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Motivation

• Efficient programming of clusters of SMP nodes
SMP nodes:
• Dual/multi core CPUs
• Multi CPU shared memory
• Multi CPU ccNUMA
• Any mixture with shared memory programming model

• Hardware range
• mini-cluster with dual-core CPUs
• …
• large constellations with large SMP nodes

… with several sockets (CPUs) per SMP node
… with several cores per socket

���� Hierarchical system layout

• Hybrid MPI/OpenMP programming seems natural
• MPI between the nodes
• OpenMP inside of each SMP node

Node Interconnect

SMP nodes
cores
shared
memory

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes
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Motivation

• Which programming model 
is fastest?

• MPI everywhere?

• Fully hybrid 
MPI & OpenMP?

• Something between?
(Mixed model)

?• Often hybrid programming 
slower than pure MPI
– Examples, Reasons, …
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Goals of this tutorial

• Sensitize to problems on clusters of SMP nodes

see sections � Case studies
� Mismatch problems 

• Technical aspects of hybrid programming

see sections � Programming models on clusters 
� Examples on hybrid programming

• Opportunities with hybrid programming

see section � Opportunities: Application categories 
that can benefit from hybrid paralleliz.

• Issues and their Solutions 

with sections � Thread-safety quality of MPI libraries 
� Tools for debugging and profiling 

for MPI+OpenMP

•Less
frustration
& 

•More
success
with your 
parallel 
program on 
clusters of 
SMP nodes
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Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities: 

Application categories that can benefit from hybrid parallelization
• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary
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Major Programming models on hybrid systems

• Pure MPI (one MPI process on each core)
• Hybrid MPI+OpenMP

– shared memory OpenMP
– distributed memory MPI 

• Other: Virtual shared memory systems, PGAS, HPF, …
• Often hybrid programming (MPI+OpenMP) slower than pure MPI

– why?

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential 
program on 
each core

Explicit Message Passing
by calling MPI_Send & MPI_Recv

Node Interconnect

OpenMP inside of the 
SMP nodes

MPI between the nodes
via node interconnect
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some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential 
program on 
each core

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each core

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual 
shared memory

Masteronly
MPI only outside
of parallel regions
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Pure MPI

Advantages
– No modifications on existing MPI codes
– MPI library need not to support multiple threads

Major problems
– Does MPI library uses internally different protocols?

• Shared memory inside of the SMP nodes
• Network communication between the nodes

– Does application topology fit on hardware topology?
– Unnecessary MPI-communication inside of SMP nodes!

pure MPI
one MPI process

on each core

Discussed 
in detail later on 
in the section 
Mismatch 
Problems
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Hybrid Masteronly

Advantages
– No message passing inside of the SMP nodes
– No topology problem

for (iteration ….)
{
#pragma omp parallel 

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas 
in other SMP nodes)

MPI_Recv (halo data 
from the neighbors)

} /*end for loop

Masteronly
MPI only outside 
of parallel regions

Major Problems

– All other threads are sleeping
while master thread communicates!

– Which inter-node bandwidth? 

– MPI-lib must support at least 
MPI_THREAD_FUNNELED

� Section 
Thread-safety 
quality of MPI 

libraries
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Overlapping communication and computation

if (my_thread_rank < …) {

MPI_Send/Recv…. 
i.e., communicate all halo data

} else {

Execute those parts of the application
that do not need halo data
(on non-communicating threads)

}

Execute those parts of the application
that  need halo data
(on all threads)

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing
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Pure OpenMP (on the cluster)

• Distributed shared virtual memory system needed

• Must support clusters of SMP nodes

• e.g., Intel® Cluster OpenMP

– Shared memory parallel inside of SMP nodes

– Communication of modified parts of pages
at OpenMP flush  (part of each OpenMP barrier)

OpenMP only
distributed virtual 
shared memory

i.e., the OpenMP memory and parallelization model
is prepared for clusters! 

Experience:
� Mismatch 

section
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Outline

• Introduction  /  Motivation
• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP
– The Multi-Zone NAS Parallel Benchmarks
– For each application we discuss:

• Benchmark implementations based on different strategies and 
programming paradigms

• Performance results and analysis on different hardware architectures

– Compilation and Execution Summary
Gabriele Jost (University of Texas,TACC/Naval Postgraduate School, Monterey CA)

• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities: Application categories that can benefit from hybrid paralleli.
• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary
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The Multi-Zone NAS Parallel Benchmarks

OpenMP

Call MPI 

MPI 
Processes

sequential

MPI/OpenMP

OpenMPdata copy+ 
sync.

exchange
boundaries

sequentialsequentialTime step

OpenMPOpenMPintra-zones

OpenMPMLP 
Processesinter-zones

Nested 
OpenMPMLP

� Multi-zone versions of the NAS Parallel Benchmarks 
LU,SP, and BT

� Two hybrid sample implementations
� Load balance heuristics part of sample codes
� www.nas.nasa.gov/Resources/Software/software.html
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Using MPI/OpenMP:  ADI Method 
call omp_set_numthreads (weight)
do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call zsolve(u,rsd,…)

end if

end do

end do

...

call mpi_send/recv

subroutine zsolve(u, rsd,…)

...

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

!$OMP DO

do k = 2, nz-1

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5             
u(m,i,j,k)=
dt*rsd(m,i,j,k-1)

end do

end do

end do

end do

!$OMP END DO nowait

...

!$OMP END PARALLEL
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Pipelined Thread Execution in SSOR
subroutine  ssor

!$OMP PARALLEL DEFAULT(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

call sync1 ()
do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5             
rsd(m,i,j,k)=
dt*rsd(m,i,j,k-1)

end do

end do

end do

!$OMP END DO nowait

end do

call sync2 ()
...

!$OMP END PARALLEL
...

subbroutine sync1
…neigh = iam -1

do while (isync(neigh) .eq. 0)

!$OMP FLUSH(isync)

end do

isync(neigh) = 0

!$OMP FLUSH(isync)

…

subroutine sync2
…

neigh = iam -1

do while (isync(neigh) .eq. 1)

!$OMP FLUSH(isync)

end do

isync(neigh) = 1

!$OMP FLUSH(isync)
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• Aggregate sizes:
– Class D: 1632 x 1216 x 34 grid points
– Class E: 4224 x 3456 x 92 grid points

• BT-MZ: (Block tridiagonal simulated CFD application)
– Alternative Directions Implicit (ADI) method
– #Zones: 1024 (D), 4096 (E)
– Size of the zones varies widely:

• large/small about 20
• requires multi-level parallelism to achieve a good load-balance

• LU-MZ: (LU decomposition simulated CFD application)
– SSOR method (2D pipelined method)
– #Zones: 16 (all Classes)
– Size of the zones identical:

• no load-balancing required
• limited parallelism on outer level

• SP-MZ: (Scalar Pentadiagonal simulated CFD application)
– #Zones: 1024 (D), 4096 (E)
– Size of zones identical

• no load-balancing required

Benchmark Characteristics

Load-balanced on 
MPI level: Pure MPI 
should perform best

Pure MPI: Load-
balancing problems!
Good candidate for 

MPI+OpenMP

Limitted MPI 
Parallelism:

� MPI+OpenMP
increases 

Parallelism

Expectations:
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• Sun Constellation (Ranger)
• Cray XT5
• IBM Power 6

Benchmark Architectures
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• OpenMP: 
– Support only per MPI process
– Version 2.5 does not provide support to control to map threads onto CPUs. 

Support to specify thread affinities was  under discussion for 3.0 but has not 
been included

• MPI:
– Initially not designed for NUMA architectures or mixing of threads and 

processes, MPI-2 supports threads in MPI
– API does not provide support for memory/thread placement

• Vendor specific APIs to control thread and memory placement:
– Environment variables
– System commands like numactl

� http://www.halobates.de/numaapi3.pdf

Hybrid code on cc-NUMA architectures



Slide 20 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Sun Constellation Cluster Ranger (1)

• Located at the Texas Advanced Computing Center (TACC), 
University of Texas at Austin (http://www.tacc.utexas.edu)

• 3936 Sun Blades, 4 AMD Quad-core 64bit 2.3GHz processors per 
node (blade), 62976 cores total 

• 123TB aggregrate memory
• Peak Performance 579 Tflops
• InfiniBand Switch interconnect
• Sun Blade x6420 Compute Node:

– 4 Sockets per node
– 4 cores per socket
– HyperTransport System Bus
– 32GB memory
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Sun Constellation Cluster Ranger (2)
• Compilation:

– PGI pgf90 7.1
– mpif90  -tp barcelona-64  -r8  -mp

• Cache optimized benchmarks Execution:
– MPI MVAPICH
– setenv OMP_NUM_THREADS  nthreads
– Ibrun numactl bt-mz.exe

• numactl controls
– Socket affinity: select sockets to run 
– Core affinity: select cores within socket
– Memory policy:where to allocate memory
– http://www.halobates.de/numaapi3.pdf

i.e., with OpenMP
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SUN: Running hybrid on Sun Constellation 
Cluster Ranger

• Highly hierarchical
• Shared Memory:

– Cache-coherent, Non-
uniform memory access 
(ccNUMA) 16-way  Node 
(Blade)

• Distributed memory:
– Network of ccNUMA blades

• Core-to-Core
• Socket-to-Socket
• Blade-to-Blade
• Chassis-to-Chassis
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MPI ping-pong micro 
benchmark results 
on Ranger
• Inside one node:

Ping-pong socket 0 with 1, 2, 3 
and 1, 2, or 4 simultaneous comm.
(quad-core)
� Missing Connection: Communication 

between socket 0 and 3 is slower
� Maximum bandwidth: 

1 x 1180, 2 x 730, 4 x 300 MB/s

• Node-to-node inside one chassis
with 1-6 node-pairs (= 2-12 procs)
� Perfect scaling for up to 6 

simultaneous communications
� Max. bandwidth : 6 x 900 MB/s

• Chassis to chassis (distance: 7 hops) 
with 1 MPI process per node and 1-12 
simultaneous communication links
� Max: 2 x 900 up to 12 x 450 MB/s

“Exploiting Multi-Level Parallelism on the Sun Constellation 
System”, L. Koesterke, et al., TACC, TeraGrid08 Paper
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NPB-MZ Class E Scalability on Sun Constellation

0
500000

1000000
1500000

2000000
2500000

3000000
3500000

4000000
4500000

5000000

1024 2048 4096 8192core#

M
F

lo
p/

s

SP-MZ (MPI)
SP-MZ MPI+OpenMP
BT-MZ (MPI)
BT-MZ MPI+OpenMP

• Scalability in Mflops
• MPI/OpenMP outperforms pure MPI
• Use of numactl essential to achieve scalability

SUN: NPB-MZ Class E  Scalability on Ranger

BT
Significant improve-

ment (235%):
Load-balancing 

issues solved with 
MPI+OpenMP

SP
Pure MPI is already 

load-balanced.
But hybrid 

9.6% faster, due to 
smaller message 

rate at NIC

Cannot be build for 
8192 processes!

