /169 Rabenseifner, Hager, Jost r r L u — H L R

TACC

Conclusions | ”

» Future hardware will be more complicated
— Heterogeneous - GPU, FPGA, ...
— ccNUMA quality may be lost on cluster nodes

« High-end programming > more complex
* Medium number of cores = more simple

(if #cores / SMP-node will not shrink)
 MPI+OpenMP - work horse on large systems
* Pure MPI - still on smaller cluster

 OpenMP - on large ccNUMA nodes
(not ClusterOpenMP)

Thank you for your interest

Q&A

Please fill in the feedback sheet — Thank you

3 Hybrid Parallel Programming _—
% Slide 171/ 169 Rabenseifner, Hager, Jost r r |L — H L R

TACC

e

Appendix

Abstract

Authors

References (with direct relation to the content of this tutorial)
Further references

Hybrid Parallel Programming — —
Slide 172 Rabenseifner, Hager, Jost r r L u : H L R

TACC

e

Abstract | <1C

Half-Day Tutorial (Level: 20% Introductory, 50% Intermediate, 30% Advanced)

Authors. Rolf Rabenseifner, HLRS, University of Stuttgart, Germany
Georg Hager, University of Erlangen-Nuremberg, Germany
Gabriele Jost, Texas Advanced Computing Center, The University of Texas at Austin, USA

Abstract. Most HPC systems are clusters of shared memory nodes. Such systems can be PC
clusters with single/multi-socket and multi-core SMP nodes, but also "constellation" type systems with
large SMP nodes. Parallel programming may combine the distributed memory parallelization on the
node inter-connect with the shared memory parallelization inside of each node.

This tutorial analyzes the strength and weakness of several parallel programming models on clusters
of SMP nodes. Various hybrid MPI+OpenMP programming models are compared with pure MPI.
Benchmark results of several platforms are presented. The thread-safety quality of several existing
MPI libraries is also discussed. Case studies will be provided to demonstrate various aspects of
hybrid MP1/OpenMP programming. Another option is the use of distributed virtual shared-memory
technologies. Application categories that can take advantage of hybrid programming are identified.
Multi-socket-multi-core systems in highly parallel environments are given special consideration.

Details. https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-hybrid.html

Hybrid Parallel Programming — —
Slide 173 Rabenseifner, Hager, Jost r r L o — H L R S

Rolf Rabenseifner | oy

o

Dr. Rolf Rabenseifner studied mathematics and physics at the University of
Stuttgart. Since 1984, he has worked at the High-Performance Computing-
Center Stuttgart (HLRS). He led the projects DFN-RPC, a remote procedure
call tool, and MPI-GLUE, the first metacomputing MP| combining different
vendor's MPIs without loosing the full MPI interface. In his dissertation, he
developed a controlled logical clock as global time for trace-based profiling of
parallel and distributed applications. Since 1996, he has been a member of
the MPI-2 Forum and since Dec. 2007, he is in the steering committee of the
MPI-3 Forum. From January to April 1999, he was an invited researcher at the
Center for High-Performance Computing at Dresden University of Technology.

Currently, he is head of Parallel Computing - Training and Application
Services at HLRS. He is involved in MPI profiling and benchmarking, e.g., in
the HPC Challenge Benchmark Suite. In recent projects, he studied parallel
I/0, parallel programming models for clusters of SMP nodes, and optimization
of MPI collective routines. In workshops and summer schools, he teaches
parallel programming models in many universities and labs in Germany.

Hybrid Parallel Programming — —
Slide 174 Rabenseifner, Hager, Jost r r L o — H L R S

Georg Hager 1C
o

Georg Hager holds a PhD in computational physics from

the University of Greifswald. He has been working with high performance
systems since 1995, and is now a senior research scientist in the HPC
group at Erlangen Regional Computing Center (RRZE). His daily work
encompasses all aspects of HPC user support and training, assessment
of novel system and processor architectures, and supervision of student
projects and theses. Recent research includes architecture-specific
optimization for current microprocessors, performance modeling on
processor and system levels, and the efficient use of hybrid parallel
systems. A full list of publications, talks, and other HPC-related stuff he is
interested in can be found in his blog: hitp://blogs.fau.de/hager.

