
Colletive Redution Operation on Cray X1 andOther PlatformsRolf Rabenseifner and Panagiotis AdamidisHigh-Performane Computing-Center (HLRS), University of StuttgartAllmandring 30, D-70550 Stuttgart, Germanyrabenseifner|adamidis�hlrs.de,www.hlrs.de/people/rabenseifner/ | adamidis/

Proeedings of the CUG 2004 Conferene, Knoxville, Tennessee, USA, May, 17-21, 2004.www.ug.org

Abstrat. A 5-year-pro�ling in prodution mode at the University ofStuttgart has shown that more than 40% of the exeution time of Mes-sage Passing Interfae (MPI) routines is spent in the olletive ommu-niation routines MPI Allredue and MPI Redue. Although MPI im-plementations are now available for about 10 years and all vendors areommitted to this Message Passing Interfae standard, the vendors' andpublily available redution algorithms ould be aelerated with new al-gorithms by a fator between 3 (IBM, sum) and 100 (Cray T3E, maxlo)for long vetors. This paper presents �ve algorithms optimized for dif-ferent hoies of vetor size and number of proesses. The fous is onbandwidth dominated protools for power-of-two and non-power-of-twonumber of proesses, optimizing the load balane in ommuniation andomputation. The new algorithms are ompared also on the Cray X1 withthe urrent development version of Cray's MPI library (mpt.2.4.0.0.13)Keywords. Message Passing, MPI, Colletive Operations, Redution.1 IntrodutionMPI Redue ombines the elements provided in the input vetor (bu�er) of eahproess using an operation (e.g. sum, maximum), and returns the ombinedvalues in the output bu�er of a hosen proess named root. MPI Allredue isthe same as MPI Redue, exept that the result appears in the reeive bu�er ofall proesses.MPI Allredue is one of the most important MPI routines and most vendorsare using algorithms that an be improved by a fator of more than 2 for longvetors. Most urrent implementations are optimized only for short vetors. A5-year-pro�ling [12℄ of most MPI based appliations (in prodution mode) ofall users of the Cray T3E 900 at our university has shown, that 8.54% of theexeution time is spent in MPI routines. 37.0% of the MPI time is spent inMPI Allredue and 3.7% in MPI Redue. Based on the pro�led number of alls,transferred bytes, and used proesses, ombined with benhmark results for thevendor's redution routines and the optimized algorithms, Fig. 1 show that theommuniation time an be redued by a fator of 20% (allredue) and 54%(redue) with the new algorithms. The 5-year-pro�ling has also shown, that 25%

2 Rolf Rabenseifner and Panagiotis Adamidisof all exeution time was spent with a non-power-of-two number of proesses.Therefore, a seond fous is the optimization for non-power-of-two numbers ofproesses.

Fig. 1. Bene�t of new allredue and redue protools optimized for long vetors.2 Related WorkEarly work on olletive ommuniation implements the redution operation asan inverse broadast and do not try to optimize the protools based on di�erentbu�er sizes [1℄. Other work already handle allredue as a ombination of basiroutines, e.g., [2℄ already proposed the ombine-to-all (allredue) as a ombi-nation of distributed ombine (redue satter) and ollet (allgather). Colletivealgorithms for wide-area luster are developed in [5, 7, 8℄, further protool tuningan be found in [3, 4, 9, 15℄, and automati tuning in [16℄. The main fous of thework presented in this paper is to optimize the algorithms for di�erent numbersof proesses (non-power-of-two and power-of-two) and for di�erent bu�er sizesby using speial redue satter protools without the performane penalties onnormal rank-ordered sattering. The allgather protool is hosen aording theharateristis of the redue satter part to ahieve an optimal bandwidth forany number of proesses and bu�er size. This paper is based on [13℄ and extendedby benhmark results on Cray X1 parallel shared memory vetor systems.3 Allredue and Redue Algorithms3.1 Cost ModelTo ompare the algorithms, theoretial ost estimation and benhmark resultsare used. The ost estimation is based on the same at model used by R. Thakurand B. Gropp in [15℄. Eah proess has an input vetor with n bytes, p is thenumber of MPI proesses, the omputation ost per vetor byte exeuting oneoperation with two operands loally on any proess. The total redution e�ort is