Hybrid:
SP: still scales

BT: does not scale
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NUMA Control: Process Placement

• Affinity and Policy can be changed externally through numactl at 
the socket and core level.
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NUMA Operations: Memory Placement

Memory allocation:
• MPI

– local allocation is best
• OpenMP

– Interleave best for large, completely 
shared arrays that are randomly 
accessed by different threads

– local best for private arrays
• Once allocated, 

a memory-structure is fixed
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NUMA Operations (cont. 3)
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Hybrid Batch Script:  4 tasks, 4 threads/task

job script  (Bourne shell) job script  (C shell)

... ... 

#! -pe 4way 32 #! -pe 4way  32 
... ... 

export OMP_NUM_THREADS=4 setenv OMP_NUM_THREADS 4 

ibrun numa.sh ibrun numa.csh

numa.sh
#!/bin/bash 
export        MV2_USE_AFFINITY=0 
export MV2_ENABLE_AFFINITY=0 
export  VIADEV_USE_AFFINITY=0 

#TasksPerNode
TPN=`echo $PE | sed 's/way//'` 
[ ! $TPN ] && echo TPN NOT defined!
[ ! $TPN ] && exit 1 

socket=$(( $PMI_RANK % $TPN ))

numactl -N $socket -m $socket ./a.out

numa.csh
#!/bin/tcsh
setenv MV2_USE_AFFINITY 0 
setenv MV2_ENABLE_AFFINITY 0 
setenv VIADEV_USE_AFFINITY 0 

#TasksPerNode
set TPN = `echo $PE | sed 's/way//'` 
if(! ${%TPN}) echo TPN NOT defined! 
if(! ${%TPN}) exit 0 

@ socket = $PMI_RANK % $TPN 

numactl -N $socket -m $socket ./a.out

fo
r m

va
pi

ch
2

4 MPI per 
node
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Numactl – Pitfalls: 
Using Threads across Sockets
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-pe 2way 8192
export OMP_NUM_THREADS=8

my_rank=$PMI_RANK
local_rank=$(( $my_rank % $myway ))
numnode=$(( $local_rank + 1 ))

Original:
numactl -N $numnode -m $numnode $*

Bad performance!
• Each process runs 8 threads on 4 cores
• Memory allocated on one socket

Rank 0

Rank 1

bt-mz.1024x8 yields 
best load-balance
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Numactl – Pitfalls:
Using Threads across Sockets
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export OMP_NUM_THREADS=8

my_rank=$PMI_RANK
local_rank=$(( $my_rank % $myway ))
numnode=$(( $local_rank + 1 ))

Original:
numactl -N $numnode -m $numnode $*

Modified:
if [ $local_rank -eq 0 ]; then

numactl -N 0,3 -m 0,3 $*
else

numactl -N 1,2 -m 1,2 $*
fi

Rank 0Rank 1

bt-mz.1024x8

Achieves Scalability!
• Process uses cores and memory across 2 sockets
• Suitable for  8 threads
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Cray XT5

• Results obtained by the courtesy of the 
HPCMO Program and the Engineer Research 
and Development Center Major Shared 
Resource Center, Vicksburg, MS 
(http://www.erdc.hpc.mil/index)

• Cray XT5 is located at the Arctic Region 
Supercomputing Center (ARSC)  
(http://www.arsc.edu/resources/pingo)
– 432- Cray XT5 compute nodes with

• 32 GB of shared memory per node (4 GB per core)
• 2 - quad core 2.3 GHz AMD Opteron processors 

per node.
• 1 - Seastar2+ Interconnect Module per node.

– Cray Seastar2+ Interconnect between all 
compute and login nodes
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Cray XT5:  CrayPat Performance Analysis

• module load xt-craypat

• Compilation:
� ftn –fastsse –tp barcelona–64  –r8  –mp=nonuma,[trace ]

• Instrument:
� pat_build –w  –T  TraceOmp,  –g  mpi,omp bt.exe bt.exe.pat

• Execution :
� (export  PAT_RT_HWPC  {0,1,2,..})
� export  OMP_NUM_THREADS  4
� aprun –n  NPROCS –S  1  –d  4  ./bt.exe.pat

• Generate report:
� pat_report –O 

load_balance,thread_times,program_time,mpi_callers –O 
profile_pe.th $1
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Cray XT5:  BT-MZ 32x4 Function Profile
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Cray XT5:  BT-MZ Load-Balance 32x4 vs 128x1

7�*� 8*�9����

7�*� 8*�9�����

• maximum, median, minimum PE are shown

• bt-mz.C.128x1 shows large imbalance in User 
and MPI time

• bt-mz.C.32x4 shows well balanced times
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Running Hybrid on Cray XT4

• Shared Memory:
– Cache-coherent 4-way Node

• Distributed memory:
– Network of nodes

• Core-to-Core
• Node-to-Node

netw
ork
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Hyper Transport

memory

—
skipped —
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Pitfalls:
Process and Thread Placement on Cray XT4 (1)

���� ����

��������

�

netw
ork

���� ����

��������

�

export OMP_NUM_THREADS=4
export MPICH_RANK_REORDER_DISPLAY=1

aprun –n 2 sp-mz.B.2

[PE_0]: rank 0 is on nid01759; 
[PE_0]: rank 1 is on nid01759;

Rank 0

Rank 1

1 node, 4 cores, 8 threads

Terrible execution time
because both 

4-threaded MPI 
processes are running 

on the same socket

—
skipped —
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Pitfalls:
Process and Thread Placement on Cray XT4 (2)
export OMP_NUM_THREADS=4
export MPICH_RANK_REORDER_DISPLAY=1

aprun –n 2 –N 1 sp-mz.B.2

[PE_0]: rank 0 is on nid01759; 
[PE_0]: rank 1 is on nid01882; Rank 0

Rank 1
���� ����

��������

�

netw
ork

���� ����

��������

�

2 nodes, 8 cores, 8 threads

Short execution time
because both 4-way MPI 

processes are running 
on different sockets

—
skipped —
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Number of MPI Procs per Node:
1 process per node allows for 4 threads per process

4 threads per MPI process

Example Batch Script Cray XT4

Cray XT4 at ERDC:
• 1 quad-core AMD Opteron per node

• ftn -fastsse -tp barcelona-64 –mp –o bt-mz.128

#!/bin/csh
#PBS -q standard
#PBS –l mppwidth=512
#PBS -l walltime=00:30:00
module load xt-mpt
cd $PBS_O_WORKDIR
setenv OMP_NUM_THREADS 4
aprun -n 128 -N 1 –d 4./bt-mz.128

setenv OMP_NUM_THREADS 2
aprun –n 256 –N 2 –d 2./bt-mz.256

Maximum of 4 threads 
per MPI process on XT4

2 MPI processes per node, 
2 threads per MPI process

—
skipped —
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IBM Power 6

• Results obtained by the courtesy of the HPCMO Program and the 
Engineer Research and Development Center Major Shared 
Resource Center, Vicksburg, MS (http://www.erdc.hpc.mil/index)

• The IBM Power 6 System is located at 
(http://www.navo.hpc.mil/davinci_about.html)

• 150 Compute Nodes
• 32   4.7GHz Power6 Cores per Node (4800 cores total)
• 64 GBytes of dedicated memory per node
• QLOGOC Infiniband DDR interconnect
• IBM MPI: MPI 1.2 + MPI-IO

� mpxlf_r –O4  –qarch=pwr6  –qtune=pwr6  –qsmp=omp

• Execution:
� poe launch  $PBS_O_WORKDIR./sp.C.16x4.exe

:��;< ��������5�����
=5�>��(��


�� �5������5� 58��5��5�

������
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NPB-MZ Class D on IBM Power 6:
Exploiting SMT for 2048 Core Results
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��

Doubling the number of threads 
through hyperthreading (SMT):
#!/bin/csh
#PBS -l select=32:ncpus=64:
mpiprocs=NP:ompthreads=NT

����

?
����@

best of category
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LU-MZ Class D Scalability IBM Power 6

+ LU-MZ significantly  benefits from hybrid mode:
� Pure MPI limited to 16 cores, due to #zones = 16 
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Conventional Multi-Threading

• Threads alternate
– Nothing shared

Functional
Units

FX0

FX1

FP0

FP1

LS0

LS1

BRX

CRL

Thread 0 Thread 1

Time

Charles Grassl, IBM
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Simultaneous Multi-Threading

• Simultaneous execution
– Shared registers
– Shared functional units

FX0

FX1

FP0

FP1

LS0

LS1

BRX

CRL

Thread 0 Thread 1

0 1

Charles Grassl, IBM
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• Simultaneous execution
– Shared registers
– Shared functional units

FX0

FX1

FP0

FP1

LS0

LS1

BRX

CRL

Thread 0 Thread 1

0 1

Charles Grassl, IBM

Simultaneous Multi-Threading
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• Compilation:
� mpxlf_r –O4  –qarch=pwr6  –qtune=pwr6  –qsmp=omp –pg

• Execution :
� export  OMP_NUM_THREADS  4
� poe launch  $PBS_O_WORKDIR./sp.C.16x4.exe
� Generates a file gmount.MPI_RANK.out for each MPI Process

• Generate report:
� gprof sp.C.16x4.exe  gmon*

Performance Analysis on IBM Power 6

%   cumulative   self              self total
time   seconds   seconds calls  ms/call  ms/call name
16.7     117.94   117.94 205245     0.57     0.57 .@10@x_solve@OL@1 [2]
14.6     221.14   103.20   205064     0.50     0.50 .@15@z_solve@OL@1 [3]
12.1     307.14    86.00   205200     0.42     0.42 .@12@y_solve@OL@1 [4]
6.2     350.83    43.69   205300     0.21     0.21 .@8@compute_rhs@OL@1@OL@6 [5]



Slide 47 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Conclusions:

• BT-MZ:
� Inherent workload imbalance on MPI level
� #nprocs = #nzones yields poor performance
� #nprocs < #zones => better workload balance, but decreases parallelism
� Hybrid MPI/OpenMP yields better load-balance, 

maintains amount of parallelism

• SP-MZ:
� No workload imbalance on MPI level, pure MPI should perform best
� MPI/OpenMP outperforms MPI on some platforms due contention to 

network access within a node

• LU-MZ:
� Hybrid MPI/OpenMP increases level of parallelism

• “Best of category” depends on many factors
� Depends on many factors
� Hard to predict
� Good thread affinity is essential 
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Outline

