Message-Passing and **Hybrid Parallelization on Clusters of Multi-Core SMP Nodes**

Rolf Rabenseifner Rabenseifner@hlrs.de

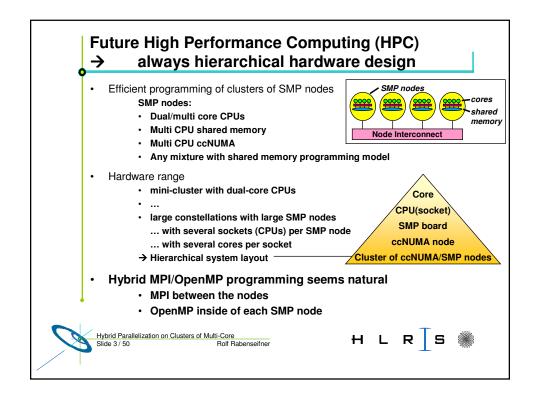
High Performance Computing Center (HLRS), University of Stuttgart, Germany www.hlrs.de

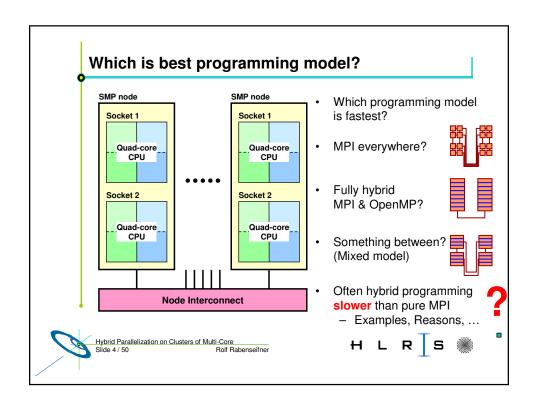
Invited Talk at Potsdam University, Computer Science Institute Potsdam, Jan. 20, 2009

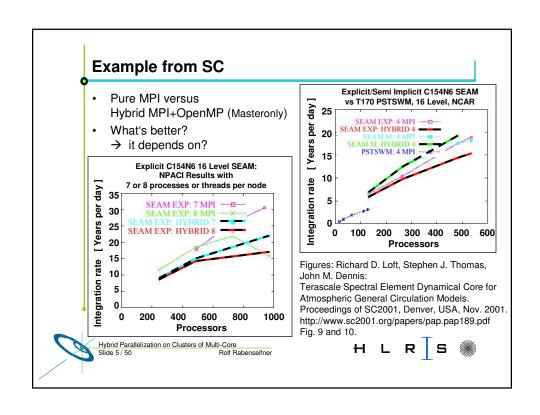
Hybrid Parallelization on Clusters of Multi-Core
Slide 1 Höchstleistungsrechenzentrum Stuttgart