Hybrid Parallel Programming =
Slide 175 Rabenseifner, Hager, Jost r r L o — H L R S

Gabriele Jost | LHC

Gabriele Jost obtained her doctorate in Applied Mathematics from the
University of Géttingen, Germany. For more than a decade she worked
for various vendors (Suprenum GmbH, Thinking Machines Corporation,
and NEC) of high performance parallel computers in the areas of
vectorization, parallelization, performance analysis and optimization of
scientific and engineering applications.

In 2005 she moved from California to the Pacific Northwest and joined
Sun Microsystems as a staff engineer in the Compiler Performance
Engineering team, analyzing compiler generated code and providing
feedback and suggestions for improvement to the compiler group. She
then decided to explore the world beyond scientific computing and joined
Oracle as a Principal Engineer working on performance analysis for
application server software. That was fun, but she realized that her real
passions remains in area of performance analysis and evaluation of
programming paradigms for high performance computing and that she
really liked California. She is now a Research Scientist at the Texas
Advanced Computing Center (TACC), working remotely from Monterey,
CA on all sorts of exciting projects related to large scale parallel
processing for scientific computing.

Hybrid Parallel Programming — —
Slide 176 Rabenseifner, Hager, Jost r r L o — H L R S

e

References (with direct relation to the content of this tutorial) | »

NAS Parallel Benchmarks:
http://www.nas.nasa.gov/Resources/Software/npb.html

R.v.d. Wijngaart and H. Jin,
NAS Parallel Benchmarks, Multi-Zone Versions,
NAS Technical Report NAS-03-010, 2003

H. Jin and R. v.d.Wijngaart,
Performance Characteristics of the multi-zone NAS Parallel Benchmarks,
Proceedings IPDPS 2004

G. Jost, H. Jin, D. an Mey and F. Hatay,
Comparing OpenMP, MPI, and Hybrid Programming,
Proc. Of the 5th European Workshop on OpenMP, 2003

E. Ayguade, M. Gonzalez, X. Martorell, and G. Jost,
Employing Nested OpenMP for the Parallelization of Multi-Zone CFD Applications,
Proc. Of IPDPS 2004

Hybrid Parallel Programming — —
Slide 177 Rabenseifner, Hager, Jost r r L o — H L R S

TACC

o

58
9_

3
‘0

References

Hybrid Parallel Programming

Rolf Rabenseifner,

Hybrid Parallel Programming on HPC Platforms.

In proceedings of the Fifth European Workshop on OpenMP, EWOMP '03,
Aachen, Germany, Sept. 22-26, 2003, pp 185-194, www.compunity.org.

Rolf Rabenseifner,

Comparison of Parallel Programming Models on Clusters of SMP Nodes.
In proceedings of the 45nd Cray User Group Conference, CUG SUMMIT 2003,
May 12-16, Columbus, Ohio, USA.

Rolf Rabenseifner and Gerhard Wellein,

Comparison of Parallel Programming Models on Clusters of SMP Nodes.

In Modelling, Simulation and Optimization of Complex Processes (Proceedings of
the International Conference on High Performance Scientific Computing,

March 10-14, 2003, Hanoi, Vietnam) Bock, H.G.; Kostina, E.; Phu, H.X;;
Rannacher, R. (Eds.), pp 409-426, Springer, 2004.

Rolf Rabenseifner and Gerhard Wellein,

Communication and Optimization Aspects of Parallel Programming Models
on Hybrid Architectures.

In the International Journal of High Performance Computing Applications,
Vol. 17, No. 1, 2003, pp 49-62. Sage Science Press.

ﬁ I
Slide 178 Rabenseifner, Hager, Jost H L R S

TACC

e

o

References |

Hybrid Parallel Programming

Rolf Rabenseifner,

Communication and Optimization Aspects on Hybrid Architectures.

In Recent Advances in Parallel Virtual Machine and Message Passing Interface, J.
Dongarra and D. Kranzimdiller (Eds.), Proceedings of the 9th European PVM/MPI
Users' Group Meeting, EuroPVM/MPI 2002, Sep. 29 - Oct. 2, Linz, Austria, LNCS,
2474, pp 410-420, Springer, 2002.