• Introduction  /  Motivation
• Programming models on clusters of SMP nodes
• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Practical “How-To” on hybrid programming
Georg Hager,  Regionales Rechenzentrum Erlangen (RRZE)

• Mismatch Problems
• Application categories that can benefit from hybrid parallelization
• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary
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Hybrid Programming How-To: Overview

• A practical introduction to hybrid programming
– How to compile and link
– Getting a hybrid program to run on a cluster

• Running hybrid programs efficiently on multi-core clusters
– Affinity issues

• ccNUMA
• Bandwidth bottlenecks

– Intra-node MPI/OpenMP anisotropy
• MPI communication characteristics
• OpenMP loop startup overhead

– Thread/process binding
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How to compile, link and run

• Use appropriate OpenMP compiler switch (-openmp, -xopenmp, 
-mp, -qsmp=openmp, …) and MPI compiler script (if available)

• Link with MPI library
– Usually wrapped in MPI compiler script
– If required, specify to link against thread-safe MPI library

• Often automatic when OpenMP or auto-parallelization is switched on

• Running the code
– Highly non-portable! Consult system docs! (if available…)
– If you are on your own, consider the following points
– Make sure OMP_NUM_THREADS etc. is available on all MPI 

processes
• Start “env VAR=VALUE … <YOUR BINARY>” instead of your binary alone
• Use Pete Wyckoff’s mpiexec MPI launcher (see below):

http://www.osc.edu/~pw/mpiexec

– Figure out how to start less MPI processes than cores on your 
nodes
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Some examples for compilation and execution (1)

• NEC SX9
– NEC SX9 compiler
– mpif90 –C hopt –P openmp … # –ftrace for profiling info
– Execution:

$ export OMP_NUM_THREADS=<num_threads>
$ MPIEXPORT=“OMP_NUM_THREADS”
$ mpirun –nn <# MPI procs per node> -nnp <# of nodes> a.out

• Standard Intel Xeon cluster (e.g. @HLRS):
– Intel Compiler
– mpif90 –openmp …

– Execution (handling of OMP_NUM_THREADS, see next slide):

$ mpirun_ssh –np <num MPI procs> -hostfile machines a.out
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Handling of OMP_NUM_THREADS 
• without any support by mpirun:

– E.g. with mpich-1
– Problem:

mpirun has no features to export environment variables to the via ssh
automatically started MPI processes

– Solution: Set
export OMP_NUM_THREADS=<# threads per MPI process>
in ~/.bashrc (if a bash is used as login shell)

– If you want to set OMP_NUM_THREADS individually when starting the MPI 
processes:

• Add 
test -s ~/myexports && . ~/myexports
in your ~/.bashrc

• Add
echo '$OMP_NUM_THREADS=<# threads per MPI process>' > ~/myexports
before invoking mpirun

• Caution: Several invocations of mpirun cannot be executed at the same time with this trick!

Some examples for compilation and execution (2)
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Handling of OMP_NUM_THREADS  (continued)

• with support by OpenMPI –x option:
export OMP_NUM_THREADS= <# threads per MPI process>

mpiexec –x OMP_NUM_THREADS –n <# MPI processes> ./executable

Some examples for compilation and execution (3)
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Some examples for compilation and execution (4)

• Sun Constellation Cluster:
• mpif90 -fastsse -tp barcelona-64 –mp …

• SGE Batch System
• setenv OMP_NUM_THREADS

• ibrun numactl.sh a.out

• Details see TACC Ranger User Guide 
(www.tacc.utexas.edu/services/userguides/ranger/#numactl)

• Cray XT5:
• ftn -fastsse -tp barcelona-64 -mp=nonuma …

• aprun -n nprocs -N nprocs_per_node a.out 
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Interlude: Advantages of mpiexec
or similar mechanisms

• Uses PBS/Torque Task Manager (“TM”) interface to spawn MPI 
processes on nodes
– As opposed to starting remote processes with ssh/rsh:

• Correct CPU time accounting in batch system
• Faster startup 
• Safe process termination
• Understands PBS per-job nodefile
• Allowing password-less user login not required between nodes 

– Support for many different types of MPI
• All MPICHs, MVAPICHs, Intel MPI, …

– Interfaces directly with batch system to determine number of procs
– Downside: If you don’t use PBS or Torque, you’re out of luck…

• Provisions for starting less processes per node than available cores
– Required for hybrid programming
– “-pernode” and “-npernode #” options – does not require messing 

around with nodefiles
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Running the code
Examples with mpiexec

• Example for using mpiexec on a dual-socket quad-core cluster:

$ export OMP_NUM_THREADS=8
$ mpiexec -pernode ./a.out

• Same but 2 MPI processes per node:

$ export OMP_NUM_THREADS=4
$ mpiexec -npernode 2 ./a.out

• Pure MPI:

$ export OMP_NUM_THREADS=1 # or nothing if serial code
$ mpiexec ./a.out
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Running the code efficiently?

• Symmetric, UMA-type compute nodes have become rare animals
– NEC SX
– Intel 1-socket (“Port Townsend/Melstone/Lynnfield”) – see case 

studies
– Hitachi SR8000, IBM SP2, single-core multi-socket Intel Xeon…

(all dead)
• Instead, systems have become “non-isotropic” on the node level

– ccNUMA (AMD Opteron, SGI Altix, 
IBM Power6 (p575), Intel Nehalem)

– Multi-core, multi-socket
• Shared vs. separate caches
• Multi-chip vs. single-chip
• Separate/shared buses   
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Issues for running code efficiently 
on “non-isotropic” nodes

• ccNUMA locality effects
– Penalties for inter-LD access
– Impact of contention
– Consequences of file I/O for page placement
– Placement of MPI buffers

• Multi-core / multi-socket anisotropy effects
– Bandwidth bottlenecks, shared caches
– Intra-node MPI performance

• Core � core  vs.  socket � socket

– OpenMP loop overhead depends on mutual position of threads 
in team
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A short introduction to ccNUMA

• ccNUMA:
– whole memory is transparently accessible by all processors
– but physically distributed
– with varying bandwidth and latency
– and potential contention (shared memory paths)

C C C C

M M

C C C C

M M
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Example: HP DL585 G5
4-socket ccNUMA Opteron 8220 Server
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• CPU
– 64 kB L1 per core
– 1 MB L2 per core
– No shared caches
– On-chip memory controller (MI)
– 10.6 GB/s local memory bandwidth

• HyperTransport 1000 network
– 4 GB/s per link per direction

• 3 distance categories for 
core-to-memory connections:
– same LD
– 1 hop
– 2 hops

• Q1: What are the real penalties for non-local accesses?
• Q2: What is the impact of contention?

HT

HT

HTHT
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Effect of non-local access on HP DL585 G5:
Serial vector triad A(:)=B(:)+C(:)*D(:)

local

1 hop

2 hops
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Contention vs. parallel access on HP DL585 G5:
OpenMP vector triad A(:)=B(:)+C(:)*D(:)

T = # threads
S = # sockets

In-cache performance 
unharmed by ccNUMA

Single LD saturated 
by 2 cores!

Perfect scaling 
across LDs

Affinity matters!
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ccNUMA Memory Locality Problems

• Locality of reference is key to scalable performance on ccNUMA
– Less of a problem with pure MPI, but see below

• What factors can destroy locality?
• MPI programming:

– processes lose their association with the CPU the mapping took 
place on originally

– OS kernel tries to maintain strong affinity, but sometimes fails
• Shared Memory Programming (OpenMP, hybrid):

– threads losing association with the CPU the mapping took place on 
originally

– improper initialization of distributed data
– Lots of extra threads are running on a node, especially for hybrid

• All cases: 
– Other agents (e.g., OS kernel) may fill memory with data that 

prevents optimal placement of user data
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Avoiding locality problems

• How can we make sure that memory ends up where it is close to 
the CPU that uses it?
– See the following slides

• How can we make sure that it stays that way throughout program 
execution?
– See end of section
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Solving Memory Locality Problems: First Touch

• "Golden Rule" of ccNUMA:
A memory page gets mapped into the local memory of the 
processor that first touches it!
– Except if there is not enough local memory available
– this might be a problem, see later
– Some OSs allow to influence placement in more direct ways

• cf. libnuma (Linux), MPO (Solaris), …

• Caveat: "touch" means "write", not "allocate"
• Example: 

double *huge = (double*)malloc(N*sizeof(double));
// memory not mapped yet
for(i=0; i<N; i++) // or i+=PAGE_SIZE

huge[i] = 0.0; // mapping takes place here!

• It is sufficient to touch a single item to map the entire page

Im
porta

nt
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ccNUMA problems beyond first touch
• OS uses part of main memory for

disk buffer (FS) cache
– If FS cache fills part of memory, 

apps will probably allocate from 
foreign domains

– � non-local access!
– Locality problem even on hybrid 

and pure MPI with “asymmetric”
file I/O, i.e. if not all MPI processes
perform I/O

• Remedies
– Drop FS cache pages after user job has run (admin’s job)

• Only prevents cross-job buffer cache “heritage”

– “Sweeper” code (run by user)
– Flush buffer cache after I/O if necessary (“sync” is not sufficient!)
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ccNUMA problems beyond first touch
• Real-world example: ccNUMA vs. UMA and the Linux buffer cache
• Compare two 4-way systems: AMD Opteron ccNUMA vs. Intel UMA, 4 GB 

main memory

• Run 4 concurrent
triads (512 MB each)
after writing a large 
file

• Report perfor-
mance vs. file size

• Drop FS cache after
each data point
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Intra-node MPI characteristics: IMB Ping-Pong benchmark

• Code (to be run on 2 processors):

• Intranode (1S):   mpirun –np 2 –pin “1 3” ./a.out
• Intranode (2S):   mpirun –np 2 –pin “2 3” ./a.out
• Internode:   mpirun –np 2 –pernode ./a.out

wc = MPI_WTIME()

do i=1,NREPEAT

if(rank.eq.0) then
MPI_SEND(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD,ierr)
MPI_RECV(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD, &

status,ierr)
else
MPI_RECV(…)
MPI_SEND(…)

endif

enddo

wc = MPI_WTIME() - wc
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IMB Ping-Pong: Latency
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)
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IMB Ping-Pong: Bandwidth Characteristics 
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)

Shared cache 
advantage

intranode
shm comm
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Between two cores of 
one socket

Between two nodes 
via InfiniBand

Between two sockets 
of one node
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OpenMP Overhead

• As with intra-node MPI, OpenMP loop start overhead varies with the 
mutual position of threads in a team

• Possible variations
– Intra-socket vs. inter-socket
– Different overhead for “parallel for” vs. plain “for”
– If one multi-threaded MPI process spans multiple sockets,

• … are neighboring threads on neighboring cores?
• … or are threads distributed “round-robin” across cores?