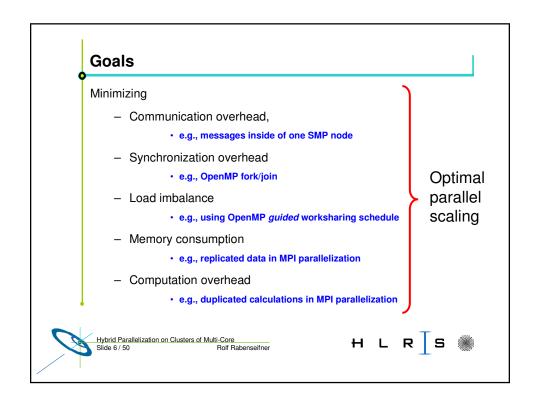
Aspects & Outline

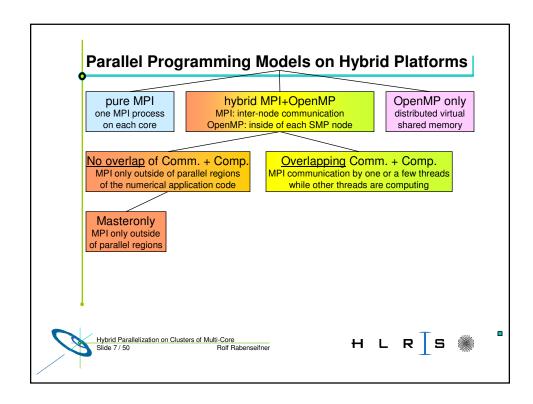
- Future High Performance Computing (HPC)
 - → always hierarchical hardware design
- · Mismatches and opportunities with current MPI based programming models
 - → Some new features are needed
 - → Some optimizations can be done best by the application itself
- · Optimization always requires knowledge on the hardware:
 - → Qualitative and quantitative information is needed
 - → through a standardized interface
- · The MPI-3 Forum tries to address those aspects
 - → MPI-2.1 is only a starting point: combination of MPI-1.1 and 2.0 in one book