Rolf Rabenseifner and Gerhard Wellein,

Communication and Optimization Aspects of Parallel Programming Models on
Hybrid Architectures.

In proceedings of the Fourth European Workshop on OpenMP (EWOMP 2002),
Roma, ltaly, Sep. 18-20th, 2002.

Rolf Rabenseifner,

Communication Bandwidth of Parallel Programming Models on Hybrid
Architectures.

Proceedings of WOMPEI 2002, International Workshop on OpenMP: Experiences
and Implementations, part of ISHPC-IV, International Symposium on High
Performance Computing, May, 15-17., 2002, Kansai Science City, Japan, LNCS
2327, pp 401-412.

ﬁ I
Slide 179 Rabenseifner, Hager, Jost H L R S

TACC

e

References

o

Hybrid Parallel Programming

58
9_

3
‘0

Georg Hager and Gerhard Wellein:
Introduction to High Performance Computing for Scientists and Engineers.
CRC Press, ISBN 978-1439811924.

Barbara Chapman et al.:
Toward Enhancing OpenMP’s Work-Sharing Directives.
In proceedings, W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 645-654, 2006.

Barbara Chapman, Gabriele Jost, and Ruud van der Pas:
Using OpenMP.
The MIT Press, 2008.

Pavan Balaji, Darius Buntinas, David Goodell, William Gropp, Sameer Kumar, Ewing
Lusk, Rajeev Thakur and Jesper Larsson Traeft:

MPI on a Million Processors.

EuroPVM/MPI 2009, Springer.

Alice Koniges et al.: Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

H. Shan, H. Jin, K. Fuerlinger, A. Koniges, N. J. Wright: Analyzing the Effect of
Different Programming Models Upon Performance and Memory Usage on Cray XT5
Platorms. Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

ﬁ I
Slide 180 Rabenseifner, Hager, Jost H L R S

TACC

o

References | =10

Hybrid Parallel Programming

J. Treibig, G. Hager and G. Wellein:

LIKWID: A lightweight performance-oriented tool suite for x86 multicore
environments.

Proc. of PSTI2010, the First International Workshop on Parallel Software Tools and Tool
Infrastructures, San Diego CA, September 13, 2010.

Preprint: http://arxiv.org/abs/1004.4431

H. Stengel:

Parallel programming on hybrid hardware: Models and applications.

Master’s thesis, Ohm University of Applied Sciences/RRZE, Nuremberg, 2010.
http://www.hpc.rrze.uni-erlangen.de/Projekte/hybrid.shtml

e

ﬁ I
Slide 181 Rabenseifner, Hager, Jost H L R S

TACC

o

Further references

Hybrid Parallel Programming

19)
9

§d
O

Sergio Briguglio, Beniamino Di Martino, Giuliana Fogaccia and Gregorio Vlad,
Hierarchical MPI+OpenMP implementation of parallel PIC applications on
clusters of Symmetric MultiProcessors,

10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, ltaly,
29 Sep - 2 Oct, 2003

Barbara Chapman,

Parallel Application Development with the Hybrid MP1+OpenMP Programming
Model,

Tutorial, 9th EuroPVM/MPI & 4th DAPSYS Conference, Johannes Kepler University
Linz, Austria September 29-October 02, 2002

Luis F. Romero, Eva M. Ortigosa, Sergio Romero, Emilio L. Zapata,

Nesting OpenMP and MPI in the Conjugate Gradient Method for Band Systems,
11th European PVM/MPI Users' Group Meeting in conjunction with DAPSYS'04,
Budapest, Hungary, September 19-22, 2004

Nikolaos Drosinos and Nectarios Koziris,

Advanced Hybrid MPI/OpenMP Parallelization Paradigms for Nested Loop
Algorithms onto Clusters of SMPs,

10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,
29 Sep - 2 Oct, 2003

ﬁ I
Slide 182 Rabenseifner, Hager, Jost H L R S

TACC

e

o

Further references

58
9_

3
o]