• Test benchmark: Vector triad
#pragma omp parallel
for(int j=0; j < NITER; j++){
#pragma omp (parallel) for

for(i=0; i < N; ++i)
a[i]=b[i]+c[i]*d[i];
if(OBSCURE)

dummy(a,b,c,d);
}

Look at performance for small
array sizes!
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OpenMP Overhead

Nomenclature:

1S/2S
1-/2-socket

RR
round-robin

SS
socket-socket

inner
parallel on 
inner loop

OMP overhead can be 
comparable to MPI latency!
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Thread synchronization overhead 
Barrier overhead in CPU cycles: pthreads vs. OpenMP vs. spin loop

2 Threads Q9550 (shared L2) i7 920 (shared L3)

pthreads_barrier_wait 23739 6511

omp barrier (icc 11.0) 399 469

Spin loop 231 270

4 Threads Q9550 i7 920 (shared L3)

pthreads_barrier_wait 42533 9820

omp barrier (icc 11.0) 977 814

Spin loop 1106 475

pthreads � OS kernel call
Spin loop does fine for shared cache sync

OpenMP & Intel compiler
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Thread synchronization overhead 
Barrier overhead: OpenMP icc vs. gcc

2 Threads Q9550 (shared L2) i7 920 (shared L3)

gcc 4.3.3 22603 7333

icc 11.0 399 469

4 Threads Q9550 i7 920 (shared L3)

gcc 4.3.3 64143 10901

icc 11.0 977 814

gcc obviously uses a pthreads barrier for the OpenMP barrier:

Correct pinning of threads:

• Manual pinning in source code (see below) or

• likwid-pin: http://code.google.com/p/likwid/
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Xeon E5420 2 Threads shared L2 same socket different socket

pthreads_barrier_wait 5863 27032 27647

omp barrier (icc 11.0) 576 760 1269

Spin loop 259 485 11602

Nehalem 2 Threads Shared SMT 
threads

shared L3 different socket

pthreads_barrier_wait 23352 4796 49237

omp barrier (icc 11.0) 2761 479 1206

Spin loop 17388 267 787

Thread synchronization overhead 
Barrier overhead: Topology influence

• SMT can be a big performance problem for synchronizing threads

• Well known for a long time…
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Thread/Process Affinity (“Pinning”)

• Highly OS-dependent system calls
– But available on all systems

Linux: sched_setaffinity(), PLPA (see below) � hwloc
Solaris: processor_bind()
Windows: SetThreadAffinityMask()
…

• Support for “semi-automatic” pinning in some compilers/environments
– Intel compilers > V9.1 (KMP_AFFINITY environment variable)
– Pathscale
– SGI Altix dplace (works with logical CPU numbers!)
– Generic Linux: taskset, numactl, likwid-pin (see below)

• Affinity awareness in MPI libraries
– SGI MPT
– OpenMPI
– Intel MPI
– …

Widely usable example: Using PLPA
under Linux!

Seen on SUN Ranger slides
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Explicit Process/Thread Binding With PLPA on Linux:
http://www.open-mpi.org/software/plpa/
• Portable Linux Processor Affinity
• Wrapper library for sched_*affinity() functions

– Robust against changes in kernel API
• Example for pure OpenMP: Pinning of threads 

#include <plpa.h>
...
#pragma omp parallel
{

#pragma omp critical
{
if(PLPA_NAME(api_probe)()!=PLPA_PROBE_OK) {

cerr << "PLPA failed!" << endl; exit(1);
}
plpa_cpu_set_t msk;
PLPA_CPU_ZERO(&msk);
int cpu = omp_get_thread_num();
PLPA_CPU_SET(cpu,&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);

}

Pinning 
available?

Which CPU 
to run on?

Pin “me”

Care about correct 
core numbering! 
0…N-1 is not always 
contiguous! If 
required, reorder by 
a map:
cpu = map[cpu];
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Process/Thread Binding With PLPA
• Example for pure MPI: Process pinning

– Bind MPI processes to cores in a cluster 
of 2x2-core machines

• Hybrid case: 

MPI_Comm_rank(MPI_COMM_WORLD,&rank);
int mask = (rank % 4);
PLPA_CPU_SET(mask,&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0, 

sizeof(cpu_set_t), &msk);
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MPI_Comm_rank(MPI_COMM_WORLD,&rank);
#pragma omp parallel
{
plpa_cpu_set_t msk;
PLPA_CPU_ZERO(&msk);
int cpu = (rank % MPI_PROCESSES_PER_NODE)*omp_num_threads

+ omp_get_thread_num();
PLPA_CPU_SET(cpu,&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0, sizeof(cpu_set_t), &msk);

}
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How do we figure out the topology?

• … and how do we enforce the mapping without changing the code?
• Compilers and MPI libs may still give you ways to do that

• But LIKWID supports all sorts of combinations:

Like
I
Knew
What
I’m
Doing

• Open source tool collection (developed at RRZE):

http://code.google.com/p/likwid
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Likwid Tool Suite

• Command line tools for Linux:
– works with standard linux 2.6 kernel
– supports Intel and AMD CPUs
– Supports all compilers whose OpenMP implementation is based on 

pthreads

• Current tools:
– likwid-topology: Print thread and cache topology

(similar to lstopo from the hwloc package)
– likwid-pin: Pin threaded application without touching code
– likwid-perfCtr: Measure performance counters (similar to SGI‘s perfex or

lipfpm tools)
– likwid-features: View and enable/disable hardware prefetchers (Core2 

only at the moment)
– likwid-bench: Low-level benchmark construction tool
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likwid-topology – Topology information

• Based on cpuid information

• Functionality:
– Measured clock frequency

– Thread topology

– Cache topology

– Cache parameters (-c command line switch)

– ASCII art output (-g command line switch)

• Currently supported:
– Intel Core 2 (45nm + 65 nm)

– Intel Nehalem

– AMD K10 (Quadcore and Hexacore)

– AMD K8
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Output of likwid-topology

CPU name:       Intel Core i7 processor
CPU clock:      2666683826 Hz
*************************************************************
Hardware Thread Topology
*************************************************************
Sockets:                2
Cores per socket:       4
Threads per core:       2
-------------------------------------------------------------
HWThread Thread Core Socket
0               0               0               0
1               1               0               0
2               0               1               0
3               1               1               0
4               0               2               0
5               1               2               0
6               0               3               0
7               1               3               0
8               0               0               1
9               1               0               1
10              0               1               1
11              1               1               1
12              0               2               1
13              1               2               1
14              0               3               1
15              1               3               1
-------------------------------------------------------------
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likwid-topology continued

• … and also try the ultra-cool -g option!

Socket 0: ( 0 1 2 3 4 5 6 7 )
Socket 1: ( 8 9 10 11 12 13 14 15 )
-------------------------------------------------------------

*************************************************************
Cache Topology
*************************************************************
Level:   1
Size:    32 kB
Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )
-------------------------------------------------------------
Level:   2
Size:    256 kB
Cache groups:   ( 0 1 ) ( 2 3 ) ( 4 5 ) ( 6 7 ) ( 8 9 ) ( 10 11 ) ( 12 13 ) ( 14 15 )
-------------------------------------------------------------
Level:   3
Size:    8 MB
Cache groups:   ( 0 1 2 3 4 5 6 7 ) ( 8 9 10 11 12 13 14 15 )
-------------------------------------------------------------
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likwid-pin

• Inspired and based on ptoverride (Michael Meier, RRZE) and taskset

• Pins process and threads to specific cores without touching code

• Directly supports pthreads, gcc OpenMP, Intel OpenMP

• Allows user to specify skip mask (i.e., supports many different compiler/MPI 
combinations)

• Can also be used as replacement for taskset

• Uses logical (contiguous) core numbering when running inside a restricted set of 
cores

• Supports logical core numbering inside node, socket, core

• Usage examples:
– env OMP_NUM_THREADS=6 likwid-pin -t intel -c 0,2,4-6 ./myApp parameters 

– env OMP_NUM_THREADS=6 likwid-pin –c S0:0-2@S1:0-2 ./myApp

– env OMP_NUM_THREADS=2 mpirun –npernode 2 \
likwid-pin -s 0x3 -c 0,1 ./myApp parameters 
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Example: STREAM benchmark on 12-core Intel Westmere:
Anarchy vs. thread pinning

no pinning

Pinning (physical cores first)
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Topology (“mapping”) choices with MPI+OpenMP:
More examples using Intel MPI+compiler & home-grown mpirun

One MPI process per 
node

One MPI process per 
socket

OpenMP threads 
pinned “round robin”
across cores in 
node

Two MPI processes 
per socket

env OMP_NUM_THREADS=8 mpirun -pernode \
likwid-pin –t intel -c 0-7 ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \
-pin "0,1,2,3_4,5,6,7" ./a.out

env OMP_NUM_THREADS=4 mpirun -npernode 2 \
-pin "0,1,4,5_2,3,6,7" \
likwid-pin –t intel -c 0,2,1,3 ./a.out

env OMP_NUM_THREADS=2 mpirun -npernode 4 \
-pin "0,1_2,3_4,5_6,7" \
likwid-pin –t intel -c 0,1 ./a.out
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Case study: 3D Jacobi Solver
Basic implementation (2 arrays; no blocking etc…)

do k = 1 , Nk
do j = 1 , Nj

do i = 1 , Ni
y(i,j,k) = a*x(i,j,k) + b*

(x(i-1,j,k)+ x(i+1,j,k) + x(i,j-1,k)
+x(i,j+1,k)+ x(i,j,k-1) + x(i,j,k+1))

enddo
enddo

enddo

MPI Parallelization by

• Domain Decomposition

• Halo cells

• Data Exchange through cyclic SendReceive operation

Performance metric:
Million Lattice Site Updates per second (MLUPs)

Equivalent MFLOPs:
8 FLOP/LUP * MLUPs
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MPI/OpenMP Parallelization – 3D Jacobi

i

j

k

1,1,0

0,0,1

1,0,0

0,0,0

1,1,1

• Cubic 3D computational domain with periodic BCs in all directions
• Use single-node IB/GE cluster with one dual-core chip per node
• Homogeneous distribution of workload, e.g. on 8 procs

pure MPI:

000001

010011
100101

110111

hybrid:

000

100

110

010

1,0,1
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Performance Data for 3D MPI/hybrid Jacobi
Strong scaling, N3 = 4803

IB

GE

FullHybrid: Thread 0: Communication + boundary cell updates
Thread 1: Inner cell updates

Performance model

T = TCOMM + TCOMP

TCOMP = N3 / P0

TCOMM = Vdata / BW

P0 = 150 MLUP/s
BW(GE) = 100 MByte/s

Performance estimate (GE) for n nodes:
P(n) = N3 / ((TCOMP/n) + TCOMM(n))

Vdata = Data volume of 
halo exchange
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Example: Sparse MVM
JDS parallel sparse matrix-vector multiply – storage scheme

…

column index
ro

w
 in

de
x

1 2 3 4 …
1
2
3
4
…

4 3 2 21 3 36711 7 26 4 651 … col_idx[]9 9

val[]

1 11 21 … jd_ptr[] 2 16 4 953 1087 … perm[]

• val[] stores all the nonzeroes (length 
Nnz)

• col_idx[] stores the column index of 
each nonzero (length Nnz)

• jd_ptr[] stores the starting index of 
each new jagged diagonal in val[]

• perm[] holds the permutation map 
(length Nr) 

(JDS = Jagged Diagonal Storage)

—
skipped —
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JDS Sparse MVM – Kernel Code
OpenMP parallelization

• Implement c(:) = m(:,:) * b(:)
• Operation count = 2Nnz

do diag=1, zmax
diagLen = jd_ptr(diag+1) - jd_ptr(diag)
offset = jd_ptr(diag) – 1

!$OMP PARALLEL DO
do i=1, diagLen

c(i) = c(i) + val(offset+i) * b(col_idx(offset+i))
enddo

!$OMP END PARALLEL DO
enddo

• Long inner loop (max. Nr): OpenMP parallelization / vectorization
• Short outer loop (number of jagged diagonals)
• Multiple accesses to each element of result vector c[]

– optimization potential!
• Stride-1 access to matrix data in val[]
• Indexed (indirect) access to RHS vector b[]

—
skipped —
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JDS Sparse MVM
MPI parallelization

Row-wise distribution

P2

P0

P

P

1

3

Each processor: local JDS (shift&order) 

P0

P

P

1

3

P2

Avoid mixing of local and 
non-local diagonals:

1. Shift within local subblock

2. Fill local subblock with non-
local elements from the right

P0

P

P

1

3

P2

—
skipped —
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JDS Sparse MVM
Parallel MVM implementations: MPP

Start: isend/irecv

Release local diags

Compute MVM with 
diags released

Test:irecv

Release diags ?

irecv ?

1

2

3

4

5

6

MPI
• One MPI process per processor
• Non-blocking MPI communication
• Potential overlap of communication and 

computation
– However, MPI progress is only 

possible inside MPI calls on many 
implementations

• SMP Clusters: Intra-node and inter-
node MPI

—
skipped —
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JDS Sparse MVM
Parallel MVM implementations: Hybrid

1

2

3

4

5

6

ThreadsM ThreadsM

1

2

34

5

6

LOCK: Rel. list

LOCK: Rel. list

OMP END PARALLEL

OMP PARALLEL

MPI MPI
VECTOR mode TASK mode

VECTOR mode:

• Automatic parallel. of inner 
i loop (data parallel)

• Single threaded MPI calls

TASK mode:

• Functional parallelism: 
Simulate asynchronous 
data transfer! (OpenMP)

• Release list - LOCK 
• Single threaded MPI calls
• Optional: Comm. Thread 

executes configurable 
fraction of work 
(load = 0...1)

—
skipped —
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JDS Sparse MVM:
Performance and scalability on two different platforms

GBE
P
C

P
C

C C

MI

Memory

P
C

P
C

C C

MI

Memory

Opteron 270 2 GHz

P
C

Chipset

Memory

P
C

C

P
C

P
C

CSDR IB

Xeon 5160 3 GHz

no NUMA 
placement!

hybrid 
advantage

71·106 
nonzeroes

—
skipped —
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MPI/OpenMP hybrid “how-to”: Take-home messages

• Do not use hybrid if the pure MPI code scales ok

• Be aware of intranode MPI behavior
• Always observe the topology dependence of

– Intranode MPI
– OpenMP overheads

• Enforce proper thread/process to core binding, using appropriate 
tools (whatever you use, but use SOMETHING)

• Multi-LD OpenMP processes on ccNUMA nodes require correct 
page placement

• Finally: Always compare the best pure MPI code with the best 
OpenMP code!
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Outline

• Introduction  /  Motivation
• Programming models on clusters of SMP nodes
• Case Studies  /  pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary



Slide 98 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Mismatch Problems

• None of the programming models
fits to the hierarchical hardware 
(cluster of SMP nodes)

• Several mismatch problems
� following slides

• Benefit through hybrid programming
� Opportunities, see next section

• Quantitative implications 
� depends on you application 

Examples: No.1 No.2
Benefit through hybrid (see next section) 30% 10%
Loss by mismatch problems –10% –25%
Total +20% –15%

In most 
cases: 
Both
categories!

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes
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The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

17 x inter-node connections per node

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

1 x inter-socket connection per node

Sequential ranking of
MPI_COMM_WORLD

Does it matter?
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The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

A

A

A

A

A

AA

A

B

B

B

B

B

BB

B

C

C

C

C C

CC

C

D

D

D

D D

DD

D

E

E

E

E E

E

E

E

F

F

F

F F

F

F

F

G

GG

G G

G

G

G

H

HH

H H

H

H

H

I

II

I

I

I

I

I

J

JJ

J

J

J

J

J

32 x inter-node connections per node

0 x inter-socket connection per node

Round robin ranking of
MPI_COMM_WORLD

AA
AA

AA

AA

JJ
JJ

JJ

JJ

Never trust the default !!!
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The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of 
domain decomposition

12 x inter-node connections per node

Bad affinity of cores to thread ranks
4 x inter-socket connection per node
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The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of 
domain decomposition

12 x inter-node connections per node

2 x inter-socket connection per node

Good affinity of cores to thread ranks
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The Topology Problem with

Problem
– Does application topology inside of SMP parallelization 

fit on inner hardware topology of each SMP node?

Solutions:
– Domain decomposition inside of each thread-parallel 

MPI process,  and
– first touch strategy with OpenMP

Successful examples:
– Multi-Zone NAS Parallel Benchmarks (MZ-NPB)

Optimal ?

Loop-worksharing 
on 8 threads

Exa.: 2 SMP nodes, 8 cores/node

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

MPI process 0 MPI process 1

Optimal ?

Minimizing ccNUMA
data traffic through 
domain decomposition 
inside of each 
MPI process 

—
skipped —
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The Topology Problem with

Application example:
• Same Cartesian application aspect ratio: 5 x 16 
• On system with 10 x dual socket x quad-core
• 2 x 5 domain decomposition

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

MPI Level

OpenMP

Application

3 x inter-node connections per node, but ~ 4 x more traffic

2 x inter-socket connection per node

Affinity of cores to thread ranks !!!

—
skipped —
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Numerical Optimization inside of an SMP node

2nd level of domain decomposition: OpenMP

3rd level: 2nd level cache

4th level: 1st level cache

Optimizing the
numerical
performance
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The Mapping Problem with mixed model

Several multi-threaded MPI 
process per SMP node:

Problem
– Where are your processes 

and threads really located?

Solutions:
– Depends on your platform,
– e.g., with numactl

hybrid MPI+OpenMP

pure MPI
&

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

MPI 
process

4 x multi-
threaded

MPI 
process

4 x multi-
threaded

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

Do we have this? … or that?

MPI 
pro-
cess

0

MPI 
pro-
cess

1

� Case study on 
Sun Constellation Cluster 

Ranger
with BT-MZ and SP-MZ

Further questions:
– Where is the NIC1) located?
– Which cores share caches?

1) NIC = Network Interface Card
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Unnecessary intra-node communication

Problem:
– If several MPI process on each SMP node

� unnecessary intra-node communication
Solution:

– Only one MPI process per SMP node
Remarks:

– MPI library must use appropriate
fabrics / protocol for intra-node communication

– Intra-node bandwidth higher than 
inter-node bandwidth
� problem may be small

– MPI implementation may cause 
unnecessary data copying
� waste of memory bandwidth 

Quality aspects
of the MPI library

Mixed model
(several multi-threaded MPI 
processes per SMP node)

pure MPI
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Sleeping threads and network saturation 
with

Problem 1:
– Can the master thread 

saturate the network?
Solution:
– If not, use mixed model
– i.e., several MPI 

processes per SMP node

Problem 2:
– Sleeping threads are 

wasting CPU time
Solution:
– Overlapping of 

computation and 
communication

Problem 1&2 together:
– Producing more idle time 

through lousy bandwidth 
of master thread

for (iteration ….)
{
#pragma omp parallel 

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas 
in other SMP nodes)

MPI_Recv (halo data 
from the neighbors)

} /*end for loop

Masteronly
MPI only outside of 

parallel regions

Node Interconnect

Master
thread

Socket 1

SMP node SMP node

Socket 2

Master
thread

Socket 1

Socket 2

Master
thread

Master
thread

sle
ep

ing

sle
ep

ing
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OpenMP:  Additional Overhead & Pitfalls

• Using OpenMP 
� may prohibit compiler optimization
� may cause significant loss of computational performance

• Thread fork / join overhead

• On ccNUMA SMP nodes:

– Loss of performance due to missing memory page locality 
or missing first touch strategy

– E.g. with the masteronly scheme:
• One thread produces data

• Master thread sends the data with MPI

�data may be internally communicated from one memory to the other one

• Amdahl’s law for each level of parallelism

• Using MPI-parallel application libraries?  � Are they prepared for hybrid? 

See, e.g., the necessary –O4 flag 
with mpxlf_r on IBM Power6 systems
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Overlapping communication and computation

Three problems:
• the application problem:

– one must separate application into: 
• code that can run before the halo data is received
• code that needs halo data

�very hard to do !!!

• the thread-rank problem:
– comm. / comp. via

thread-rank
– cannot use

work-sharing directives
�loss of major

OpenMP support
(see next slide)

• the load balancing problem

if (my_thread_rank < 1) {
MPI_Send/Recv….

} else {
my_range = (high-low-1) / (num_threads-1) + 1;
my_low = low + (my_thread_rank+1)*my_range;
my_high=high+ (my_thread_rank+1+1)*my_range;
my_high = max(high, my_high)
for (i=my_low; i<my_high; i++) {

….
}

}

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing
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Overlapping communication and computation

Subteams
• Important proposal 

for OpenMP 3.x 
or  OpenMP 4.x

#pragma omp parallel
{
#pragma omp single onthreads( 0 )

{
MPI_Send/Recv….