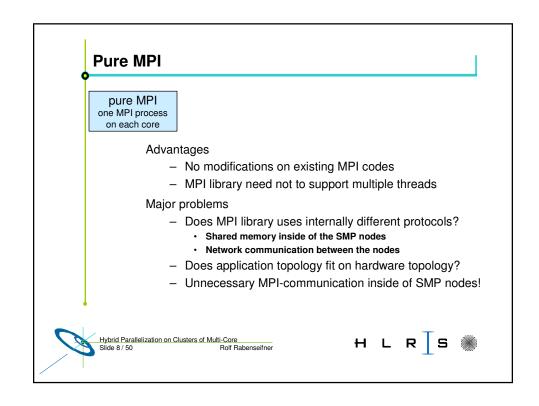


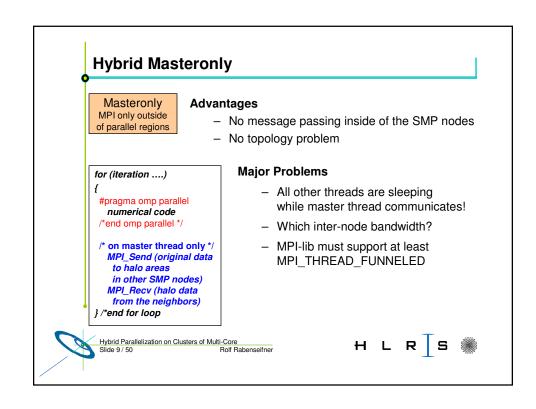

Hybrid Parallelization on Clusters of Multi-Core
Rolf Rabenseifner

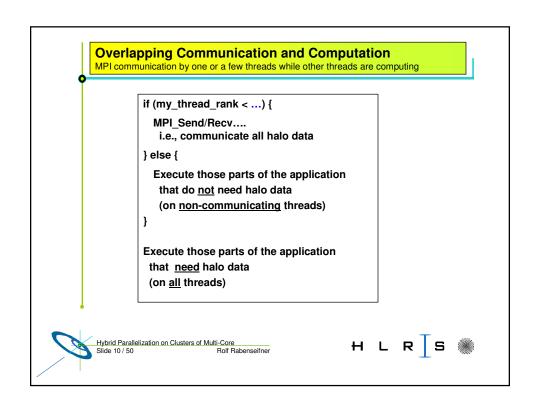


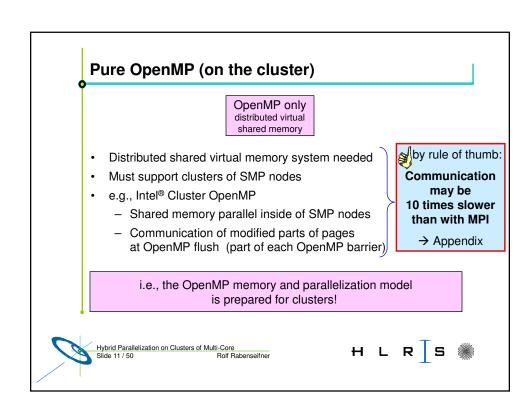


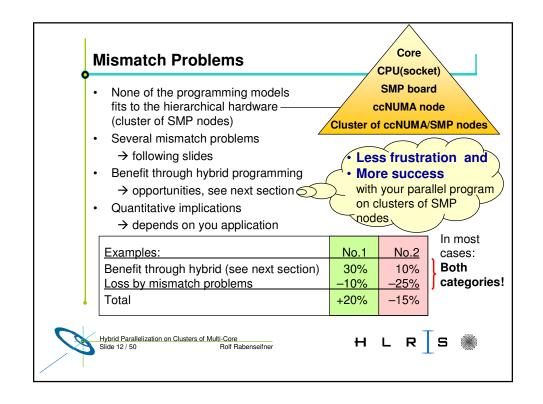


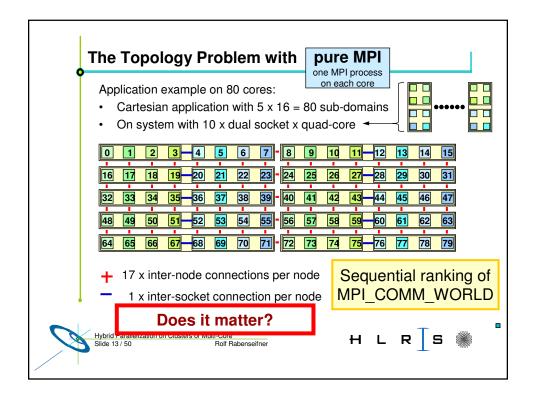


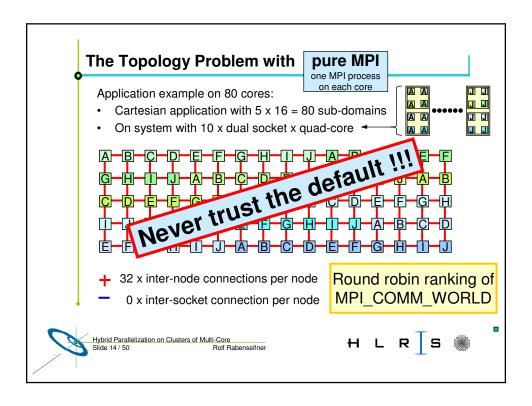


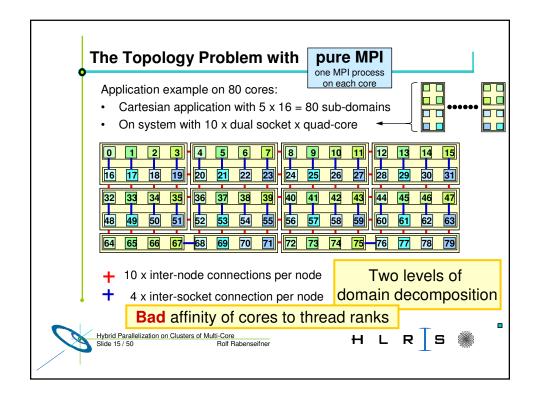


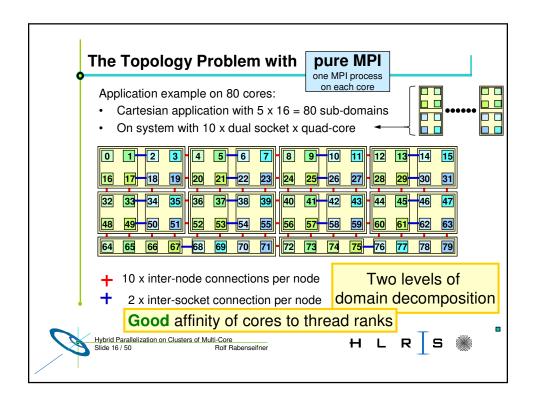


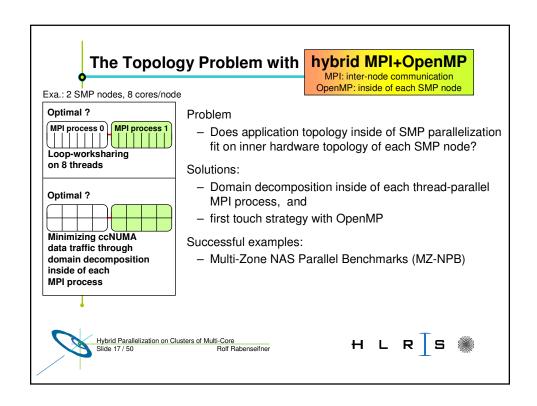


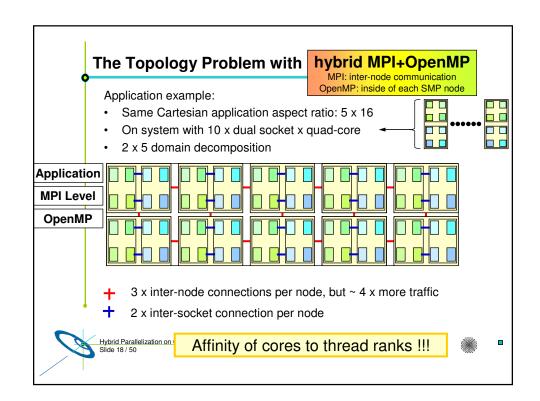


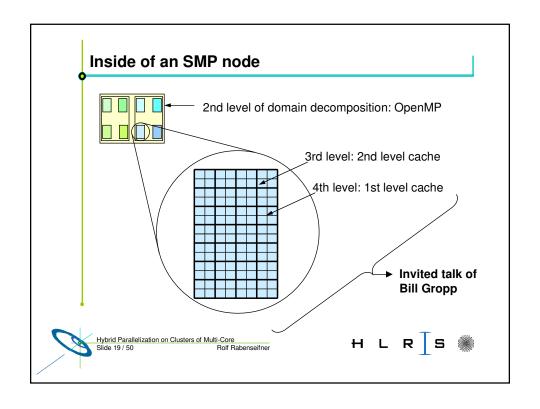


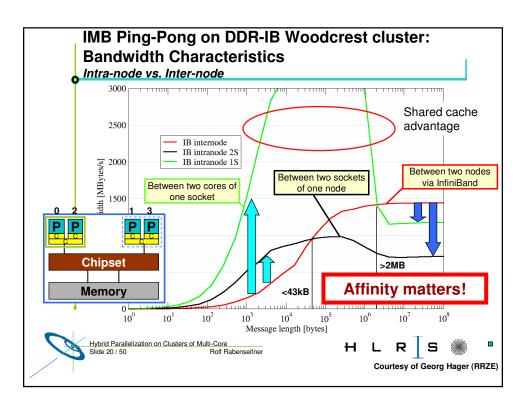


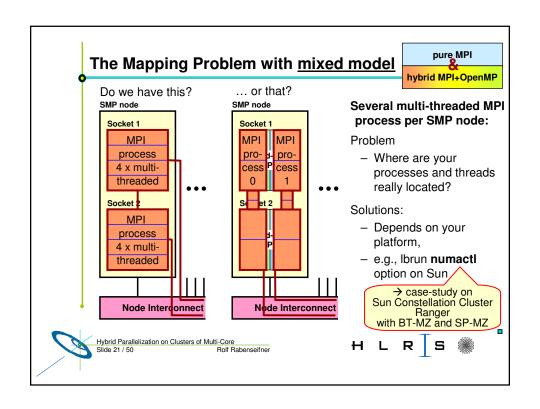


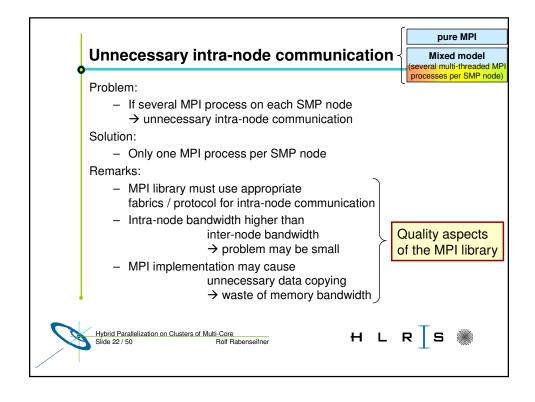


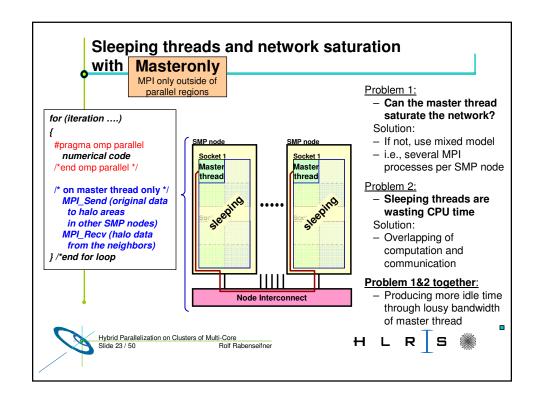












OpenMP: Additional Overhead & Pitfalls

- Using OpenMP
 - → may prohibit compiler optimization
 - → may cause significant loss of computational performance
- Thread fork / join
- · On ccNUMA SMP nodes:
 - E.g. in the masteronly scheme:
 - One thread produces data
 - · Master thread sends the data with MPI
 - → data may be internally communicated from one memory to the other one
