
Enhanced File Interoperability with Parallel

MPI File-I/O in Image Processing

Douglas Antony Louis Piriyakumar1, Paul Levi1 and Rolf Rabenseifner2

1 IPVR, Department of Computer Science, University of Stuttgart, Germany
piriyaku@informatik.uni-stuttgart.de

2 HLRS, High Performance Computing Center, University of Stuttgart, Germany
www.hlrs.de/people/rabenseifner/,

rabenseifner@hlrs.de

Proceedings of EuroPVM/MPI 2002, Sep. 29 – Oct. 2, Linz, Austria, LNCS, Springer-Verlag.
c©Springer-Verlag, http://www.springer.de/comp/lncs/index.html

Abstract. One of the crucial problems in image processing is Image
Matching, i.e., to match two images, or in our case, to match a model
with the given image. This problem being highly computation intensive,
parallel processing is essential to obtain the solutions in time due to real
world constraints. The Hausdorff method is used to locate human beings
in images by matching the image with models and is parallelized with
MPI. The images are usually stored in files with different formats. As
most of the formats can be converted into ASCII file format containing
integers, we have implemented 3 strategies namely, Normal File Reading,
Off-line Conversion and Run-time Conversion for free format integer file
reading and writing. The parallelization strategy is optimized so that I/O
overheads are minimal. The relative performances with multiple proces-
sors are tabulated for all the cases and discussed. The results obtained
demonstrate the efficiency of our strategies and the implementations will
enhance the file interoperability which will be useful for image processing
community to use parallel systems to meet the real time constraints.
Keywords. Supercomputer, Computational Models, File Interoperabil-
ity, Parallel Algorithms, Image processing and Human recognition.

1 Introduction

The challenging image processing problems in the wide spectrum of defense op-
erations to industrial applications demand run-time solutions which need enor-
mous computing power aptly provided by supercomputers [1]. In most of the
core applications problems in Robotics, Satellite Imagery and Medical Imaging,
recognizing the crucial parts or items or structures in the given images contin-
ues to attract more attention. Thus, the major factor in these computer vision
related fields is matching objects in images [2]. Currently, lot of interests are
evinced on human motion based on model based approach, and temporal tem-
plates [3] with real-time constraints also [4]. A survey of the visual analysis of
human movement is presented in [5].

In this paper, an efficient parallel algorithm is developed using the Hausdorff
method to ascertain the presence of a human being in the image (or image se-
quence) by matching the images and the models. In any parallel system, the

2 Piriyakumar, Levi and Rabenseifner.

proper choice of the parallel computing model is the paramount factor. MPI
(message passing interface) is used here for its efficiency, portability and func-
tionality [6]. However, due to the domain specific nature of the problem, the
images usually stored in files, differ in formats considerably. This poses an im-
pediment to the efficient implementation of the parallel algorithm despite parallel
I/O implementations in MPI-2 [7]. As most of the file formats can be converted
into ASCII file format in many systems, here we have implemented 3 strategies
including one for free format integer file reading and writing. The algorithm is
implemented on the supercomputer CRAY T3E with MPI model. A different
parallelization method is formulated so that I/O timings are optimized. The
time taken for I/O in all the cases are compared with analysis.

The following sections are organized as mentioned here. Section 2 introduces
the real application of an image processing problem. The parallel algorithm for
image matching is sketched in section 3. In section 4, the File interoperability in
MPI is portrayed. The experimental results are analyzed in section 5. Section 6
concludes the paper.

2 Image Processing with Hausdorff Method

The Hausdorff distance [8] is defined as follows: Let the two given finite point
sets be A = a1, a2, ..., an and B = b1, b2, ..., bm. Hausdorff Distance H(A,B) =
max(h(A,B),h(B,A)) where h(A,B) = maxa∈Aminb∈BEN(a − b) where EN is
the Euclidean norm (just the distance between the two points).