Colletive Redution Operation on Cray X1 and Other Platforms 3(p�1)n. The total omputation time with optimal load balane on p proessesis therefore p�1p n, i.e., less than n, whih is independent of the number ofproesses!The ommuniation time is modeled as � + n�, where � is the lateny (orstartup time) per message, and � is the transfer time per byte, and n the messagesize in bytes. It is assumed further that all proesses an send and reeive onemessage at the same time with this ost model, i.e., p parallel proesses ansend in parallel p messages eah with n bytes (e.g., pairwise or in a ring pattern)with the ommuniation time � + n�. In reality, most networks are faster, ifthe proesses ommuniate in parallel, but pairwise only in one diretion (uni-diretional between two proesses), e.g., in the lassial binary tree algorithms.Therefore �uni+n�uni is modeling the uni-diretional ommuniation, and �+n� is used with the bi-diretional ommuniation. The ratios are abbreviatedwith f� = �uni=� and f� = �uni=�. These fators are normally in the range 0.5(simplex network) to 1.0 (full duplex network).3.2 PriniplesA lassial implementation of MPI Allredue is the ombination of MPI Redue(to a root proess) followed by MPI Bast sending the result from root to allproesses. This implies a bottle-nek on the root proess. Also lassial is thebinary tree implementation of MPI Redue, whih is a good algorithm for shortvetors, but that auses a heavy load imbalane beause in eah step the num-ber of ative proesses is halved. The optimized algorithms are based on a fewpriniples:Reursive vetor halving: For long-vetor redution, the vetor an be splitinto two parts and one half is redued by the proess itself and the other half issent to a neighbor proess for redution. In the next step, again the bu�ers arehalved, and so on.Reursive vetor doubling: To return the total result in the result vetor,the split result vetors must be ombined reursively. MPI Allredue an beimplemented as a redue-satter (using reursive vetor halving) followed by anallgather (using reursive vetor doubling).Reursive distane doubling: In step 1, eah proess transfers data at dis-tane 1 (proess P0 with P1, P2{P3, P4{P5, ...); in step 2, the distane isdoubled, i.e., P0{P2 and P1{P3, P4{P6 and P5{P7; and so on until distane p2 .Reursive distane halving: Same proedure, but starting with distane p=2,i.e., P0{Pp2 , P1{P(p2 + 1), ..., and ending with distane 1, i.e., P0{P1,Reursive vetor and distane doubling and halving an be ombined fordi�erent purposes, but always additional overhead auses load imbalane if thenumber of proesses is not a power of two. Two priniples an redue the over-head in this ase.Binary bloks: The number of proesses an be expressed as a sum of power-of-two values, i.e., all proesses are loated in subsets with power-of-two proesses.Eah subset is used to exeute parts of the redution protool in a blok. Over-head ours in the ombining of the bloks in some step of the protool.