- · Amdahl's law for each level of parallelism
- Using MPI-parallel application libraries?
 - → Are they prepared for hybrid?

Overlapping Communication and Computation

MPI communication by one or a few threads while other threads are computing

Three problems:

- the application problem:
 - one must separate application into:
 - · code that can run before the halo data is received
 - · code that needs halo data

→ verv hard to do !!!

- the thread-rank problem:
 - comm. / comp. via thread-rank
 - cannot use work-sharing directives
 - loss of major OpenMP support (see next slide)
- the load balancing problem

```
if (my_thread_rank < 1) {
  MPI Send/Recv....
} else {
  my_range = (high-low-1) / (num_threads-1) + 1;
  my_low = low + (my_thread_rank+1)*my_range;
  my_high=high+ (my_thread_rank+1+1)*my_range;
  my_high = max(high, my_high)
  for (i=my_low; i<my_high; i++) {
 }
```


Hybrid Parallelization on Clusters of Multi-Core
Rolf Rabenseifner

HLR

Overlapping Communication and Computation

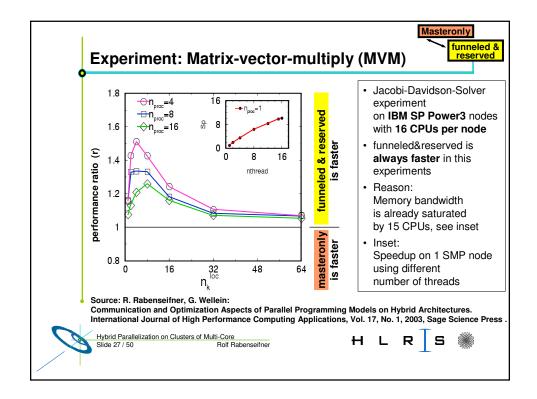
MPI communication by one or a few threads while other threads are computing

Subteams

Important proposal for OpenMP 3.x or OpenMP 4.x

Barbara Chapman et al.: Toward Enhancing OpenMP's Work-Sharing Directives. In proceedings, W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 645-654, 2006.

```
#pragma omp parallel
#pragma omp single onthreads(0)
   MPI_Send/Recv....
#pragma omp for onthreads( 1 : omp_get_numthreads()-1 )
  for (.....)
  { /* work without halo information */
  } /* barrier at the end is only inside of the subteam ^*/
#pragma omp barrier
#pragma omp for
  for (.....)
  { /* work based on halo information */
} /*end omp parallel */
```



Hybrid Parallelization on Clusters of Multi-Core
Rolf Rabenseifner

H L R S

Already seen in invited talk of Barbara Chapman

No silver bullet

- The analyzed programming models do not fit on hybrid architectures
 - whether drawbacks are minor or major
 - > depends on applications' needs
 - But there are major opportunities → next section
- · In the NPB-MZ case-studies
 - We tried to use optimal parallel environment
 - · for pure MPI
 - · for hybrid MPI+OpenMP
 - i.e., the developers of the MZ codes and we tried to minimize the mismatch problems
 - → the opportunities in next section dominated the comparisons