Holger Brunst and Bernd Mohr,

Performance Analysis of Large-scale OpenMP and Hybrid MPlI/OpenMP
Applications with VampirNG

Proceedings for IWOMP 2005, Eugene, OR, June 2005.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

Felix Wolf and Bernd Mohr,

Automatic performance analysis of hybrid MPI/OpenMP applications
Journal of Systems Architecture, Special Issue "Evolutions in parallel distributed
and network-based processing", Volume 49, Issues 10-11, Pages 421-439,
November 2003.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

Felix Wolf and Bernd Mohr,

Automatic Performance Analysis of Hybrid MPI/OpenMP Applications
short version: Proceedings of the 11-th Euromicro Conference on Parallel,
Distributed and Network based Processing (PDP 2003), Genoa, ltaly, February
2003.

long version: Technical Report FZJ-ZAM-IB-2001-05.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

Hybrid Parallel Programming — —
Slide 183 Rabenseifner, Hager, Jost r r L o — H L R S

TACC

e

o

Further references

Frank Cappello and Daniel Etiemble,

MPI versus MPI+OpenMP on the IBM SP for the NAS benchmarks,
in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/cappello00mpi.html
www.sc2000.org/techpapr/papers/pap.pap214.pdf

Jonathan Harris,

Extending OpenMP for NUMA Architectures,

in proceedings of the Second European Workshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

D. S. Henty,

Performance of hybrid message-passing and shared-memory parallelism for
discrete element modeling,

in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/hentyOOperformance.html
www.sc2000.org/techpapr/papers/pap.pap154.pdf

Hybrid Parallel Programming — —
Slide 184 Rabenseifner, Hager, Jost r r L o — H L R S

e

Further references

19)
9

§d
O

Matthias Hess, Gabriele Jost, Matthias Mller, and Roland Rahle,

Experiences using OpenMP based on Compiler Directed Software DSM on a
PC Cluster,

in WOMPAT2002: Workshop on OpenMP Applications and Tools, Arctic Region
Supercomputing Center, University of Alaska, Fairbanks, Aug. 5-7, 2002.
http://www.hlrs.de/people/mueller/papers/wompat2002/wompat2002.pdf

John Merlin,

Distributed OpenMP: Extensions to OpenMP for SMP Clusters,

in proceedings of the Second EuropeanWorkshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka,
Design of OpenMP Compiler for an SMP Cluster,

in proceedings of the 1st European Workshop on OpenMP (EWOMP'99), Lund,
Sweden, Sep. 1999, pp 32-39. http://citeseer.nj.nec.com/sato99design.html

Alex Scherer, Honghui Lu, Thomas Gross, and Willy Zwaenepoel,

Transparent Adaptive Parallelism on NOWs using OpenMP,

in proceedings of the Seventh Conference on Principles and Practice of Parallel
Programming (PPoPP '99), May 1999, pp 96-106.

Hybrid Parallel Programming — —
Slide 185 Rabenseifner, Hager, Jost r r L o — H L R S

TACC

o

Hybrid Parallel Programming

Further references | 2l

Weisong Shi, Weiwu Hu, and Zhimin Tang,

Shared Virtual Memory: A Survey,

Technical report No. 980005, Center for High Performance Computing,
Institute of Computing Technology, Chinese Academy of Sciences, 1998,
www.ict.ac.cn/chpc/dsm/tr980005.ps.

Lorna Smith and Mark Bull,

Development of Mixed Mode MPI / OpenMP Applications,

in proceedings of Workshop on OpenMP Applications and Tools (WOMPAT 2000),
San Diego, July 2000. www.cs.uh.edu/wompat2000/

Gerhard Wellein, Georg Hager, Achim Basermann, and Holger Fehske,

Fast sparse matrix-vector multiplication for TeraFlop/s computers,

in proceedings of VECPAR'2002, 5th Int'l Conference on High Performance Computing
and Computational Science, Porto, Portugal, June 26-28, 2002, part |, pp 57-70.
http://vecpar.fe.up.pt/

ﬁ I
Slide 186 Rabenseifner, Hager, Jost H L R S

TACC

e

o

Hybrid Parallel Programming

Further references |

Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,

Load Balanced Parallel Simulated Annealing on a Cluster of SMP Nodes.