Here, we have images which have to be analyzed and the models which depict
the pattern to be recognized, in our case human beings. Using the general corner
detecting algorithm (here SUSAN filter is used [9]), the corners of the images are
found which serve as the point set B. Similarly, all the model images are filtered
with the same SUSAN filter to find the corners and are stored as point set A.
For this application, it is sufficient to find h(A,B). The main Hausdorff distance
H(A,B) being a metric has to satisfy the symmetry property and that is why it
is defined as maximum of the directed h(A,B) and h(B,A). The model is placed
over all possible positions on the image and for each such position, h(A,B) is
computed which is computational intensive. The model is found to be present
in the image if h(model,image) is less than some predefined threshold. Against
various models, the image is matched using the method.

3 Parallel Algorithm for Image Matching

3.1 Parallelization

For this particular problem, there can be at least three methods to parallelize.
One way is to take each image by a processor and match with all models. The
other way is to take one by one all images by all processors and divide the set
of models equally among the processors. The third way is to divide each time
one image by the number of processors and match that portion of image with

Enhanced File Interoperability with Parallel MPI File-I/O 3

all models. In the last model, overlapping is essential to get the proper solution.
The second model is preferable in the situation while tracking a person is the
major factor. In this paper, the second method is implemented. A good insight
to various strategies of parallelization can be found in [10], [11] and [12].

3.2 Outline of Parallel Program

Let r be the number of images, q be the number of models and p be the number
of processors.

MPI Comm rank(MPI COMM WORLD,&j);
MPI Comm size(MPI COMM WORLD,&p);
for each image i=1..r do
{ MPI File open(...,MPI COMM WORLD,...);
MPI File read(...); /*all processors read i

th image */
MPI File close(...);
for each model k = j, j+p, j+2*p, .. q do
{ MPI File open(...,MPI COMM SELF,...);
MPI File read(...); /*each processor j reads only the corresponding model k */
MPI File close(...);
h = Hausdorff distance of the image i matched with model k for all positions.
h partial min = min (h, h partial min);
whenever the h(k,i) < threshold, this position is notified.
/* if required the best matching model is also computed depending upon
the minimum threshold. */

}
MPI Allreduce(h partial min,&h min,1,MPI FLOAT,MPI MIN,MPI COMM WORLD);

}

4 Parallel I/O and File Interoperability in MPI-2

As the vital focus of this paper is not on parallel processing, the I/O operations
especially file related operations are investigated. The significant optimizations
required for efficiency can only be implemented if the parallel I/O system pro-
vides a high-level interface supporting partitioning of file data among processes
and a collective interface supporting complete transfers of global data structures
between process memories and files [7]. Parallel reading of the same image or
model into the memory of several MPI processes can be implemented with the
MPI File read all. This collective routine enables the MPI library to optimize
reading and broadcasting the file information into the memories of all processes.
In image processing, there exists also a huge number of different formats to
store the image data in files. The standard image processing software gives the
options of a proprietary format or a standard ASCII format. Because most of
the formats can be converted into ASCII file format in many systems, and to
circumvent problems with the 64-bit internal integer format on the Cray T3E,
we have chosen to use only an ASCII format. Therefore, it is mandatory to im-
plement the conversion of ASCII file (mostly representing integers being pixel

4 Piriyakumar, Levi and Rabenseifner.

coordinates and gray values) so that file interoperability in MPI can be used
effectively for image processing. As the sizes of the files increase obviously the
I/O overheads also increase. In image processing, there will be always many files
both for images and models. Hence, it is not only the sizes of the images, but
also the number of them is a matter of concern for I/O overheads.

The file interoperability means to read and write the information previously
written or read respectively to a file not just as bits of data, but the actual
information the bits represent. File interoperability has three aspects namely,
1. transferring the bits, 2. converting different file structures and 3. converting
between different machine representations. The third being the concern here, the
multiple data representations and the inability to read integer data stored in an
ASCII file which is needed for image processing are explained in the following
subsection.