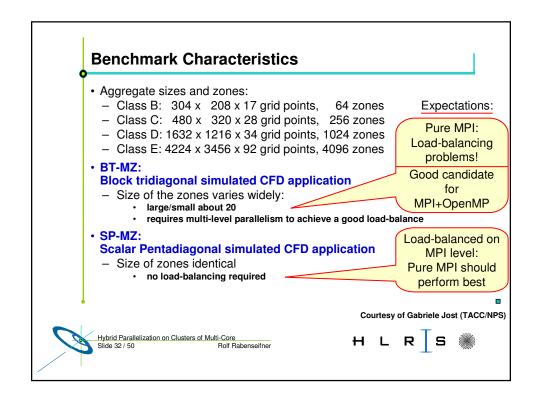
Aspects & Outline

- Future High Performance Computing (HPC)
 - → always hierarchical hardware design
- Mismatches and opportunities with current MPI based programming models
 - → Some new features are needed → e.g., OpenMP subteams
 - → Some optimizations can be done best by the application itself
- Optimization always requires knowledge on the hardware:
 - → Qualitative and quantitative information is needed
 - → through a standardized interface
- The MPI-3 Forum tries to address those aspects
 - → MPI-2.1 is only a starting point: combination of MPI-1.1 and 2.0 in one book

Opportunities of hybrid parallelization ((MPI & OpenMP)

Overview

- · Nested Parallelism
 - → Outer loop with MPI / inner loop with OpenMP
- · Load-Balancing
 - → Using OpenMP *dynamic* and *guided* worksharing
- · Memory consumption
 - → Significantly reduction of replicated data on MPI level
- Opportunities, if MPI speedup is limited due to "algorithmic" problems
 - → Significantly reduced number of MPI processes
- ... (→ slide on "Further Opportunities")



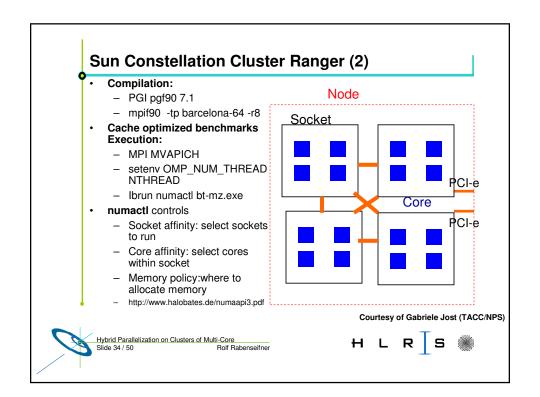
Nested Parallelism

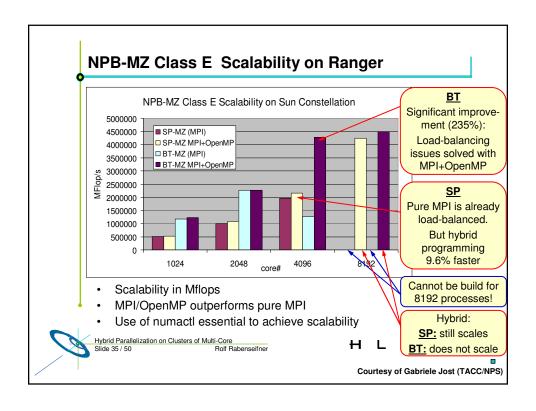
- Example NPB: BT-MZ (Block tridiagonal simulated CFD application)
 - Outer loop:
 - limited number of zones → limited parallelism
 - zones with different workload → speedup < Sum of workload of all zones Max workload of one zone
 - Inner loop:
 - · OpenMP parallelized (static schedule)
 - · Not suitable for distributed memory parallelization
- · Principles:
 - Limited parallelism on outer level
 - Additional inner level of parallelism
 - Inner level not suitable for MPI
 - Inner level may be suitable for static OpenMP worksharing

