
Automatic Pro�ling of MPI Applications with

Hardware Performance Counters

Rolf Rabenseifner1

Center for High Performance Computing (ZHR), Dresden University of Technology
Zellescher Weg 12, Willers-Bau A 117, D-01062 Dresden, Germany
www.tu-dresden.de/zhr/, rabenseifner@rus.uni-stuttgart.de

Published in the proceedings of the EuroPVM/MPI'99, Barcelona, Spain, Sept. 26-29, 1999.

c
Springer-Verlag, http://www.springer.de/comp/lncs/

Abstract. This paper presents an automatic counter instrumentation
and pro�ling module added to the MPI library on Cray T3E and SGI
Origin2000 systems. A detailed summary of the hardware performance
counters and the MPI calls of any MPI production program is gathered
during execution and written in MPI Finalize on a special syslog �le. The
user can get the same information in a di�erent �le. Statistical summaries
are computed weekly and monthly. The paper describes experiences with
this library on the Cray T3E systems at HLRS Stuttgart and TU Dres-
den. It focuses on the problems integrating the hardware performance
counters into MPI counter pro�ling and presents �rst results with these
counters. Also, a second software design is described that allows the in-
tegration of the pro�ling layer into a dynamic shared object MPI library
without consuming the user's PMPI pro�ling interface.

Keywords. MPI, Counter Pro�ling, Instrumentation, Hardware Per-
formance Counters, Trace-based Pro�ling, PerfAPI, PCL.

1 Counter-Based Pro�ling

Today, job accounting on MPP hardware platforms does not provide enough
information about the computational e�ciency or about the e�ciency of message
passing (MPI) usage either to the users or to the computing centers. There is no
information available about bandwidth and latency or integer and 
oating point
operation rates achieved in real application runs. Therefore, users and hotline
centers have no reliable information base for technical and political decisions
with respect to programming and optimization investment. Existing trace-based
pro�ling tools are too complicated for a �rst glance at an application and can
be used in small test-jobs only, not in long-running production jobs.

To solve this problem, the High-Performance Computing-Center (HLRS) at
the University of Stuttgart has combined the method of counter-based pro�ling
with the technics of writing system log-�les. For each MPI routine, the number

1 The author is an employee of the High-Performance Computing-Center (HLRS)
at the University of Stuttgart (www.hlrs.de/people/rabenseifner/). Most of this
work was done while the author was a visiting research associate at the ZHR from
January to April 1999.
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of calls, the time spent in the routine and the number of transferred bytes are
written at the end of each parallel job to a syslog �le of the computing cen-
ter and, optionally, to a user �le. The integration of the PCL library [1] allows
the automatic instrumentation with the microprocessor's hardware performance
counters (e.g. 
oating point instructions) to get information about the compu-
tational e�ciency of each program. With that, the user has a criterion whether
tuning the numerical part or the communication part promises greater bene�t.

An analysis tool reads the syslog �le and, on a weekly basis, sends a sum-
mary to each user about her/his jobs and writes a web-based summary for the
computing center. The results of the �rst half-year on CRAY T3E 900-512 at
the HLRS are presented in [8]. In a survey, our users showed that in the past, the
pro�ling information was used only seldom for tuning the individual applications
because the pro�ling tool was only available after the application development
was �nished and production was started. But 75% of those interviewed believe
that the pro�ling can help in the future to improve their applications [9].

The pro�ling was implemented, tested and installed as default library on
the T3E systems at HLRS Stuttgart and TU Dresden, and it is now ported to
the Origin2000 at TU Dresden. The counter-based pro�ling only has a minimal
overhead. The memory requirements on a T3E-900 are 200 kBytes. The counting
requires 0.3 - 0.5 �sec per MPI call and writing the syslog �le requires about 0.1
sec for each job. The overhead was 0.03% of the application CPU time on the �rst
half-year average in Stuttgart. Including the hardware counters, the overhead is
about 300 kBytes memory, 2 �sec/call and about 0.1 - 0.2% (expected) in all.

The PCL library was developed by the Forschungszentrum J�ulich. For in-
tegrating the PCL library, the hardware counters' reading routine of the PCL
library on the T3E has been optimized from about 35�s to about 0:5�1:0�s by
removing the operating system calls. This allows di�erentiation between count-
ing hardware events inside and outside of the MPI routines. This is important
because otherwise some hardware counters (load, integer instruction, any in-
structions) could not be used for measuring the user application since the busy
wait operations of MPI would in
ate their values.

2 Software Design

To use the instrumented MPI library as default library, it is necessary to export
the full MPI and PMPI interface for Fortran and C, as described in the MPI
standard and implemented in the public and vendor's MPI libraries. This means
that it was not possible to consume the PMPI pro�ling interface for the intended
instrumentation, i.e. a method had to be used that allowed two pro�ling layers.
The Figures 1 and 2 show the di�erent software designs for Unix libraries (archive
libmpi.a) and dynamic shared objects (DSO libmpi.so).