}
#pragma omp for onthreads( 1 : omp_get_numthreads()-1 )

for (……..)
{ /* work without halo information */
}  /* barrier at the end is only inside of the subteam */
…

#pragma omp barrier
#pragma omp for

for (……..)
{ /* work based on halo information */
}

} /*end omp parallel */

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Barbara Chapman et al.:
Toward Enhancing OpenMP’s
Work-Sharing Directives.
In proceedings, W.E. Nagel et 
al. (Eds.): Euro-Par 2006, 
LNCS 4128, pp. 645-654, 
2006.
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some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential 
program on 
each core

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each core

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual 
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only 

on master-thread

Multiple
more than one thread 

may communicate

Funneled & 
Reserved

reserved thread 
for communication

Funneled 
with 

Full Load 
Balancing

Multiple & 
Reserved

reserved threads
for communication

Multiple
with 

Full Load 
Balancing

Different strategies
to simplify the
load balancing



Slide 113 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Experiment: Matrix-vector-multiply (MVM)

• Jacobi-Davidson-Solver 
on IBM SP Power3 nodes
with 16 CPUs per node

• funneled&reserved is 
always faster in this 
experiments

• Reason: 
Memory bandwidth 
is already saturated 
by 15 CPUs, see inset

• Inset: 
Speedup on 1 SMP node 
using different 
number of threads

funneled &
reserved

Masteronly

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures.
International Journal of High Performance Computing Applications, Vol. 17, No. 1, 2003, Sage Science Press .
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Overlapping: Using OpenMP tasks

NEW OpenMP Tasking Model gives a new way to achieve more parallelism
form hybrid computation. 

Slides, courtesy of Alice Koniges, NERSC, LBNL 

Alice Koniges et al.:
Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.



Slide 115 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Case study:  Communication and Computation in 
Gyrokinetic Tokamak Simulation (GTS) shift routine

Work on particle array (packing for sending, reordering, adding after 
sending) can be overlapped with data independent MPI 
communication using OpenMP tasks.

��
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�

�
�

����

�
�
�
�
�
�
�
�
�

GTS shift routine

Slides, courtesy of Alice Koniges, NERSC, LBNL 

—
skipped —
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Overlapping can be achieved with OpenMP tasks (1st part)

Overlapping MPI_Allreduce with particle work 

• Overlap: Master thread encounters (!$omp master) tasking statements and creates 
work for the thread team for deferred execution. MPI Allreduce call is immediately 
executed.

• MPI implementation has to support at least MPI_THREAD_FUNNELED
• Subdividing tasks into smaller chunks to allow better load balancing and scalability 

among threads.
Slides, courtesy of Alice Koniges, NERSC, LBNL 

—
skipped —
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Overlapping can be achieved with OpenMP tasks (2nd part)

Overlapping particle reordering

Overlapping remaining MPI_Sendrecv

Particle reordering of remaining 
particles (above) and adding sent 
particles into array (right)  & sending 
or receiving of shifted particles can 
be independently executed.

Slides, courtesy of Alice Koniges, NERSC, LBNL 

—
skipped —
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OpenMP tasking version outperforms original shifter, 
especially in larger poloidal domains

• Performance breakdown of GTS shifter routine using 4 OpenMP threads per MPI pro-
cess with varying domain decomposition and particles per cell on Franklin Cray XT4.

• MPI communication in the shift phase uses a toroidal MPI communicator 
(constantly 128).

• Large performance differences in the 256 MPI run compared to 2048 MPI run!
• Speed-Up is expected to be higher on larger GTS runs with hundreds of thousands 

CPUs since MPI communication is more expensive.

256 size run 2048 size run

Slides, courtesy of 
Alice Koniges, NERSC, LBNL 
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OpenMP/DSM

• Distributed shared memory (DSM)   //
• Distributed virtual shared memory (DVSM)  //
• Shared virtual memory (SVM)

• Principles
– emulates a shared memory
– on distributed memory hardware

• Implementations
– e.g., Intel® Cluster OpenMP

OpenMP only
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Intel® Compilers with Cluster OpenMP   –
Consistency Protocol
Basic idea:
• Between OpenMP barriers, data exchange is not necessary, i.e., 

visibility of data modifications to other threads only after synchronization.
• When a page of sharable memory is not up-to-date,

it becomes protected.
• Any access then faults (SIGSEGV) into Cluster OpenMP runtime library,

which requests info from remote nodes and updates the page.
• Protection is removed from page.
• Instruction causing the fault is re-started, 

this time successfully accessing the data.

OpenMP only

Courtesy of J. Cownie, Intel 
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Comparison:  
MPI based parallelization   � �� �� �� � DSM 
• MPI based:

– Potential of boundary exchange between two domains in one large message

� Dominated by bandwidth of the network

• DSM based (e.g. Intel® Cluster OpenMP):
– Additional latency based overhead in each barrier

� May be marginal

– Communication of updated data of pages
� Not all of this data may be needed 

� i.e., too much data is transferred

� Packages may be to small

� Significant latency

– Communication not oriented on boundaries 
of a domain decomposition

� probably more data must be transferred than 
necessary

hybrid MPI+OpenMP OpenMP only

by rule of thumb:

Communication 
may be

10 times slower
than with MPI



Slide 122 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Comparing results with heat example

• Normal OpenMP on shared memory (ccNUMA) NEC TX-7

heat_x.c / heatc2_x.c with OpenMP on NEC TX-7
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—
skipped —
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Heat example:  Cluster OpenMP Efficiency

• Cluster OpenMP on a Dual-Xeon cluster

heats2_x.c with Cluster OpenMP on NEC dual Xeon EM64T cluster
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6000x6000 static(default) 1 threads/node

6000x6000 static(default) 2 threads/node
6000x6000 static(1:1) 1 threads/node

6000x6000 static(1:2) 1 threads/node
6000x6000 static(1:10) 1 threads/node

6000x6000 static(1:50) 1 threads/node
3000x3000 static(default) 1 threads/node

3000x3000 static(default) 2 threads/node

1000x1000 static(default) 1 threads/node
1000x1000 static(default) 2 threads/node

250x250 static(default) 1 threads/node
250x250 static(default) 2 threads/node

No speedup with 1000x1000

Second CPU only usable in small cases

Up to 3 CPUs 
with 3000x3000

Efficiency only with small 
communication foot-print

Terrible with non-default schedule

—
skipped —
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Back to the mixed model  – an Example

• Topology-problem solved:
Only horizontal inter-node comm. 

• Still intra-node communication
• Several threads per SMP node are 

communicating in parallel:
� network saturation is possible

• Additional OpenMP overhead
• With Masteronly style:

75% of the threads sleep while 
master thread communicates

• With Overlapping Comm.& Comp.:
Master thread should be reserved 
for communication only partially –
otherwise too expensive 

• MPI library must support 
– Multiple threads
– Two fabrics (shmem + internode)

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI 
process

4 x multi-
threaded

MPI 
process

4 x multi-
threaded

MPI 
process

4 x multi-
threaded

MPI 
process

4 x multi-
threaded
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No silver bullet

• The analyzed programming models do not fit on hybrid architectures

– whether drawbacks are minor or major

� depends on applications’ needs

– But there are major opportunities � next section

• In the NPB-MZ case-studies

– We tried to use optimal parallel environment

• for pure MPI

• for hybrid MPI+OpenMP

– i.e., the developers of the MZ codes and we 
tried to minimize the mismatch problems

� the opportunities in next section dominated the comparisons
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Outline

• Introduction  /  Motivation
• Programming models on clusters of SMP nodes
• Case Studies  /  pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming
• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid 
parallelization 

• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary
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Nested Parallelism

• Example NPB: BT-MZ  (Block tridiagonal simulated CFD application)
– Outer loop: 

• limited number of zones  ���� limited parallelism
• zones with different workload ���� speedup <

– Inner loop:
• OpenMP parallelized (static schedule)
• Not suitable for distributed memory parallelization 

• Principles:
– Limited parallelism on outer level
– Additional inner level of parallelism
– Inner level not suitable for MPI
– Inner level may be suitable for static OpenMP worksharing 

Sum of workload of all zones 
Max workload of a zone
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Load-Balancing
(on same or different level of parallelism)

• OpenMP enables
– Cheap dynamic and guided load-balancing
– Just a parallelization option (clause on omp for / do directive)
– Without additional software effort
– Without explicit data movement

• On MPI level
– Dynamic load balancing requires 

moving of parts of the data structure through the network
– Significant runtime overhead
– Complicated software  /   therefore not implemented

• MPI & OpenMP
– Simple static load-balancing on MPI level, medium quality

dynamic or guided on OpenMP level cheap implementation

#pragma omp parallel for schedule(dynamic)
for (i=0; i<n; i++) {
/* poorly balanced iterations */ …

}
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Memory consumption

• Shared nothing
– Heroic theory
– In practice: Some data is duplicated

• MPI & OpenMP
With n threads per MPI process:
– Duplicated data may be reduced by factor n
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Using more 
OpenMP threads 
could reduce the 
memory usage 
substantially, 
up to five times on 
Hopper Cray XT5 
(eight-core nodes).

Case study: MPI+OpenMP memory usage of NPB

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger, 
Alice Koniges, Nicholas J. Wright:
Analyzing the Effect of Different Programming Models Upon 
Performance and Memory Usage on Cray XT5 Platorms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide, courtesy of 
Alice Koniges, NERSC, LBLN 

Always same 
number of cores
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Memory consumption   (continued)

• Future:
With 100+ cores per chip the memory per core is limited.
– Data reduction through usage of shared memory 

may be a key issue
– Domain decomposition on each hardware level

• Maximizes
– Data locality
– Cache reuse

• Minimizes
– ccNUMA accesses
– Message passing

– No halos between domains inside of SMP node
• Minimizes

– Memory consumption
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How many threads per MPI process?

• SMP node = with m sockets and n cores/socket
• How many threads (i.e., cores) per MPI process?

– Too many threads per MPI process
� overlapping of MPI and computation may be necessary,
� some NICs unused? 