4.1 Data Representations

MPI-2 defines the following three data representation, 1. native, 2. internal and
3. external32 [7]. In native representation, the data is stored in a file exactly as
it is in memory. In external32 format, also a binary data representation is used.
Obviously, it is impossible to use these formats directly to read integer data
from ASCII files. The internal representation cannot be used for data exchange
between MPI programs and other non-MPI programs that have provided the
image data, because the internal representation may be chosen arbitrarily by
the implementer of the MPI library. MPI-2 has standardized also a method to
use user-defined data representation. Here, the user can combine the parallel I/O
capabilities with own byte-to-data conversion routines. The major constraint is
that the representation of a given data type must have a well-defined number
of bytes. As the number of digits of integers in an ASCII file vary (and each
integer may end either with a blank or an end-of-line character), user-defined
representation also cannot help reading integers efficiently from ASCII files.

4.2 Reading Integer Data from ASCII File with MPI I/O

The former constraints force the implementation of the following strategies:

Normal File Reading with fscanf In this first strategy, the files are read
using normal file reading command fscanf instead of MPI for the sake of com-
parison with MPI file I/O operations. It may be recalled that there is no need
for conversion as fscanf can directly read the integers from the files.

Off-line Conversion In this second strategy, the ASCII file is converted into a
native file by a separate program. This gives the facility to convert the required
ASCII file off-line which enables the image processing program to read the na-
tive file without any difficulty. To achieve heterogeneity, MPI external 32 data
representation can be used instead of the native format.

Runtime Conversion In this third strategy, the entire ASCII file is read into
a large buffer of type CHAR, and then individually by reading every character

Enhanced File Interoperability with Parallel MPI File-I/O 5

ranks=0 1 2 3 4 5 6 7 Remarks

R(0,0) R(1,1) R(2,2) R(3,3) R(0,4) R(1,5) R(2,6) R(3,7) read first
images&models

c(0,0) c(1,1) c(2,2) c(3,3) c(0,4) c(1,5) c(2,6) c(3,7)
r(1) r(2) r(3) r(4) r(5) r(6) r(7) r(0) exchange models

c(0,1) c(1,2) c(2,3) c(3,4) c(0,5) c(1,6) c(2,7) c(3,0)
r(2) r(3) r(4) r(5) r(6) r(7) r(0) r(1)

c(0,2) c(1,3) c(2,4) c(3,5) c(0,6) c(1,7) c(2,0) c(3,1)
r(3) r(4) r(5) r(6) r(7) r(0) r(1) r(2)

c(0,3) c(1,4) c(2,5) c(3,6) c(0,7) c(1,0) c(2,1) c(3,2)

R(8) R(9) R10) R(11) R(12) R(13) R(14) R(15) read next models

c(0,8) c(1,9) c(2,10) c(3,11) c(0,12) c(1,13) c(2,14) c(3,15)
r(9) r(10) r(11) r(12) r(13) r(14) r(15) r(8)

c(0,9) c(1,10) c(2,11) c(3,12) c(0,13) c(1,14) c(2,15) c(3,16)
...

R(4,q-1) R(5,q-2) R(6,q-3) R(7,q-4) R(4,q-5) R(5,q-6) R(6,q-7) R(7,q-8) read next image &
models (with

...
reverse sequence,
q = # of models)

Table 1. Parallelization scheme of I/O and computation.

till it is terminated either by a blank or by an end-of-line character, the same is
converted into an integer at run-time. In fact, the original file remains as ASCII
file and is still used. The conversion can be stored as a native file for further use,
if need be. It may be recalled the ASCII to Integer conversion function is very
easy to implement which is also system independent.

4.3 Optimizing the Parallel I/O

The image data usage pattern has two chances for optimization: (a) all image
data must be reused (and probably reloaded) for comparing with several models,
and (b) all models must be reused (and probably reloaded) for comparing with
several images. In the sequential version of the software, each image is loaded
once and all models are loaded again for comparing with each image. By reversing
the sequence of models for each even image number, at least the latest models
can be cached in memory. In the first parallel version loading of the images can
be optimized with collective reading into all processes.

If more than one image can be analyzed in parallel, i.e., if one can accept an
additional delay for the analysis of an image because not all available processors
are used for analyzing and because the start of the analysis is delayed until a set
of images is available, then the parallelization can be optimized according to the
scheme in Table 1. The scheme shows the analysis of 4 images in parallel on 8
processors. R(i,k) denotes reading of the image i and model k, R(k) is only read-
ing of model k, r(k) is receiving of model k with point-to-point communication
from the right neighbor (sending is omitted in the figure), and c(i,k) denotes the
computation of the Hausdorff distance for image i and model k.