For Unix libraries, the instrumentation is implemented as one wrapper rou-
tine to each MPI routine and added to the original MPI library, in which the
original routines' names are modi�ed with a binary-�le editor. This interface was
developed for a CRAY T3E system and is described in [8].

For DSOs, the new MPI-DSO libmpi.so contains only the instrumented wrap-
pers and an initialization routine that binds the (up to this time) unresolved
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Fig. 1. The software design for MPI libraries (libmpi.a)

MPI references of the wrapper routines with dlopen and dlsym to the original
MPI-DSO at start-up time. For this, the original MPI-DSO library was renamed
libMpi.so. The dynamic linking at start-up time is necessary because static link-
ing is impossible since the entry-point names of the instrumented wrapper rou-
tines and of the original MPI library routines are identical. This design requires
that the original MPI routines never internally call other MPI routines. This is
the case for the SGI MPI library. For applications written in C, this design adds
only one additional subroutine call and the instrumentation.

For applications written in Fortran, the design depends on the implemen-
tation method of the Fortran MPI language binding. If a Fortran MPI routine
is implemented as a Fortran-to-C wrapper routine that calls its C counterpart,
then an empty wrapper for this Fortran interface must be added to the new
libmpi.so and the dynamic linking establishes the following calling stack: appli-
cation ! new empty Fortran wrapper ! original Fortran-to-C wrapper ! new
instrumented C wrapper ! original MPI C interface. Compared with C, this
case costs one additional subroutine call. If a Fortran MPI routine is imple-
mented directly, then the Fortran wrapper in the new libmpi.so must be instru-
mented like the C wrapper, and there are no additional costs. This case may
be necessary for routines with arguments that are externals or for optimized
MPI routines. Additional wrappers must be included for the three special argu-
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Fig. 2. The software design for MPI dynamic shared objects (libmpi.so)

ment values MPI NULL COPY FN, MPI DUP FN and MPI NULLL DELETE FN
in Fortran and C. This design was developed for SGI IRIX 6.5. The library is
portable to any system with fast subroutine calls and a fast local clock routine.

3 Adding Hardware Performance Counters

Each micro-processor has implemented some (2-4) hardware performance coun-
ters that are able to count one type of event among a given larger set of hardware
events, e.g. completed instructions, 
oating point instructions, loads, stores or
cache misses. The PCL library [1] developed by the Forschungszentrum J�ulich is
a common interface for currently 6 di�erent micro-processors and access methods
of the operating systems. PerfAPI [5] is a standardization e�ort of The Parallel
Tools Consortium [11] to achieve a common interface to access the hardware
performance counters.

To use these counters to measure the applications' e�ciency, it is necessary to
separate the hardware events generated by the application code and by the MPI
library routines. This is not necessary for events that are generated very seldom
by the MPI routines, such as 
oating point instructions, but the separation
is absolutely necessary for events that are often generated by MPI, such as
those load instructions used in the busy-wait implementation of MPI Receive. To
separate MPI and application events, it is necessary to have an extremely fast
access to the hardware counters and to minimize data cache misses inside the
instrumented wrappers (e.g. by minimizing any access to global variables).

Typically the operating system exports one of two di�erent interface types:
a) the hardware counters can be read like a clock, i.e. they are not reset after
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reading, and b) they can be read out, i.e. they are always reset to zero after
reading them. For both interfaces, the instrumented wrappers have to implement
one integer operation for each hardware counter before calling the original MPI
routine and another one after returning from it:
In case a) events in mpi �= counter must be issued before each MPI call and
events in mpi += counter after its return and events in application = �counter
at the beginning and events in application += (counter � events in mpi) at the
end of the whole application.
In case b) events in application += counter must be issued before each MPI call
and events in mpi += counter after its return and counter = events in mpi =
events in application = 0 at the beginning and events in application += counter
at the end of the whole application. This means that the major requirement of a
common low-level interface to access the micro-processors' hardware counters
is that the two operations plus and minus must exist in the form

for (i=0; i<number of hardware counters; i++)

local event counter[i] �= hardware counter[i]
(1)

and also the information must be available whether this is a read or read out.
Unfortunately, neither the PCL library nor the PerfAPI interface design meet

this requirement. E.g., the PCL library only has a read out interface, which adds
additional operations, cache misses and resets of the hardware counter if the
hardware supports the read interface. Additionally, PCL only has a high level
interface that implements a matrix operation on the set of hardware counters
and that implies at least an additional load/store for each counter. This ma-
trix operation implements the mapping of the counters de�ned by PCL to any
hardware counter or any di�erence or sum of several hardware counters. The
matrix operation would be done twice for each MPI wrapper call, if PCL were
used, instead of only once at the end of the application, which happens if the
method (1) is used and the matrix operation is done only once before writing the
results of events in mpi and events in application to the syslog-�le. To integrate
the hardware performance counters into the automatic MPI pro�ling, we have
added an interface to the PCL library for the CRAY T3E that is similar to the
required interface (1). With this and by removing all unnecessary operating sys-
tem calls, the time to access the hardware performace counters could be reduced
from 35 �s to about 0.5-1.0 �s.