4 Rolf Rabenseifner and Panagiotis AdamidisRing algorithms: A redue satter an be implemented by p�1 ring exhangesteps with inreasing strides. Eah proess omputes all redution operations forits own hunk of the result vetor. In step i (i=1 .. p-1) eah proess sends theinput vetor hunk needed by rank+i to that proess and reeives from rank�ithe data needed to redue its own hunk. The allredue an be ompleted by anallgather that is also implemented with ring exhange steps, but with onstantstride 1. Eah proess sends its hunk of the result vetor around the ring to theright (rank + 1) until its left neighbor ((rank + p � 1) mod p) has reeived itafter p� 1 steps. The following setions desribe the algorithms in detail.3.3 Binary TreeRedue: The lassial binary tree always exhanges full vetors, uses reursivedistane doubling, but with inomplete protool, beause in eah step, half ofthe proesses �nish their work. It takes dlg pe steps and the time taken by thisalgorithm is Tred;tree = dlg pe(�uni + n�uni + n)).For short vetors, this algorithm is optimal (ompared to the following algo-rithms) due to its smallest lateny term dlg pe�uni.Allredue: The redue algorithm is followed by a binary tree based broadast.The total exeution time is Tall;tree = dlg pe(2�uni + 2n�uni + n)).3.4 Reursive DoublingAllredue: This algorithm is an optimization espeially for short vetors. Ineah step of the reursive distane doubling, both proesses in a pair exhangethe input vetor (in step 1) or its intermediate result vetor (in steps 2 ... dlg pe)with its partner proess and both proesses are omputing the same redutionredundantly. After dlg pe steps, the idential result vetor is available in all pro-esses. It needs Tall;r:d: = dlg pe(�+n�+n))+(if non-power-of-two �uni+n�uni)This algorithm is in most ases optimal for short vetors.3.5 Reursive Halving and DoublingThis algorithm is a ombination of a redue satter implemented with reur-sive vetor halving and distane doubling1 followed by a allgather implementedby a reursive vetor doubling ombined with reursive distane halving (forallredue), or followed by gather implemented with a binary tree (for redue).In a �rst step, the number of proesses p is redued to a power-of-two value:p0 = 2blg p. r = p� p0 is the number of proesses that must be removed in this�rst step. The �rst 2r proesses send pairwise from eah even rank to the odd1 A distane doubling (starting with distane 1) is used in ontrary to the re-due satter algorithm in [15℄ that must use a distane halving (i.e., starting withdistane #proesses2) to guarantee a rank-ordered satter. In our algorithm, any orderof the sattered data is allowed, and therefore, the longest vetors an be exhangedwith the nearest neighbor, whih is an additional advantage on systems with a hier-arhial network struture.

Colletive Redution Operation on Cray X1 and Other Platforms 5

Fig. 2. Reursive Halving and Doubling. The �gure shows the intermediate resultsafter eah bu�er exhange (followed by a redution operation in the 1st part). Thedotted frames show the overhead aused by a non-power-of-two number of proesses.(rank + 1) the seond half of the input vetor and from eah odd rank to theeven (rank � 1) the �rst half of the input vetor. All 2r proesses ompute theredution on their half.Fig. 2 shows the protool with an example on 13 proesses. The input ve-tors and all redution results will be divided into p0 parts (A, B,..., H) by thisalgorithm, and therefore it is denoted with A{Hrank. After the �rst redution,proess P0 has omputed A{D0�1, denoting the redution result of the �rsthalf of the vetor (A{D) from the proesses 0{1. P1 has omputed E{H0�1, P2A{D2�3, The �rst step is �nished by sending those results from eah oddproess (1 ... 2r � 1) to rank � 1 into the seond part of the bu�er.Now, the �rst r even proesses and the p� 2r last proesses are renumberedfrom 0 to p0 � 1.This �rst step needs (1+ f�)�+ 1+fbeta2 n�+ 12n and is not neessary, if thenumber of proesses p was already a power-of-two.Now we start with the �rst step of reursive vetor halving and distanedoubling, i.e., the even / odd ranked proesses are sending the seond / �rst halfof their bu�er to rank0+1 / rank0�1. Then the redution is omputed betweenthe loal bu�er and the reeived bu�er. This step osts �+ 12 (n� + n).In the next lg p0�1 steps, the bu�ers are reursively halved and the distanedoubled. Now, eah of the p0 proesses has 1p0 of the total redution result vetor,i.e., the redue satter has sattered the result vetor to the p0 proesses. Allreursive steps ost lg p0�+ (1� 1p0)(n� + n).The seond part implements an allgather or gather to omplete the allredueor redue operation.Allredue: Now, the ontrary protool is needed: Reursive vetor doublingand distane halving, i.e., in the �rst step the proess pairs exhange 1p0 of thebu�er to ahieve 2p0 of the result vetor, and in the next step 2p0 is exhanged toget 4p0 , and so on. A{B, A{D ... in Fig. 2 denote the already stored portion ofthe result vetor. After eah ommuniation exhange step, the result bu�er is