6 Piriyakumar, Levi and Rabenseifner.

Fig. 1. A sample Image Fig. 2. A sample Model

Looking at the scheme, note that reading the image into several processors
at the same time (e.g., image 0 into processes 0 and 4) can be still optimized
with collective reading (MPI File read all) that internally should optimize this
operation by reading once from disk and broadcasting the image data to the
processes. Reading several images and models at the same time can be accel-
erated by the use of striped file-systems. The scheme is also optimized for a
cluster of shared memory nodes (SMPs). The vertical bar between rank 3 and
4 may donate such a boundary between SMPs. One can see on each node, that
only one model is received from another node (and another model is sent) while
exchanging all models.

5 Results and Analysis

For the purpose of illustration, four sample images (one shown in Fig. 1) and four
models (one shown in Fig. 2) are considered. The algorithm is tested with 1, 2
and 4 processors on the Cray T3E-900 at HLRS. As the interest of the paper is
on I/O, the I/O timings per process are tabulated in Table 2 for 4 images and 4
models. The timing is done with MPI Wtime(). Before starting each I/O timing,
a barrier is done to prohibit that any synchronization time is assessed as I/O
time. Although the I/O requires only a small part of the total execution time
in the current version of the program, it is expected that on faster processing
systems and with better optimization of the Hausdorff algorithm, I/O will be a
relevant factor of execution speed. In the original parallelization, each image is
read by all processes (which may be optimized by the MPI library), and for each
image, each process reads only a subset of the models according to the numbers
of processors. In the optimized parallelization, each image is read by only one
process, and for each set of images analyzed in parallel, each model is read only
once and then transferred with message passing to the other processes. Table 3
shows the accumulated number of reading an image or model file or transferring
a model for our test case with 4 images and 4 models.

We started our experiments with normal reading with fscanf. Our original
parallelization resulted in a larger I/O time because each image had to be read

Enhanced File Interoperability with Parallel MPI File-I/O 7

No. Parallelization File Op Conversion I/O Entities 1 proc 2 proc 4 proc
1 Original fscanf On-line integers 0.126 s 0.130 s 0.142 s
2 Original MPI On-line characters 7.087 s 6.173 s 6.563 s
3 Original MPI On-line whole file 0.157 s 0.196 s 0.234 s
4 Original MPI Off-line 3*int, 2*array 0.189 s 0.182 s 0.195 s
5 Optimized MPI On-line whole file 0.163 s 0.071 s 0.040 s
6 Optimized fscanf On-line integers 0.129 s 0.068 s 0.036 s

Table 2. I/O time per process: wall clock time per process to handle the reading of 4
images and 4 models, including repeated reading or message exchanges of the model.

Parallelization accumulated number of images + models read with
1 process 2 processes 4 processes

Original 4*1 + 16 + 0 4*2 + 16 + 0 4*4 + 16 + 0
Optimized 4*1 + 16 + 0 4*1 + 8 + 8 4*1 + 4 + 12

Table 3. Each entry shows the accumulated number of images read + models read
+ models exchanged by all processes with the different parallelization schemes, e.g.,
4*2+16+0 means, that 4 times 2 identical images, and 16 models are read, and 0
models are exchanged by message transfer.

on each processor again. In the second experiment we parallelized this reading
and substituted each fscanf by MPI-2 file reading. Because reading of ASCII
integers is not available in MPI-2, we have chosen reading characters. Normally
each integer is expressed only with a few characters, therefore, the expected
additional overhead was not expected very high. But the measurements have
shown that this solution was 46 times slower than the original code. The MPI-2
I/O library on the Cray T3E could not be used in a similar way as fscanf() or
the getc() can be used. To overcome the high latency of the MPI I/O routines,
reading the whole file with one (experiment No. 3) or only a few (No. 4) MPI
operations was implemented. But there is still no benefit from parallelizing the
I/O. The I/O time per process grows with the number of processes and the
accumulated I/O time with 4 processors is therefore 4–6 times more than with
one processor. In the last two experiments, the parallelization was optimized to
reduce the number of reading of each image and model. This method achieves an
optimal speedup for the I/O. But also with this optimization, the fscanf solution
is about 10%faster than the MPI I/O solution on 4 processes.