– Too few threads
� too much memory consumption (see previous slides)

• Optimum
– somewhere between 1 and m x n threads per MPI process,
– Typically:

• Optimum = n, i.e., 1 MPI process per socket
• Sometimes = n/2 i.e., 2 MPI processes per socket
• Seldom = 2n, i.e., each MPI process on 2 sockets
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Opportunities, if MPI speedup is limited due to 
algorithmic problems

• Algorithmic opportunities due to larger physical domains inside of 
each MPI process
� If multigrid algorithm only inside of MPI processes
� If separate preconditioning inside of MPI nodes and between 

MPI nodes
� If MPI domain decomposition is based on physical zones
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To overcome MPI scaling problems

compared to pure MPI
• Reduced number of MPI messages,

reduced aggregated message size

• MPI has a few scaling problems

– Handling of more than 10,000 MPI processes

– Irregular Collectives: MPI_....v(), e.g. MPI_Gatherv()

� Scaling applications should not use MPI_....v() routines

– MPI-2.1 Graph topology (MPI_Graph_create)

� MPI-2.2 MPI_Dist_graph_create_adjacent

– Creation of sub-communicators with MPI_Comm_create

� MPI-2.2 introduces a new scaling meaning of MPI_Comm_create

– … see P. Balaji, et al.: MPI on a Million Processors. Proceedings EuroPVM/MPI 2009.

• Hybrid programming reduces all these problems (due to a smaller number of processes)
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Summary: Opportunities of hybrid parallelization 
(MPI & OpenMP)
• Nested Parallelism 

� Outer loop with MPI  /  inner loop with OpenMP

• Load-Balancing
� Using OpenMP dynamic and guided worksharing

• Memory consumption
� Significantly reduction of replicated data on MPI level

• Opportunities, if MPI speedup is limited due to algorithmic problem
� Significantly reduced number of MPI processes

• Reduced MPI scaling problems
� Significantly reduced number of MPI processes
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Outline

• Introduction  /  Motivation
• Programming models on clusters of SMP nodes
• Case Studies  /  pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities: 

Application categories that can benefit from hybrid parallelization

• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes
• Summary
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Thread-safety of MPI Libraries

• Make most powerful usage of hierarchical structure of hardware:
• Efficient programming of clusters of SMP nodes

SMP nodes:
• Dual/multi core CPUs
• Multi CPU shared memory
• Multi CPU ccNUMA
• Any mixture with shared memory programming model

Node Interconnect

Threads inside of the 
SMP nodes

MPI between the nodes
via node interconnect

• No restriction to the usage of OpenMP for intranode-parallelism:
– OpenMP does not (yet) offer binding threads to processors
– OpenMP does not guarantee thread-ids to stay fixed.

• OpenMP is based on the implementation dependant thread-library:
LinuxThreads, NPTL, SolarisThreads.

Courtesy of Rainer Keller, HLRS and ORNL 
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MPI rules with OpenMP / 
Automatic SMP-parallelization
• Special MPI-2 Init for multi-threaded MPI processes:

• REQUIRED values (increasing order):
– MPI_THREAD_SINGLE: Only one thread will execute
– THREAD_MASTERONLY: MPI processes may be multi-threaded, 

(virtual value, but  only master thread will make MPI-calls
not part of the standard) AND only while other threads are sleeping

– MPI_THREAD_FUNNELED: Only master thread will make MPI-calls
– MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,

but only one at a time
– MPI_THREAD_MULTIPLE: Multiple threads may call MPI, 

with no restrictions
• returned provided may be less than REQUIRED by the application

int MPI_Init_thread( int * argc, char ** argv[],
int thread_level_required,
int * thead_level_provided);

int MPI_Query_thread( int * thread_level_provided);
int MPI_Is_main_thread(int * flag);
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Calling MPI inside of OMP MASTER

• Inside of a parallel region, with “OMP MASTER”

• Requires MPI_THREAD_FUNNELED,
i.e., only master thread will make MPI-calls

• Caution: There isn’t any synchronization with “OMP MASTER”!
Therefore, “OMP BARRIER” normally necessary to
guarantee, that data or buffer space from/for other 
threads is available before/after the MPI call!

!$OMP BARRIER #pragma omp barrier
!$OMP MASTER #pragma omp master

call MPI_Xxx(...) MPI_Xxx(...);  
!$OMP END MASTER
!$OMP BARRIER #pragma omp barrier

• But this implies that all other threads are sleeping!
• The additional barrier implies also the necessary cache flush!
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… the barrier is necessary  –
example with MPI_Recv

!$OMP PARALLEL
!$OMP DO

do i=1,1000
a(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP MASTER

call MPI_RECV(buf,...)
!$OMP END MASTER
!$OMP BARRIER
!$OMP DO

do i=1,1000
c(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP END PARALLEL

#pragma omp parallel
{
#pragma omp for nowait

for (i=0; i<1000; i++)
a[i] = buf[i];

#pragma omp barrier
#pragma omp master

MPI_Recv(buf,...);
#pragma omp barrier

#pragma omp for nowait
for (i=0; i<1000; i++)

c[i] = buf[i];

}
/* omp end parallel */

—
skipped —



Slide 141 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread support in MPI libraries

• The following MPI libraries offer thread support:

Always announces MPI_THREAD_FUNNELED.

ch3:sock supports MPI_THREAD_MULTIPLE 

ch:nemesis has “Initial Thread-support”
ch3:nemesis (default) has MPI_THREAD_MULTIPLE

Full MPI_THREAD_MULTIPLE
MPI_THREAD_FUNNELED

Full MPI_THREAD_MULTIPLE (with libmtmpi)

Not thread-safe?
Full MPI_THREAD_MULTIPLE

MPI_THREAD_SERIALIZED

MPIch-1.2.7p1

MPIch2-1.0.8

MPIch2-1.1.0a2
Intel MPI 3.1

SciCortex MPI

HP MPI-2.2.7

SGI MPT-1.14

IBM MPI

Nec MPI/SX

Thread support levelImplementation

• Testsuites for thread-safety may still discover bugs in the 
MPI libraries

Courtesy of Rainer Keller, HLRS and ORNL 
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Thread support within Open MPI

• In order to enable thread support in Open MPI, configure with:

configure --enable-mpi-threads

• This turns on:
– Support for full MPI_THREAD_MULTIPLE
– internal checks when run with threads (--enable-debug)

configure --enable-mpi-threads --enable-progress-threads

• This (additionally) turns on:
– Progress threads to asynchronously transfer/receive data per 

network BTL.
• Additional Feature:

– Compiling with debugging support, but without threads will 
check for recursive locking 

Courtesy of Rainer Keller, HLRS and ORNL 
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Outline

• Introduction  /  Motivation
• Programming models on clusters of SMP nodes
• Case Studies  /  pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities: 

Application categories that can benefit from hybrid parallelization
• Thread-safety quality of MPI libraries

• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes
• Summary
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Thread Correctness – Intel ThreadChecker 1/3

• Intel ThreadChecker operates in a similar fashion to helgrind,
• Compile with –tcheck, then run program using tcheck_cl:

Application finished

_______________________________________________________________________________

|ID|Short De|Sever|C|Contex|Description |1st Acc|2nd Acc|

|  |scriptio|ity |o|t[Best|                                  |ess[Bes|ess[Bes|

|  |n       |Name |u|]     |                                  |t]     |t]     |

|  |        |     |n|      |                                  | |       |

|  |        |     |t|      |                                  | |       |

_______________________________________________________________________________

|1 |Write ->|Error|1|"pthre|Memory write of global_variable at|"pthrea|"pthrea|

|  |Write da|     | |ad_rac|"pthread_race.c":31 conflicts with|d_race.|d_race.|

|  |ta-race |     | |e.c":2|a prior memory write of           |c":31  |c":31 |

|  |        |     | |5     |global_variable at                |       |       |

|  |        |     | |      |"pthread_race.c":31 (output       | |       |

|  |        |     | |      |dependence)                       | |       |

_______________________________________________________________________________

Courtesy of Rainer Keller, HLRS and ORNL 
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Thread Correctness – Intel ThreadChecker 2/3

• One may output to HTML:
tcheck_cl --format HTML --report pthread_race.html pthread_race

Courtesy of Rainer Keller, HLRS and ORNL 
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Thread Correctness – Intel ThreadChecker 3/3

• Then run with:
mpirun --mca tcp,sm,self -np 2 tcheck_cl \

--reinstrument -u full --format html             \
--cache_dir '/tmp/my_username_$$__tc_cl_cache'   \
--report 'tc_mpi_test_suite_$$'                  \
--options 'file=tc_my_executable_%H_%I,          \

pad=128, delay=2, stall=2'        -- \

./my_executable my_arg1 my_arg2 …

configure --enable-mpi-threads
--enable-debug
--enable-mca-no-build=memory-ptmalloc2

CC=icc F77=ifort FC=ifort
CFLAGS=‘-debug all –inline-debug-info tcheck’
CXXFLAGS=‘-debug all –inline-debug-info tcheck’
FFLAGS=‘-debug all –tcheck’ LDFLAGS=‘tcheck’

• If one wants to compile with threaded Open MPI (option for IB):

Courtesy of Rainer Keller, HLRS and ORNL 
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Performance Tools Support for Hybrid Code

• Paraver examples have already
been shown, tracing is done with 
linking against (closed-source)
omptrace or ompitrace

• For Vampir/Vampirtrace performance analysis:
./configure –enable-omp

–enable-hyb
–with-mpi-dir=/opt/OpenMPI/1.3-icc 

CC=icc F77=ifort FC=ifort
(Attention: does not wrap MPI_Init_thread!)

Courtesy of Rainer Keller, HLRS and ORNL 
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Scalasca – Example “Wait at Barrier”

Indication of 
non-optimal load 

balance

Screenshots, courtesy of KOJAK JSC, FZ Jülich
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Scalasca – Example “Wait at Barrier”, Solution

Better load balancing 
with dynamic 
loop schedule

Screenshots, courtesy of KOJAK JSC, FZ Jülich



Slide 150 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Introduction  /  Motivation
• Programming models on clusters of SMP nodes
• Case Studies  /  pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities: 

Application categories that can benefit from hybrid parallelization
• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP

• Other options on clusters of SMP nodes

• Summary
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Pure MPI – multi-core aware

• Hierarchical domain decomposition
(or distribution of Cartesian arrays)

Domain decomposition:
1 sub-domain / SMP node

Further 
partitioning:

1 sub-domain / 
socket

1 / core

Cache 
optimization:

Blocking inside of 
each core,

block size relates 
to cache size.

1-3 cache levels.
Example on 10 nodes, each with 4 sockets, each with 6 cores.
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How to achieve a 
hierarchical domain decomposition (DD)?
• Cartesian grids:

– Several levels of subdivide
– Ranking of MPI_COMM_WORLD   – three choices:

a) Sequential ranks through original data structure
+ locating these ranks correctly on the hardware
� can be achieved with one-level DD on finest grid

+ special startup (mpiexec) with optimized rank-mapping
b) Sequential ranks in comm_cart (from MPI_CART_CREATE)

� requires optimized MPI_CART_CREATE,  
or special startup (mpiexec) with optimized rank-mapping

c) Sequential ranks in MPI_COMM_WORLD
+ additional communicator with sequential ranks in the data structure
+ self-written and optimized rank mapping.