Sun Constellation Cluster Ranger (1)

- Located at the Texas Advanced Computing Center (TACC), University of Texas at Austin (http://www.tacc.utexas.edu)
- 3936 Sun Blades, 4 AMD Quad-core 64bit 2.3GHz processors per node (blade), 62976 cores total
- 123TB aggregrate memory
- Peak Performance 579 Tflops
- InfiniBand Switch interconnect
- Sun Blade x6420 Compute Node:
 - 4 Sockets per node
 - 4 cores per socket
 - HyperTransport System Bus
 - 32GB memory

Courtesy of Gabriele Jost (TACC/NPS)




H L R S

- OpenMP enables
 - Cheap dynamic and guided load-balancing
 - Just a parallelization option (clause on omp for / do directive)
 - Without additional software effort
 - Without explicit data movement
- On MPI level
 - Dynamic load balancing requires moving of parts of the data structure through the network
 - Significant runtime overhead
 - Complicated software / therefore not implemented
- MPI & OpenMP
 - Simple static load-balancing on MPI level, dynamic or guided on OpenMP level

medium quality cheap implementation

Memory consumption

- · Shared nothing
 - Heroic theory
 - In practice: Some data is duplicated
- MPI & OpenMP

With n threads per MPI process:

- Duplicated data is reduced by factor n

Memory consumption (continued)

Future:

With 100+ cores per chip the memory per core is limited.

- Data reduction through usage of shared memory may be a key issue
- Domain decomposition on each hardware level
 - Maximizes
 - Data locality
 - Cache reuse
 - Minimizes
 - CCnuma accesses
 - Message passing
- No halos between domains inside of SMP node
 - Minimizes
 - Memory consumption

How many multi-threaded MPI processes per **SMP** node

- SMP node = 1 Chip
 - 1 MPI process per SMP node
- SMP node is n-Chip ccNUMA node
 - With x NICs (network interface cards) per node
- How many MPI processes per SMP node are optimal?
 - somewhere between 1 and n

In other words:

- How many threads (i.e., cores) per MPI process?
 - Many threads
 - → overlapping of MPI and computation may be necessary,
 - → some NICs unused?
 - Too few threads
 - → too much memory consumption (see previous slides)

Hybrid Parallelization on Clusters of Multi-Core
Slide 39 / 50
Rolf Rabenseifner

H L R S

Opportunities, if MPI speedup is limited due to "algorithmic" problems

- Algorithmic opportunities due to larger physical domains inside of each MPI process
 - → If multigrid algorithm only inside of MPI processes
 - → If separate preconditioning inside of MPI nodes and between MPI nodes
 - → If MPI domain decomposition is based on physical zones

H L R S

Further Opportunities

- Reduced number of MPI messages, reduced aggregated message size
- Functional parallelism
 - → e.g., I/O in an other thread
- MPI shared memory fabrics not loaded if whole SMP node is parallelized with OpenMP

Aspects & Outline

- Future High Performance Computing (HPC)
 - → always hierarchical hardware design
- · Mismatches and opportunities with current MPI based programming models
 - → Some new features are needed → e.g., OpenMP subteams
 - → Some optimizations can be done best by the application itself
- Optimization always requires knowledge on the hardware:
 - → Qualitative and quantitative information is needed
 - → through a standardized interface
- The MPI-3 Forum tries to address those aspects
 - → MPI-2.1 is only a starting point: combination of MPI-1.1 and 2.0 in one book

Which hardware topology information

- · Structure of the cluster and memory hierarchy
- Data exchange "speed" (e.g., transmission time for a given data size)

Where to get this information

- · Currently, this information is accessible through different interfaces
 - E.g., numalib / numctl
 - Linux processor information
 - ..
- Most information must be measured by the application

What is needed

- A standardized interface
 - Independent of the operating system

Similar to the beginning of the MPI standardization:

Where to get wall-clock-time with

- high accuracy,
- · little overhead

Proposal

Let's include in MPI-3 standardization

What about quantitative information?