4 First Results with Hardware Counters

Fig. 3 shows the users' pro�les in the �rst seven weeks we used the hardware
performance counters. Each row represents one user. The upper and lower part
plot the same information, but di�erently sorted. The upper part is sorted by the
CPU time consumed by each user, and the lower part by the total instruction
rate. Each part combines three di�erent plots:

The solid line in the left diagram represents the CPU time each user has
consumed as part of the total time of the whole system in the analyzed time
interval. The users are sorted by this value. The vertical bar marks 0.5% of the
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Fig. 3. Users' pro�les, sorted by CPU time (upper part) and by instruction rate (lower
part) { description see Section 4

total system. The �gure represents the top 16 users of the HLRS that have used
the new MPI library which was now instrumented with the hardware counters.
In total, the 16 users have consumed 24.3% of the whole system. The left dashed
line shows the percentage of the time the user applications have consumed in
MPI routines.

The diagram in the middle shows the ratio of MPI time to application time.
The vertical bars mark a ratio of 10 and 30%. The MPI percentage varies be-
tween 0.3% and 46.8%. On average, the MPI percentage was 5.2%.

The diagram on the right shows the 
oating point instruction rate (dotted
line) and the total instruction rate (solid line). The numbers are averages re-
ferring to one processor. On a T3E, each 
oating point instruction can execute
one or two 
oating point operations. The 
oating point operation rate can-
not be measured, but lies between the 
oating point instruction rate and twice
the 
oating point rate. About half of the users' application runs could be used
to analyse the hardware counters. The other jobs could not read the counters
because the application was not yet relinked with the new library or else the
partition was moved to other processors during execution. The 
oating point in-
struction rate of these 16 users varies between 9 and 333 MFL instructions/sec
(MFLips); weighted with the CPU time, the average is 138 MFLips, which im-
plies that the MFLOP rate is between 138 and 276 MFLOPS, i.e. between 15
and 30% of the peak performance of 900 MFLOPS. The vertical bars mark 100,
200 and 450 MFLips. The total instruction rate of the application code, except
the MPI routines (solid line), is computed by dividing the number of instructions
in the whole application minus the number of instructions executed in the MPI
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routines by the whole execution time. The total instruction rate varies between
53 and 647 M instructions/sec.

The upper part of the picture helps to review the e�ciency of the most
relevant users. The lower part of the picture gives an insight into the correlation
of MPI percentage and instruction rate. The numbers presented for each user (i.e.
the MPI percentage, the 
oating point instruction rate and the total instruction
rate) are a major information base for decisions with respect to programming
and optimization investment since these numbers give a good overview of the
achieved e�ciency in computation and communication. The analysis tool sends
these numbers and additional details to each user in a weekly mail.

5 Related and Future Work

[1] describes the hardware counter library PCL. [5] is a standardization e�ort for
accessing of the hardware performance counters. [10] is a comprehensive overview
about monitoring and pro�ling systems. Trace-based pro�ling and analysis is
described in [2, 3, 6, 7]. [4] describes a local, user-callable MPI counter pro�ling.
[8] focuses on the global view of the counter-based MPI pro�ling and includes the
statistical results of half a year of pro�ling nearly all MPI applications running
on a CRAY T3E 900-512, but without instrumenting the applications with the
hardware counters. [9] decribes the scalability of the pro�ling user interface.

We hope that the results of this project can in
uence the standardization ef-
fort of PerfAPI and that the new low-level interface for PCL can be implemented
on all supported hardware platforms in an e�cient way. Also, it is planned to use
the hardware counter pro�ling for all applications and not only for MPI appli-
cations, although there is no plan to di�erentiate then between hardware events
issued by the application code and those issued by non-MPI communication
(e.g. with PVM, HPF or shmem). We will generate global half-year statistics of
the CRAY T3E 900-512 used by the HLRS Stuttgart, similar to that in [8] but
including the hardware counters. The major goal is to extend this pro�ling to
all terminating correctly applications to see the hardware performance counters
not only on MPI applications. The computing center has planned to use the pro-
�ling results to o�er the users help in optimizing their individual applications.
In a survey, we saw that 85% of our users would like to be addressed for that
reason [9]. Extending the pro�ling interface for OpenMP applications is under
investigation.

6 Conclusion

This project shows that combining the methods of counter pro�ling, job account-
ing and accessing the hardware performance counters can give more insight into
the users' applications than achievable by previously used tools with similar
costs. The paper has shown two di�erent methods to integrate an additional
pro�ling level into existing MPI archives and dynamic shared objects without
losing the standardized MPI pro�ling interface for other pro�ling tools. The au-
tomatic MPI pro�ling is a method to get enough information to decide whether
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the application is running as expected, one more chance to detect major bottle-
necks and a basis to decide whether trace based tools should be used to optimize
the communication pattern or whether direct hardware counter instrumentation
should be applied to optimize the computational part.
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