6 Rolf Rabenseifner and Panagiotis Adamidis

Fig. 3. Binary Bloks.doubled and after lg p0 steps, the p0 proesses have reeived the total redutionresult. This allgather part osts lg p0�+ (1� 1p0)(n�).If the number of proesses is non-number-of-two, then the total result vetormust be sent to the r removed proesses. This auses the additional overhead�+ n�. The total implementation needs� Tall;h&d;n=2exp = 2 lg p�+ 2n� + n � 1p (2n� + n)' 2 lg p�+ 2n� + n if p is power-of-two,� Tall;h&d;n6=2exp = (2 lg p0 + 2 + f�)�+ (3 + 1+fbeta2)n� + 32n � 1p0 (2n� + n)' (3 + 2blg p)�+ 4n� + 32n if p is non-power-of-two (with p0 = 2blg p).This protool is good for long vetors and power-of-two proesses. For non-power-of-two proesses, the transfer overhead is doubled and the omputationoverhead is enlarged by 32 . The binary bloks protool (see below) an reduethis overhead in many ases.Redue: The same protool is used, but the pairwise exhange with sendrevis substituted by single message passing. In the �rst step, eah proess with thebit with the value p0=2 in its new rank idential to that bit in root rank mustreeive a result bu�er segment and the other proesses must send their segment.In the next step only the reeiving proesses ontinue and the bit is shifted 1position right (i.e., p0=4). And so on. The time needed for this gather operationis lg p0�uni + (1� 1p0)n�uni.In the ase that the original root proess is one of the removed proesses,then the role of this proess and its partner in the �rst step are exhangedafter the �rst redution in the redue satter protool. This auses no additionaloverhead.The total implementation needs� Tred;h&d;n=2exp = lg p(1 + f�)�+ (1 + f�)n� + n � 1p (n(� + �uni) + n)' 2 lg p�+ 2n� + n if p is power-of-two,� Tred;h&d;n6=2exp = lg p0(1 + f�)� + (1 + f�)� + (1 + 1+fbeta2 + f�)n� + 32n �1p0 ((1 + f�)n� + n)' (2 + 2blg p)�+ 3n� + 32n if p is non-power-of-two (with p0 = 2blg p).

Colletive Redution Operation on Cray X1 and Other Platforms 73.6 Binary BloksThe algorithm starts with a binary blok deomposition of all proesses in blokswith power-of-two number of proesses, see example in Fig. 3. Eah blok exe-utes its own redue satter with the reursive bu�er halving and distane dou-bling algorithm as desribed in the previous setion. Then, starting with thesmallest blok, the intermediate result (or the input vetor in ase of 20 proess)is split into the segments of the intermediate result in the next higher blok, sentto the proesses there and the redution operation is exeuted there. This ausesa load imbalane in omputation and ommuniation ompared to the exeutionin the larger bloks. In our example, in the 3rd exhange step in the 23 blok,eah proess sends one segment (e.g., B in P0), reeives one segment (A), andomputes the redution of one segment (A). The load imbalane is introduedhere by the bloks 22 and 20 : In the 22 blok, eah proess reeives andredues 2 segments (e.g. A{B on P8), while in the 20 blok (here only P12),eah proess has to send as many messages as the ratio of the two blok sizes(here 22=20). At the end of the 1st part, the highest blok must be reombinedwith the next smaller blok. Again, the ratio of the blok sizes determines theoverhead.Therefore, the maximum di�erene between the ratio of two suessive bloks,espeially in the low range of exponents, determines the imbalane. On the otherhand, this di�erene may be small, e.g., the most used non-power-of-two num-bers of proesses on our Cray T3E fall into the ategories Æexpo,max = 1 (96[12% of system usage with MPI appliations℄, and 60 PEs [proesing elements℄),Æexpo,max = 2 (61, 80, 235, 251 PEs), and Æexpo,max = 3 (36, 77, 100 PEs).2Allredue: The 2nd part is an allgather implemented with bu�er doubling anddistane halving in eah blok as in the algorithm in the previous setion. Theinput must be provided in the proesses of the smaller bloks always with pairsof messages from proesses of the next larger blok.Redue: If the root is outside of the largest blok, then the intermediate resultsegment of rank 0 is sent to root and root plays the role of rank 0. A binary treeis used to gather the result segments into the root proess.For power-of-two number of proesses, the binary blok algorithms are iden-tial to the halving and doubling algorithm in the previous setion.3.7 RingWhile the algorithms in the last two setions are optimal for power-of-two pro-ess numbers and long vetors, for medium non-power-of-two number of pro-esses and long vetors there exist another good algorithm. It uses the pair-wise exhange algorithm for redue satter and ring algorithm for allgather (for2 Æexpo,max is the maximal di�erene of two onseutive exponents in the binaryrepresentation of the number of proesses, e.g., 100 = 26 + 25 + 22, Æexpo,max =max(6� 5; 5� 2) = 3.

