
Dynamic Load Balancing for the Parallel

Simulation of Cavitating Flows

Frank Wrona2, Panagiotis A. Adamidis1, Uwe Iben2, Rolf Rabenseifner1,
Claus-Dieter Munz3

1 High-Performance Computing-Center Stuttgart (HLRS), Allmandring 30, D-70550
Stuttgart, Germany {adamidis, rabenseifner}@hlrs.de

2 Robert Bosch GmbH, Dept. FV/FLM, P.O. Box 106050, D-70059 Stuttgart
{frank.wrona, uwe.iben}@de.bosch.com

3 Institute for Aero- and Gasdynamics (IAG), Pfaffenwaldring 21, D-70550 Stuttgart,
Germany munz@iag.uni-stuttgart.de

Published in Recent Advances in Parallel Virtual Machine and Message Passing Interface, Jack
Dongarra, D. Laforenza, and S. Orlando (Eds.), Proceedings of the 10th European PVM/MPI
Users’ Group Meeting, EuroPVM/MPI 2003, Sep. 29 – Oct. 2, Venice, Italy. c©Springer, LNCS,
http://www.springer.de/comp/lncs/index.html, 2003.

Abstract. This paper deals with the parallel numerical simulation of
cavitating flows. The governing equations are the compressible, time de-
pendent Euler equations for a homogeneous two-phase mixture. These
equations are solved by an explicit finite volume approach. In opposite to
the ideal gas, after each time step fluid properties, namely pressure and
temperature, must be obtained iteratively for each cell. This is the most
time consuming part, particularly if cavitation occurs. For this reason
the algorithms has been parallelized by domain decomposition. In case
where different sizes of cavitated regions occur on the different processes
a huge load imbalance problem arises. In this paper a new dynamic load
balancing algorithm is presented, which solves this problem efficiently.

1 Introduction

Fig. 1. Cavity formation behind a backward-
facing step

Cavitation is the physical phe-
nomenon of phase transition
from liquid to vapor. The rea-
son for fluid evaporation is that
the pressure drops beneath a
certain threshold, the so called
steam pressure. Once generated
the vapor fragments can be
transported through the whole
fluid domain, as been depicted
in Fig.1. Finally, they are often
destroyed at rigid walls which
leads to damages. The work in
this paper is extended for high

pressure injection systems. In such systems cavitation occurs as small vapor
pockets and clouds. Due to the structure of cavities, the assumption that the
flow field is homogenous, i.e. pressure, temperature and velocity of both phases

2

are the same, is justified. The more complicated challenge is to model the cav-
itation process, in a fashion that it is valid for all pressure levels, which can
occur in such injection systems. Therefore the fluid properties are described by
ordinary equations of state [1].

Further, the complete flow field is treated as compressible, even if the fluid
does not evaporate. Additionally, enormous changes in the magnitude of all flow
properties occur, if the fluid is cavitating. Therefore such simulations are very
CPU time consuming and parallelization is unavoidable if one wants to calculate
large problems.

2 Governing equations

The governing equations are the two dimensional Euler equations, symbolically
written as

ut + f(u)x + g(u)y = 0, (1)

with u = (ρ, ρv, ρw,E)
T
, f(u) = (ρv, ρv2 + p, ρvw, v(E + p))T and g(u) =

(ρw, ρvw, ρw2+p, w(E+p))T . Here, derivatives are denoted by an index. Further,
ρ is the density, v and w the velocity in x-, respectively in y-direction. The prop-
erty E is also introduced, which describes the total energy ρ(e+ 1/2(v2 + w2))
per unit volume.