• Unstructured grids:
� next slide
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How to achieve a 
hierarchical domain decomposition (DD)?
• Unstructured grids:

– Multi-level DD:

• Top-down: Several levels of (Par)Metis
• Bottom-up: Low level DD + higher level recombination

– Single-level DD (finest level)

• Analysis of the communication pattern in a first run 
(with only a few iterations)

• Optimized rank mapping to the hardware before production run
• E.g., with CrayPAT + CrayApprentice
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Top-down  – several levels of (Par)Metis

Steps:
– Load-balancing (e.g., with 

ParMetis) on outer level,
i.e., between all SMP nodes

– Independent (Par)Metis
inside of each node

– Metis inside of each socket

� Subdivide does not care on 
balancing of the outer boundary

� processes can get a lot of 
neighbors with inter-node 
communication

� unbalanced communication
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Bottom-up  –
Multi-level DD through recombination 
1. Core-level DD: partitioning of application’s data grid
2. Socket-level DD: recombining of core-domains
3. SMP node level DD: recombining of socket-domains

• Problem: 
Recombination 
must not
calculate patches 
that are smaller 
or larger than the 
average

• In this example 
the load-balancer 
must combine 
always 
� 6 cores, and
� 4 sockets

• Advantage:
Communication 
is balanced!
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Profiling solution

• First run with profiling
– Analysis of the communication pattern

• Optimization step
– Calculation of an optimal mapping of ranks in MPI_COMM_WORLD

to the hardware grid (physical cores / sockets / SMP nodes)
• Restart of the application with this optimized locating of the ranks on the 

hardware grid

• Example: CrayPat and CrayApprentice
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The vendors will 
(or must) deliver 

scalable MPI 
libraries for their 
largest systems! 

Scalability of MPI to hundreds of thousands …

Weak scalability of pure MPI
• As long as the application does not use

– MPI_ALLTOALL
– MPI_<collectives>V    (i.e., with length arrays)

and application
– distributes all data arrays

one can expect:
– Significant, but still scalable memory overhead for halo cells.
– MPI library is internally scalable:

• E.g., mapping ranks ���� hardware grid
– Centralized storing in shared memory (OS level)
– In each MPI process, only used neighbor ranks are stored (cached) in 

process-local memory.
• Tree based algorithm wiith O(log N)

– From 1000 to 1000,000 process O(Log N) only doubles! 
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Remarks on Cache Optimization

• After all parallelization domain decompositions (DD, up to 3 levels) 
are done:

• Additional DD into data blocks
– that fit to 2nd or 3rd level cache.
– It is done inside of each MPI process (on each core).
– Outer loops over these blocks
– Inner loops inside of a block
– Cartesian example:  3-dim loop is split into

do i_block=1,ni,stride_i
do j_block=1,nj,stride_j

do k_block=1,nk,stride_k
do i=i_block,min(i_block+stride_i-1, ni)

do j=j_block,min(j_block+stride_j-1, nj)
do k=k_block,min(k_block+stride_k-1, nk)

a(i,j,k) = f( b(i±0,1,2, j±0,1,2, k±0,1,2) )
… … … end do

end do
Access to 13-point stencil
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Remarks on Cost-Benefit Calculation

Costs
• for optimization effort

– e.g., additional OpenMP parallelization
– e.g., 3 person month x 5,000 � = 15,000 � (full costs)

Benefit
• from reduced CPU utilization 

– e.g., Example 1:
100,000 � hardware costs of the cluster
x  20% used by this application over whole lifetime of the cluster
x  7% performance win through the optimization
= 1,400 � ���� total loss = 13,600 �

– e.g., Example 2:
10 Mio � system x  5% used  x  8% performance win
= 40,000 � ���� total win = 25,000 �
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Remarks on MPI and PGAS (UPC & CAF)

• Parallelization always means
– expressing locality.

• If the application has no locality,
– Then the parallelization needs not to model locality
� UPC with its round robin data distribution may fit

• If the application has locality,
– then it must be expressed in the parallelization

• Coarray Fortran (CAF) expresses data locality explicitly through “co-
dimension”:
– A(17,15)[3] 

= element A(17,13) in the distributed array A in process with rank 3

—
skipped —
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Remarks on MPI and PGAS (UPC & CAF) 

• Future shrinking of memory per core implies
– Communication time becomes a bottleneck 
� Computation and communication must be overlapped,

i.e., latency hiding is needed

• With PGAS, halos are not needed.
– But it is hard for the compiler to access data such early that the 

transfer can be overlapped with enough computation.

• With MPI, typically too large message chunks are transferred.
– This problem also complicates overlapping.

• Strided transfer is expected to be slower than contiguous transfers
– Typical packing strategies do not work for PGAS on compiler level
– Only with MPI, or with explicit application programming with PGAS

—
skipped —



Slide 162 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Remarks on MPI and PGAS (UPC & CAF) 

• Point-to-point neighbor communication
– PGAS or MPI nonblocking may fit

if message size makes sense for overlapping.

• Collective communication
– Library routines are best optimized
– Non-blocking collectives (comes with MPI-3.0)

versus calling MPI from additional communication thread
– Only blocking collectives in PGAS library?

—
skipped —
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Remarks on MPI and PGAS (UPC & CAF)

• For extreme HPC  (many nodes  x   many cores)
– Most parallelization may still use MPI
– Parts are optimized with PGAS, e.g., for better latency hiding
– PGAS efficiency is less portable than MPI
– #ifdef … PGAS
– Requires mixed programming PGAS & MPI  

� will be addressed by MPI-3.0

—
skipped —
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Outline

• Introduction  /  Motivation
• Programming models on clusters of SMP nodes
• Case Studies  /  pure MPI vs hybrid MPI+OpenMP
• Practical “How-To” on hybrid programming
• Mismatch Problems
• Opportunities: 

Application categories that can benefit from hybrid parallelization
• Thread-safety quality of MPI libraries
• Tools for debugging and profiling MPI+OpenMP
• Other options on clusters of SMP nodes

• Summary
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Summary  – the good news

MPI + OpenMP
• Significant opportunity � higher performance on smaller number of threads
• Seen with NPB-MZ examples

– BT-MZ � strong improvement (as expected)
– SP-MZ � small improvement (none was expected)

• Usable on higher number of cores
• Advantages

– Load balancing
– Memory consumption
– Two levels of parallelism 

• Outer ���� distributed memory ���� halo data transfer ���� MPI
• Inner ���� shared memory ���� ease of SMP parallelization ���� OpenMP

• You can do it � “How To”
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Summary  – the bad news

MPI+OpenMP:  There is a huge amount of pitfalls
• Pitfalls of MPI
• Pitfalls of OpenMP

– On ccNUMA � e.g., first touch
– Pinning of threads on cores

• Pitfalls through combination of MPI & OpenMP
– E.g., topology and mapping problems
– Many mismatch problems

• Tools are available 
– It is not easier than analyzing pure MPI programs

• Most hybrid programs � Masteronly style
• Overlapping communication and computation with several threads

– Requires thread-safety quality of MPI library
– Loss of OpenMP worksharing support � using OpenMP tasks 

as workaround
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Summary  – good and bad

• Optimization 
– 1 MPI process 1 MPI process 

per core ……………………………………..… per SMP node
^– somewhere between

may be the optimum 

• Efficiency of MPI+OpenMP is not for free:
The efficiency strongly depends on
the amount of work in the source code development

mismatch
problem
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Summary  – Alternatives 

Pure MPI
+ Ease of use
– Topology and mapping problems may need to be solved

(depends on loss of efficiency with these problems)

– Number of cores may be more limited than with MPI+OpenMP
+ Good candidate for perfectly load-balanced applications

Pure OpenMP
+ Ease of use
– Limited to problems with tiny communication footprint
– source code modifications are necessary

(Variables that are used with “shared” data scope
must be allocated as “sharable”)

± (Only) for the appropriate application a suitable tool
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Summary 

• This tutorial tried to
– help to negotiate obstacles with hybrid parallelization,
– give hints for the design of a hybrid parallelization,
– and technical hints for the implementation � “How To”,
– show tools if the application does not work as designed.

• This tutorial was not an introduction into other parallelization models:
– Partitioned Global Address Space (PGAS) languages

(Unified Parallel C (UPC), Co-array Fortran (CAF), Chapel, Fortress, Titanium, 
and X10).

– High Performance Fortran (HPF)
� Many rocks in the cluster-of-SMP-sea do not vanish 

into thin air by using new parallelization models
� Area of interesting research in next years 
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Conclusions 
• Future hardware will be more complicated

– Heterogeneous � GPU, FPGA, …
– ccNUMA quality may be lost on cluster nodes
– ….

• High-end programming � more complex
• Medium number of cores � more simple

(if  #cores / SMP-node will not shrink)
• MPI+OpenMP � work horse on large systems
• Pure MPI � still on smaller cluster
• OpenMP � on large ccNUMA nodes

(not ClusterOpenMP)

Thank you for your interest

Q & A
Please fill in the feedback sheet – Thank you
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Abstract

Half-Day Tutorial   (Level: 20% Introductory, 50% Intermediate, 30% Advanced)
Authors. Rolf Rabenseifner, HLRS, University of Stuttgart, Germany

Georg Hager, University of Erlangen-Nuremberg, Germany
Gabriele Jost, Texas Advanced Computing Center, The University of Texas at Austin, USA

Abstract. Most HPC systems are clusters of shared memory nodes. Such systems can be PC 
clusters with single/multi-socket and multi-core SMP nodes, but also "constellation" type systems with 
large SMP nodes. Parallel programming may combine the distributed memory parallelization on the 
node inter-connect with the shared memory parallelization inside of each node. 
This tutorial analyzes the strength and weakness of several parallel programming models on clusters 
of SMP nodes. Various hybrid MPI+OpenMP programming models are compared with pure MPI. 
Benchmark results of several platforms are presented. The thread-safety quality of several existing 
MPI libraries is also discussed. Case studies will be provided to demonstrate various aspects of 
hybrid MPI/OpenMP programming. Another option is the use of distributed virtual shared-memory 
technologies. Application categories that can take advantage of hybrid programming are identified. 
Multi-socket-multi-core systems in highly parallel environments are given special consideration. 
Details. https://fs.hlrs.de/projects/rabenseifner/publ/SC2010-hybrid.html 
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