8 Rolf Rabenseifner and Panagiotis Adamidisallredue), as desribed in [15℄, and for redue, all proesses send their resultsegment diretly to root. Both algorithms are good in bandwidth usage for non-power-of-two number of proesses, but the lateny sales with the number ofproesses. Therefore this algorithm an be used only for a small number ofproesses. Independent of whether p is power-of-two or not, the total implemen-tation needs Tall;ring = 2(p� 1)�+ 2n� + n � 1p (2n� + n) for allredue, andTred;ring = (p�1)(�+�uni)+n(�+�uni)+n� 1p (n(�+�uni)+n) for redue.4 Choosing the Fastest Algorithm

2

4

8

16

32

64

128

256

512

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f

M
P

I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Fastest Protocol for
Allreduce(sum,dbl)

vendor
binary tree

pairwise + ring
halving + doubling
recursive doubling

binary blocks halving+doubling
break-even points : size=1k and 2k and min((size/256)

9/16
, ...)

Fig. 4. The fastest protool for Allredue(double,sum) on a Cray T3E 900.

0

10

20

30

40

50

60

70

80

90

100

2 4 8 16 32 64 128 256

b
a

n
d

w
id

th
 [

M
b

/s
]

number of MPI processes

buffersize = 32 kb
Allreduce(sum,dbl)

vendor
binary tree

pairwise + ring
halving + doubling

binary blocks halving + doubling
recursive doubling

chosen best

Fig. 5. Bandwidth omparison for Allredue(double,sum) with 32 KB vetors on a Cray T3E 900.

Based on the number ofproesses and the vetor(input bu�er) length, theredution routine mustdeide whih algorithmshould be used. Fig. 4shows the fastest pro-tool on a Cray T3E900 with 540 PEs. Forbu�er sizes less than orequal to 32 byte, reur-sive doubling is the best,for bu�er sizes less thanor equal to 1KB, mainlyvendor's algorithm (forpower-of-two) and binarytree (for non-power-of-two) are the best butthere is not a big dif-ferene to reursive dou-bling. For longer bu�ersizes, the ring is goodfor some bu�er sizesand some #proesses lessthan 32 PEs. A de-tailed deision is done foreah #proesses value,e.g., for 15 proesses,ring is used if length� 64KB. In general, ona Cray T3E 900, thebinary blok algorithmis faster if Æexpo,max <lg(vetor size1Byte)=2:0�2:5 and