- The affinity slide has clearly shown, that this is needed
- Can "benchmark data" be returned by a standardized library?

Yes, it can!

MPI Wtick is such an information. It is returned by MPI since days of MPI-1!

Let's do it in MPI-3

Contribution by the MPI community are welcome!

Hybrid Parallelization on Clusters of Multi-Core
Slide 45 / 50 Rolf Rabenseifner

Aspects & Outline

- Future High Performance Computing (HPC)
 - → always hierarchical hardware design
- Mismatches and opportunities with current MPI based programming models
 - → Some new features are needed
 - → Some optimizations can be done best by the application itself
- Optimization always requires knowledge on the hardware:
 - → Qualitative and quantitative information is needed
 - → through a standardized interface
- The MPI-3 Forum tries to address those aspects
 - → MPI-2.1 is only a starting point: combination of MPI-1.1 and 2.0 in one book

Hybrid Parallelization on Clusters of Multi-Core
Slide 46 / 50
Rolf Rabenseifner

H L R S

MPI-3 Forum

- MPI-2.1 (done): Merging MPI-1.1 and MPI-2.0 to one book
- MPI-2.2: Small additions (Sep. 2009)
- MPI-3.0: Major new features (2010/2011), e.g.,
 - Non-blocking collectives (→overlap of computation and communication)
 - Fault-tolerant MPI
 - New efficient remote memory access interface
 - Fortran interface with argument checking
 - · Tools support
 - · Hybrid MPI&OpenMP programming
- If you have interest / ideas / ...

→ please contact one of the members of the MPI Forum

- Several members are here at the conference!
- They represent
 - Industry Academics

MPI users and developers from USA, Europe, and Asia

Labs

I didn't mention ...

- Other parallelization models:
 - Partitioned Global Address Space (PGAS) languages (Unified Parallel C (UPC), Co-array Fortran (CAF), Chapel, Fortress, Titanium, and X10).
 - High Performance Fortran (HPF)
 - → Many rocks in the cluster-of-SMP-sea do not vanish into thin air by using new parallelization models
 - → Area of interesting research in the next years

Further information

SC08 Tutorial S02, Sunday, Nov. 16, 2008, Austin Texas.
 Alice Koniges, David Eder, Bill Gropp, Ewing (Rusty) Lusk, and Rolf Rabenseifner:
 Application Supercomputing and the Many-Core Paradigm Shift.


SC08 Tutorial M09, Monday, Nov. 17, 2008, Austin Texas. Rolf Rabenseifner, Georg Hager, Gabriele Jost, and Rainer Keller: Hybrid MPI and OpenMP Parallel Programming.

- MPI-2.1 (June 23, 2008 finally voted at MPI Forum meeting, Sep. 4, 2008)
 - Electronically via www.mpi-forum.org
 - As hardcover book (608 pages)
 - · The book was printed by HLRS
 - As a service for the MPI community.
 - · High-quality sewn binding.
 - Sold at costs 17 Euro
 - · Available via www.mpi-forum.org/docs.
 - Not via normal book stores!

Hybrid Parallelization on Clusters of Multi-Core
Slide 49 / 50 Rolf Rabenseifner

Conclusions

- Future High Performance Computing (HPC)
 - → always hierarchical hardware design
- Mismatches and opportunities with current MPI based programming models
 - → Some new features are needed
 - → Some optimizations can be done best by the application itself
- MPI + OpenMP:
- Often hard to solve the mismatch problems
- May be a significant opportunity for performance
 →(huge) amount of work
- Optimization always requires knowledge on the hardware:
 - → Qualitative and quantitative information is needed
 - → through a standardized interface
- The MPI-3 Forum tries to address those aspects
 - → MPI-2.1 is only a starting point: combination of MPI-1.1 and 2.0 in one book

A new standard may assist the research community, and vice versa.

You may join in or you may share your ideas with the MPI Forum

This slides – via my publications list (in a few hours) at www.hlrs.de/people/rabenseifner/