The density and the internal energy e are functions of the pressure p and the
temperature T and are expressed as mixture properties

1/ρ = µ/ρG + (1− µ)/ρL and e = µeG + (1− µ)eL. (2)

The regarded fluid is water, where the gaseous phase (subscript G) is treated as
ideal gas and the functions of the liquid phase (subscript L) are obtained from
the IAPWS97 [2]. The mass fraction µ, the void fraction ε and their relation are
defined by

µ = mG/(mG +mL), ε = VG/(VG + VL) and ε = µρ/ρG (3)

For solving the governing equations numerically, eq.(1) is discretized as

un+1
i = un

i + (∆t/Ωi)
∑

j∈N (i)

L(un
i ,u

n
j)f̃(u

n
i ,u

n
j)lij , (4)

where N (i) are the set of the neighbor cells of the ith cell and Ωi its volume.
L(un

i ,u
n
j) denotes an operator for different time integration methods. The un-

derlying mesh is unstructured and consists of triangles and rectangles. The fluxes
f̃ are calculated by approximate Riemann solvers, namely the HLLC-Solver [3].
Finally, the mass fraction – which describes the fractional mass portion of the
gaseous phase to the total mass in each cell – must also be expressed as a func-
tion of pressure and temperature. After the flux calculation and the update of
the conservative variables from un

i to un+1
i , the primitive variables ρ, v, w, e can

be computed analytically for each cell from the conserved quantities. However

3

the pressure and the temperature for every cell cannot be calculated directly.
Their values can be obtained iteratively from equations (2), because the internal
energy and the density are already known

h1(p, T) = 1/ρ−µ/ρG−(1− µ)/ρL = 0 and h2(p, T) = e−µeG−(1−µ)eL = 0.
(5)

These two equations are iterated by a two dimensional bisection method for p
and T , until this two values converge. This step is the most time consuming
part in the whole solution algorithm and even takes much more time if in a cell
cavitation arises. Therefore simulations of realistic problems take several days.
A more detailed description of the equations is presented in [1].

3 Parallel Algorithm

Calculate Numerical Fluxes
(using halo data)

Calculate the new conservative
variables

Iterative Calculation of
pressure and temperature

Collecting the migrated Cavities

Calculating primitive variables

Communicating with MPI

Initial Meshpartioning with METIS

Update of the halo cells

Detecting and Redistribution
of Cavities

Fig. 2. Flow chart of parallel algo-
rithm with dynamic load balance

In this work, we parallelize the algorithm
by domain decomposition using the MPI
paradigm. The target computing platform
is a PC cluster. The phenomenon of cavi-
tation affects the parallel algorithm in two
ways. On one hand, the cavitating cells
are not distributed homogeneously over the
subdomains. This causes a very heavy load
imbalance. On the other hand, the loca-
tions of the cavities move across subdo-
mains. For this reason, using state of the
art strategies [4] results in repartitioning
at every time step. In our algorithm, only
the work done on cavitating cells, during
the iterative calculation of pressure and
temperature (see Fig. 2), is redistributed
at each time step. The parallel algorithm
starts with an initial mesh partitioning, us-
ing the tool METIS [5] (see Fig. 2). After
calculating the fluxes and conservative vari-
ables on the subdomains, cavities are de-
tected by checking the void fraction ε. Af-

ter this, every process knows how many cavitating cells reside in its subdomain.
Denoting with cavi this number for process i, the optimal number of cavities in
each subdomain cavopt is determined by

cavopt = 1/nprocs

nprocs∑

i=1

cavi, (6)

where nprocs is the number of processes. Now the processes are classified into
senders and receivers of cavities in the following manner: Depending on whether

4

cavi − cavopt is greater than, less than or equal zero, the ith process is going
to migrate part of its cavitating cells, or will be a receiver of such cells, or
will not redistribute any cell. With this migration, only a small part of the
cell-information must be sent. All other cell-information remains at the original
owner of the cell. Halo data is not needed, because the time-consuming iterative
calculation of pressure and temperature is done locally on each cell.