Colletive Redution Operation on Cray X1 and Other Platforms 9vetor size � 16 KB and more than 32 proesses are used. In a few ases, e.g.,33 PEs and less then 32KB, halving&doubling is the fastest algorithm.Fig. 5 shows for 32KB bu�er size that the new protools are learly betterthan the vendor's protool (MPT.1.4.0.4) and the binary tree for all numbers ofproesses. Up to 32 PEs, all numbers of proesses are measured. For more than32 PEs, only seleted values with small and large Æexpo,max are measured. Onean verify, that binary bloks' bandwidth depends strongly on Æexpo,max and thathalving&doubling is faster on 33, 65, 66, 97, 128-131, ... PEs. The ring is fasteron 3, 5, 7, 9-11, and 17 PEs.5 ComparisonFig. 6 shows that with the pure MPI programming model (i.e., 1 MPI proess perCPU) on the IBM SP, the bene�t is about 1.5x for bu�er sizes 8{64KB, and 2x {5x for larger bu�ers. With the hybrid programming model (1 MPI proess perSMP node), only for bu�er sizes 4{128KB and more than 4 nodes, the bene�tis about 1.5x { 3x.Fig. 7 ompares the new algorithm with the old MPICH-1' algorithm (withoutthe halving&doubling). The new algorithms show a performane bene�t of 3x {7x with pure MPI and 2x { 5x with the hybrid model.Fig. 8 shows, that in many ases the new algorithms are 3x { 5x faster than thevendors algorithm with operation MPI SUM and due to the very slow implemen-tation of strutured derived datatypes, a fator up to 100x with MPI MAXLOC.On Cray X1, we ompare the new algorithms with the urrent develop-ment version of Cray's MPI library (mpt.2.4.0.0.13). Our measurements haveshown, that the shared memory based implementation of MPI Allredue andMPI Redue [10℄ has an up to 14 times shorter lateny (6{14�s) as the proto-ols based on point-to-point message passing and presented in this paper (39{137�s) at MPI Allredue omputing the sum of vetors, eah with 1 doubleelement. On the other hand, Fig. 9 shows that the new MPI Allredue protoolsare signi�antly faster for longer vetors. Looking at 96 and more MSPs (MultiStreaming Proessors, onsisting internally of 4 CPUs) and 32 kB (= 4k doubles)and more vetor size, we an see that the new presented protools are more than35% faster than Cray's mpt. For 96 and more MPSs and vetor sizes with 256kB (=32k doubles) and more, the new protools are 4 to 10 times faster thanCray's mpt, although [10℄ states that this mpt uses already buttery protoolsfor longer bu�ers. The lower diagram indiates, whih protool has ahieved thebest bandwidth.Fig. 10 shows, that for MPI Redue, the di�erenes are signi�antly smaller:With more than 8 MSPs, and at least 2 MB bu�er size, one an see that thenew protools are faster than Cray's mpt, but only with a ratio between 1.14and 2.01.The redution operation loop is ompiled with the pragma funtion Pragma(\ CRI onurrent"). The new algorithms vetorize and multi-stream on theMSPs, inluding the minlo and maxlo operation, on all available datatypes,

10 Rolf Rabenseifner and Panagiotis Adamidis
16

32

64

128

256

512

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(sum,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

2

4

8

16

32

64

128

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(sum,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

100.<= ratio

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.7Fig. 6. Ratio of bandwidth of the fastest protool (without reursive doubling) on aIBM SP at SDSC and 1 MPI proess per CPU (left) and per SMP node (right)
4

8

16

32

64

128

256

512

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(sum,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

2

4

8

16

32

64

128

256

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(sum,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

100.<= ratio

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.7Fig. 7. Ratio of bandwidth of the fastest protool (without reursive doubling) on aMyrinet luster with dual-CPU PCs (HELICS luster, University of Heidelberg) and1 MPI proess per CPU (left) and per SMP node (right)exept on short and byte datatypes. Internally, all datatypes are mapped to theappropriate number of MPI BYTE elements, before MPI point-to-point messagepassing routines are alled. E.g., with 116 MSPs and 8 MB vetor size, the min-imal exeution time is 6.84ms and 11.67ms (allredue with sum and maxlo),and 5.04ms and 10.94ms (redue with sum and maxlo), whih implies followingbandwidth values (based on the 8 MB) per proess: 1227MB/s and 719MB/s(allredue) and 1664MB/s and 767MB/s (redue). This speed is ahieved withthe binary blok protool. On 64 MSPs and with reursive halving and dou-bling, one an ahieve 1362MB/s and 909MB/s (allredue) and 1792MB/s and1048MB/s (redue).The used mpt.2.4.0.0.13 is an intermediate development version from Cray.The MPI MAXLOC and MPI MINLOC operations are not yet optimized. There-

Colletive Redution Operation on Cray X1 and Other Platforms 11
2

4

8

16

32

64

128

256

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(sum,dbl) - ratio := best bandwidth of 5 new algo.s / vendor’s bandwidth

2

4

8

16

32

64

128

256

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Reduce(sum,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

100.<= ratio

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.7

2

4

8

16

32

64

128

256

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(maxloc,dbl) - ratio := best bandwidth of 5 new algo.s / vendor’s bandwidth

2

4

8

16

32

64

128

256

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Reduce(maxloc,dbl) - ratio := best bandwidth of 4 new algo.s / vendor’s bandwidth