These experiments have shown that (a) MPI I/O can be used for ASCII files,
(b) but only large chunks should be accessed due to large latencies of MPI I/O
routines, and (c) optimizations that can be implemented by the applications
should be preferred of optimizations that may be done inside the MPI library,
(d) as long as many small or medium ASCII files should be accessed, it may be
better to use standard I/O by many processes and classical message passing or
broadcasting the information to all processes that need the same information,
than using collective MPI I/O.

8 Piriyakumar, Levi and Rabenseifner.

6 Conclusion

One of the computationally intensive image processing problem, Image matching

which demands the solutions within real time constraints is investigated focusing
the attention on MPI File Interoperability especially with ASCII files. Due to the
domain specific nature of the problem, the images usually stored in files, differ in
formats considerably. This poses an impediment to the efficient implementation
of the parallel algorithm despite parallel I/O implementations in MPI-2. As
most of the formats can be converted into ASCII file format in many systems,
the three strategies namely, Normal File Reading, Off-line Conversion and Run-

time Conversion for free format integer file reading and writing are implemented
on Cray T3E with MPI-2. The modified parallelization presented in the paper
produced better results comparing the I/O timings. The important conclusion
of the paper is that the problem of file format conversion in image processing
applications can be efficiently solved with the proper parallelization and MPI
parallel I/O operations. In all the images, the accurate positions (to one pixel
resolution) of the human beings with the corresponding best model are not only
found correctly but also efficiently as the obtained results demonstrate.

References

1. Ian Foster and Carl Kesselman, The Grid: Blueprint for a New Computing Infras-
tructure, Morgan Kaufmann Publishers, 1998.

2. Douglas A.L. Piriyakumar, and Paul Levi, ”On the symmetries of regular repeated
objects using graph theory based novel isomorphism”, The 5th International Con-
ference on PATTERN RECOGNITION and IMAGE ANALYSIS, 16 - 22 October,
2000, Samara, The Russian Federation.

3. Aaron F.Bobick and James W.Davis., ”The Recognition of Human Movement
using Temporal Templates”, IEEE Trans. PAMI, vol.23, no.3, pp.257-267, March,
2001.

4. N. T. Siebel and S. J. Maybank, ”Real-time tracking of Pedestrians and vehicles”,
IEEE International workshop PETS’2001.

5. D.M.Gavrila, ”The Visual Analysis of Human Movement: A Survey”, Computer
Vision and Image Processing, vol. 73, no. 1, pp. 82-98, 1999.

6. William Gropp, Ewing Lusk and Anthony Skejellum., Using MPI, MIT press, 1995.
7. MPI-2, Special Issue, The International Journal of High Performance Computing

Applications, vol. 12, no. 1/2, 1998.
8. Daniel Huttenlocher, Gregory Klanderman and William Rucklidge., ”Comparing

images using Hausdorff distance”, Transaction on PAMI, vol. 15, no. 9, pp. 850-863,
September, 1993.

9. S. Smith and J. Brady, ”SUSAN - a new approach to low level image processing”,
Int. Journal of Computer Vision, vol. 23, no. 1, pp. 45-78, 1997.

10. Armin Baeumker and Wolfgang Dittrich., ”Parallel algorithms for Image pro-
cessing: Practical Algorithms with experiments”, Technical report, Department
of Mathematics and Computer Science, University of Paderborn, Germany, 1996.

11. J. F. JaJa, Introduction to Parallel Algorithms. Addison-Wesley, 1992.
12. Rolf Rabenseifner, Parallel Programming Workshop Course Material, Internal re-

port 166, Computer Center, University of Stuttgart, 2001.
http://www.hlrs.de/organization/par/par prog ws/