In proceedings, W. E. Nagel, W. V. Walter, and W. Lehner (Eds.): Euro-Par 2006,
Parallel Processing, 12th International Euro-Par Conference, Aug. 29 - Sep. 1,
Dresden, Germany, LNCS 4128, Springer, 2006.

Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,

Nesting OpenMP in MPI to Implement a Hybrid Communication Method of
Parallel Simulated Annealing on a Cluster of SMP Nodes.

In Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Beniamino Di Martino, Dieter Kranzimuller, and Jack Dongarra (Eds.), Proceedings
of the 12th European PVM/MPI Users' Group Meeting, EuroPVM/MPI 2005,

Sep. 18-21, Sorrento, ltaly, LNCS 3666, pp 18-27, Springer, 2005

ﬁ I
Slide 187 Rabenseifner, Hager, Jost H L R S

TACC

L10
Content | &
o slide slide
* Introduction / Motivation 1 — OpenMP and Threading overhead 71
* Programming models on clusters of SMP nodes .. 6 — Thread/Process Affinity (“Pinning”) 76
— Major programming models 7 — Example: 3D Jacobi Solver 87
— Pure MPI 9 — Example: Sparse Matrix-Vector-Multiply with JDS 90
— Hybrid Masteronly Style 10 — Hybrid MPI1/OpenMP: “how-t0” 96
— Overlapping Communication and Computation 11 * Mismatch Problems 97
— Pure OpenMP 12 — Topology problem 99
* Case Studies / pure MPI vs. hybrid MPI+OpenMP . 13 — Mapping problem with mixed model 106
— The Multi-Zone NAS Parallel Benchmarks 14 — Unnecessary intra-node communication 107
— Benchmark Architectures 18 — Sleeping threads and network saturation problem 108
— On the Sun Constellation Cluster Ranger 20 — Additional OpenMP overhead 109
— NUMA Control (numactl) 25 — Overlapping communication and computation 110
— On a Cray XT5 cluster 31 — Communication overhead with DSM 119
— On a Cray XT4 cluster 36 — Back to the mixed model 124
— On a IBM Power6 system 40 — No silver bullet 125
— Conclusions 47 » Opportunities: Application categories that can 126
« Practical “How-To” on hybrid programming 48 benefit from hybrid parallelization
— How to compile, link and run 50 — Nested Parallelism 127
— Running the code efficiently? 57 — Load-Balancing 128
— A short introduction to ccNUMA 59 — Memory consumption 129
— ccNUMA Memory Locality Problems / First Touch 63 — Opportunities, if MPI speedup is limited due 133
— ccNUMA problems beyond first touch 66 to algorithmic problem
_ Bandwidth and latency 68 — To overcome MPI scaling problems 134
- mary o B 135

A Hybrid Parallel Programming
Slide 188 Rabenseifner, Hager, Jost

pd TACC

H L R | S

e

o

Content

 Thread-safety quality of MPI libraries. 136
— MPI rules with OpenMP 138
— Thread support of MPI libraries 141
— Thread Support within OpenMPI 142

* Tools for debugging and profiling MPI+OpenMP .. 143

— Intel ThreadChecker

144

— Performance Tools Support for Hybrid Code 146

* Other options on clusters of SMP nodes 150
— Pure MPI — multi-core aware 151
— Hierarchical domain decomposition 152
— Scalability of MPI to hundreds of thousands 157
— Remarks on Cache Optimization 158
— Remarks on Cost-Benefit Calculation 159
— Remarks on MPIl and PGAS (UPC & CAF) 160
cSUMMANY ...ttt e ettt i i annannnnnnns 164
— Acknowledgements 165
— Summaries 166
— Conclusions 171

Hybrid Parallel Programming

Slide 189

ﬁ —
Rabenseifner, Hager, Jost H I— R S

£10
| K
cAppendiX ... e 172
— Abstract 173
— Authors 174
— References (with direct relation to the
content of this tutorial) 177
— Further references 181
eContent i it 188

TACC