100.<= ratio

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.7Fig. 8. Ratio of bandwidth of the fastest protool (reursive doubling [allredue only℄,binary tree, ring, halving&doubling, and binary bloks) ompared to the vendors al-gorithm for Allredue (left) / Redue (right) and operation MPI SUM (1st row) /MPI MAXLOC (2nd row) on a Cray T3E 900.fore the omparison of the new protools with Cray's mpt shows still a ratio up to1800 with allredue and up to 20 with redue. The extreme performane bug ofallredue may be based on performane problems with an internally used baston derived datatypes. These problems should be solved before this mpt.2.4 isdelivered as produt.6 Conlusions and Future WorkAlthough prinipal work on optimizing olletive routines is quite old [2℄, thereis a lak of fast implementations for allredue and redue in MPI libraries fora wide range of number of proesses and bu�er sizes. Based on the author'salgorithm from 1997 [11℄, an eÆient algorithm for power-of-two and non-power-of-two number of proesses is presented in this paper. Medium non-power-of-two number of proesses ould be additionally optimized with a speial ring

12 Rolf Rabenseifner and Panagiotis Adamidis

4

8

16

32

64

128

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Allreduce(sum,dbl) - ratio := best bandwidth of 5 new algo.s / vendor’s bandwidth

100.<= ratio

50. <= ratio <100.

20. <= ratio < 50.

10. <= ratio < 20.

7.0 <= ratio < 10.

5.0 <= ratio < 7.0

3.0 <= ratio < 5.0

2.0 <= ratio < 3.0

1.5 <= ratio < 2.0

1.1 <= ratio < 1.5

0.9 <= ratio < 1.1

0.7 <= ratio < 0.9

0.0 <= ratio < 0.7

2

4

8

16

32

64

128

256

512

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Fastest Protocol for
Allreduce(sum,dbl)

vendor
binary tree

pairwise + ring
halving + doubling
recursive doubling

binary blocks halving+doubling

Fig. 9. Ratio of bandwidth of the fastest protool (reursive doubling, binary tree, ring,halving&doubling, and binary bloks) ompared to Cray mpt.2.4.0.0.13 algorithm forMPI Allredue and operation MPI SUM on a Cray X1 in MSP mode (upper diagram)and the fastest protool (lower diagram).

Colletive Redution Operation on Cray X1 and Other Platforms 13

2

4

8

16

32

64

128

256

512

8 32 256 1k 8k 32k 256k 1M 8M

n
u
m

b
e
r

o
f
M

P
I
p
ro

c
e
s
s
e
s

buffersize [bytes]

Fastest Protocol for
Reduce(sum,dbl)

vendor
binary tree

pairwise + ring
halving + doubling

binary blocks halving+doubling

Fig. 10. Ratio of bandwidth of the fastest protool (binary tree, ring, halving&doubling,and binary bloks) ompared to Cray mpt.2.4.0.0.13 algorithm for MPI Redue andoperation MPI SUM on a Cray X1 in MSP mode.algorithm. The halving&doubling is already inluded into MPICH-2 and it isplanned to inlude the other bandwidth-optimized algorithms [11, 15℄. Futurework will further optimize lateny and bandwidth for any number of proessesby ombining the priniples used in Set. 3.3{3.7 into one algorithm and seletingon eah reursion level instead of seleting one of those algorithms for all levels[14℄.Cray's mpt.2.4.0.0.13 already shows exellent lateny for smallest vetors. Forlong vetors, there is still a big gap between the speed that an be reahed andthe speed implemented by Cray's mpt intermediate development version withratios up to 2 for redue(sum), 10 for allredue(sum), 20 for redue(maxlo), and1800 for allredue(maxlo). This gap may be or should be losed in the mpt.2.4produt version.AknowledgmentsThe authors would like to aknowledge their olleagues and all the people that sup-ported this projet with suggestions and helpful disussions. They would espeially liketo thank Rajeev Thakur and Jesper Larsson Tr�a� for the helpful disussion on opti-mized redution algorithm and Gerhard Wellein, Thomas Ludwig, Ana Kovatheva,Rajeev Thakur, Monika Wierse, Howard Prithard, Patrik H. Worley, Terry Hewitt,Mike Pettipher, Adrian Tate for their benhmarking support.Referenes1. V. Bala, J. Bruk, R. Cypher, P. Elustondo, A. Ho, C.-T. Ho, S. Kipnis and M.Snir, CCL: A portable and tunable olletive ommuniation library for salable