The implementation is based on an all-gather communication which sends
the cavi values to all processes. The computation time needed for a cavitating
cell is about 1 ms and only about the sixth part is needed for a non cavitating
cell, on a PentiumIII 800 MHz processor. Furthermore, the senders take for each
cavitating cell, which they move to a receiver, a corresponding non cavitating cell
from the specific receiver. With this approach the number of cavitating and non
cavitating cells is the same on each process, which leads to a well balanced sys-
tem. Due to the small number of bytes for each cell, the approach of transferring
non cavitating cells as compensation implies only a very small communication
overhead. After this, the calculation of pressure and temperatures is carried out,
and afterwards, the results are sent back to the owners of the cells, and the re-
maining of the calculations is executed on the initial partitioning of the mesh. For
this redistribution, 128 Bytes for each cell must be communicated, which means
on a 100 Mbit/s Ethernet a communication time of nearly 10 µs. In this way we
avoid expanding the halos, because we outsource only the time-consuming part
of the computation done on the cavitating cells, and recollect the results.

4 Results

0 2 4 6 8 10 12 14 16
0

10

20

30

40

50

60

70

80

90

100

Number of processes

E
ffi

ci
en

cy
 [%

]

without load balance
with load balance

Fig. 3. Efficiency

As benchmark, a shock tube
problem is defined. The tube
has a length of one meter. The
mesh is a Cartesian grid with
ten cells in y-direction and 1000
in x-direction. At the initial
step the computational domain
consists of a cavity, which is
embedded in pure liquid, and
the initial velocity is directed
in positive x-direction. There-
fore it is an excellent benchmark
for checking the load balance al-
gorithm, because the position of
the cavity moves from subdo-
main to subdomain. The com-
puting platform was a cluster

consisting of dual-CPU PCs, with Pentium III 1GHz processors. The results
are summarized in Tab. 1 and Fig. 3 for several parallel runs. From these re-
sults it is obvious that a tremendous gain in efficiency has been achieved by the

5

implemented load balancing strategy. In the runs without dynamic load balanc-
ing the efficiency drops down to 66.6% even when using only 4 processors and
getting worse in the case of 16 processors (43.2%). In contrast the efficiency,
with dynamic load balancing is over 80%, up to 8 processors, and in case of 16
processors still at 73.2%, which is a profit of 30% compared to the case without
load balancing.

Processes 1 2 4 6 8 12 16

not load CPU Time 12401.4 7412.12 4649.84 3558.7 2830.16 2201.29 1791.68

balanced Speedup 1 1.67 2.66 3.48 4.38 5.63 6.92

load CPU Time - 6626.94 3616.51 2503.19 1897.14 1333.28 1058.19

balanced Speedup 1 1.87 3.42 4.95 6.53 9.30 11.72

Table 1. CPU Time in seconds and Speedup

5 Conclusion

The simulation of cavitating flows is a CPU time demanding process. To obtain
results in an adequate time it is necessary to use parallel computing architectures.
In order to achieve high performance, the parallel algorithm has to deal with
the problem of load imbalance, introduced by the cavities. In this work a new
dynamic load balancing algorithm was developed, which treats this problem
very efficiently. Future work will be concentrated on new criterions to detect the
cavitating regions, and simulating 3D problems.

References

1. U. Iben, F. Wrona, C.-D. Munz, and M. Beck. Cavitation in Hydraulic Tools Based
on Thermodynamic Properties of Liquid and Gas. Journal of Fluids Engineering,
124(4):1011–1017, 2002.

2. W. Wagner et al. The IAPWS Industrial Formulation 1997 for the Thermodynamic
Properties of Water and Steam. J. Eng. Gas Turbines and Power, 12, January 2000.
ASME.

3. P. Batten, N. Clarke, C. Lambert, and D.M. Causon. On the choice of wavespeeds
for the HLLC Riemann solver. SIAM J. Sci. Comp., 18(6):1553–1570, November
1997.

4. C. Walshaw, M. Cross, and M. G. Everett. Parallel Dynamic Graph Partitioning for
Adaptive Unstructured Meshes. J. Parallel Distrib. Comput., 47(2):102–108, 1997.
(originally published as Univ. Greenwich Tech. Rep. 97/IM/20).

5. G. Karypis and V. Kumar. METIS:A Software Package for Partitioning Unstruc-
tured Graphs, Partitioning Meshes, and Computing Fill-Reducing Orderings of
Sparse Matrices. Technical report, University of Minnesota,Department of Com-
puter Science / Army HPC Research Center, 1998.