14 Rolf Rabenseifner and Panagiotis Adamidisparallel omputers, in IEEE Transations on Parallel and Distributed Systems,Vol. 6, No. 2, Feb. 1995, pp 154{164.2. M. Barnett, S. Gupta, D. Payne, L. Shuler, R. van de Gejin, and J. Watts, Inter-proessor olletive ommuniation library (InterCom), in Proeedings of Super-omputing '94, Nov. 1994.3. Edward K. Blum, XinWang, and Patrik Leung, Arhitetures and message-passingalgorithms for luster omputing: Design and performane, in Parallel Computing26 (2000) 313{332.4. J. Bruk, C.-T. Ho, S. Kipnis, E. Upfal, and D. Weathersby, EÆient algorithms forall-to-all ommuniations in multiport message-passing systems, in IEEE Transa-tions on Parallel and Distributed Systems, Vol. 8, No. 11, Nov. 1997, pp 1143{1156.5. E. Gabriel, M. Resh, and R. R�uhle, Implementing MPI with optimized algorithmsfor metaomputing, in Proeedings of the MPIDC'99, Atlanta, USA, Marh 1999,pp 31{41.6. Message Passing Interfae Forum. MPI: A Message-Passing Interfae Standard,Rel. 1.1, June 1995, www.mpi-forum.org.7. N. Karonis, B. de Supinski, I. Foster, W. Gropp, E. Lusk, and J. Bresnahan,Exploiting hierarhy in parallel omputer networks to optimize olletive operationperformane, in Proeedings of the 14th International Parallel and DistributedProessing Symposium (IPDPS '00), 2000, pp 377{384.8. Thilo Kielmann, Rutger F. H. Hofman, Henri E. Bal, Aske Plaat, Raoul A. F.Bhoedjang, MPI's redution operations in lustered wide area systems, in Pro-eedings of the Message Passing Interfae Developer's and User's Conferene 1999(MPIDC'99), Atlanta, USA, Marh 1999, pp 43{52.9. Man D. Knies, F. Ray Barriuso, William J. Harrod, George B. Adams III, SLICC:A low lateny interfae for olletive ommuniations, in Proeedings of the 1994onferene on Superomputing, Washington, D.C., Nov. 14{18, 1994, pp 89{96.10. Howard Prithard, Je� Niholson, and Jim Shwarzmeier, Optimizing MPI Col-letives for the Cray X1, in Proeeding of the CUG 2004 onferene, Knoxville,Tennessee, USA, May, 17-21, 2004.11. Rolf Rabenseifner, A new optimized MPI redue and allredue algorithm, Nov. 1997.http://www.hlrs.de/mpi/myredue.html12. Rolf Rabenseifner, Automati MPI ounter pro�ling of all users: First results ona CRAY T3E 900-512, Proeedings of the Message Passing Interfae Developer'sand User's Conferene 1999 (MPIDC'99), Atlanta, USA, Marh 1999, pp 77{85.http://www.hlrs.de/people/rabenseifner/publ/publiations.html13. R. Rabenseifner, Optimization of olletive redution operations, in M. Bubak etal. (Eds.): International Conferene on Computational Siene (ICCS 2004), June6-9, Krakow, Poland, LNCS 3036, pp 1{9, 2004.14. Rolf Rabenseifner and Jesper L. Tr�a�, More eÆient redution algorithms for non-power-of-two number of proessors in message-passing parallel systems, to be pub-lished in Reent Advanes in Parallel Virtual Mahine and Message Passing Inter-fae, proeedings of the 11th European PVM/MPI Users' Group Meeting, LNCS,J. Dongarra, et al. (Eds.), Springer, 2004.15. Rajeev Thakur and William D. Gropp, Improving the performane of olletiveoperations in MPICH, in Reent Advanes in Parallel Virtual Mahine and Mes-sage Passing Interfae, proeedings of the 10th European PVM/MPI Users' GroupMeeting, LNCS 2840, J. Dongarra, D. Laforenza, S. Orlando (Eds.), 2003, 257{267.16. Sathish S. Vadhiyar, Graham E. Fagg, and Jak Dongarra, Automatially tunedolletive ommuniations, in Proeedings of SC2000, Nov. 2000.

