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Motivation

• Which programming model 
is fastest?

• MPI everywhere?

• Fully hybrid 
MPI & OpenMP?

• Something between?
(Mixed model)

?• Often hybrid programming 
slower than pure MPI
– Examples, Reasons, …
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Outline

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Conclusion

Slides are available from
www.hlrs.de/people/rabenseifner
� List of publications   � International teaching 
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some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential 
program on 
each core

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each core

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual 
shared memory

Masteronly
MPI only outside
of parallel regions

Slides: www.hlrs.de/people/rabenseifner � List of publications � International teaching 
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Pure MPI

Advantages
– No modifications on existing MPI codes
– MPI library need not to support multiple threads

Major problems
– Does MPI library uses internally different protocols?

• Shared memory inside of the SMP nodes
• Network communication between the nodes

– Does application topology fit on hardware topology?
– Unnecessary MPI-communication inside of SMP nodes!

pure MPI
one MPI process

on each core

Discussed 
in detail later on 
in the section 
Mismatch 
Problems

Slides: www.hlrs.de/people/rabenseifner � List of publications � International teaching 
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Hybrid Masteronly

Advantages
– No message passing inside of the SMP nodes
– No topology problem

for (iteration ….)
{
#pragma omp parallel 

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas 
in other SMP nodes)

MPI_Recv (halo data 
from the neighbors)

} /*end for loop

Masteronly
MPI only outside 
of parallel regions

Major Problems

– All other threads are sleeping
while master thread communicates!

– Which inter-node bandwidth? 

– MPI-lib must support at least 
MPI_THREAD_FUNNELED

Slides: www.hlrs.de/people/rabenseifner � List of publications � International teaching 
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Outline

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Conclusion

Slides: www.hlrs.de/people/rabenseifner � List of publications � International teaching 
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The Multi-Zone NAS Parallel Benchmarks

OpenMP

Call MPI 

MPI 
Processes

sequential

MPI/OpenMP

OpenMPdata copy+ 
sync.

exchange
boundaries

sequentialsequentialTime step

OpenMPOpenMPintra-zones

OpenMPMLP 
Processesinter-zones

Nested 
OpenMPMLP

� Multi-zone versions of the NAS Parallel Benchmarks 
LU,SP, and BT

� Two hybrid sample implementations
� Load balance heuristics part of sample codes
� www.nas.nasa.gov/Resources/Software/software.html

Courtesy of Gabriele Jost, TACC
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• Aggregate sizes:
– Class D: 1632 x 1216 x 34 grid points
– Class E: 4224 x 3456 x 92 grid points

• BT-MZ: (Block tridiagonal simulated CFD application)
– Alternative Directions Implicit (ADI) method
– #Zones: 1024 (D), 4096 (E)
– Size of the zones varies widely:

• large/small about 20
• requires multi-level parallelism to achieve a good load-balance

• SP-MZ: (Scalar Pentadiagonal simulated CFD application)
– #Zones: 1024 (D), 4096 (E)
– Size of zones identical

• no load-balancing required

The Multi-Zone NAS Parallel Benchmarks

Load-balanced on 
MPI level: Pure MPI 
should perform best

Pure MPI: Load-
balancing problems!
Good candidate for 

MPI+OpenMP

Expectations:

Courtesy of Gabriele Jost, TACC
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NPB-MZ Class E Scalability on Sun Constellation
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BT-MZ MPI+OpenMP

• Scalability in Mflops
• MPI/OpenMP outperforms pure MPI
• Use of numactl essential to achieve scalability

SUN: NPB-MZ Class E  Scalability on Ranger

BT
Significant improve-

ment (235%):
Load-balancing 

issues solved with 
MPI+OpenMP

SP
Pure MPI is already 

load-balanced.
But hybrid 

9.6% faster, due to 
smaller message 

rate at NIC

Cannot be build for 
8192 processes!

Hybrid:
SP: still scales

BT: does not scale

Courtesy of Gabriele Jost, TACC
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best of category

Courtesy of Gabriele Jost, TACC
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Doubling the number of threads 
through hyperthreading (SMT):
#!/bin/csh
#PBS -l select=32:ncpus=64:
mpiprocs=NP:ompthreads=NT

�����

5�
���6

best of category

Courtesy of Gabriele Jost, TACC
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Intra-node MPI characteristics: IMB Ping-Pong benchmark

• Code (to be run on 2 processors):

• Intranode (1S):   mpirun –np 2 –pin “1 3” ./a.out
• Intranode (2S):   mpirun –np 2 –pin “2 3” ./a.out
• Internode:   mpirun –np 2 –pernode ./a.out

wc = MPI_WTIME()

do i=1,NREPEAT

if(rank.eq.0) then
MPI_SEND(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD,ierr)
MPI_RECV(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD, &

status,ierr)
else
MPI_RECV(…)
MPI_SEND(…)

endif

enddo

wc = MPI_WTIME() - wc

P
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P
C

C

P
C

P
C

C

Courtesy of Georg Hager, RRZE
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IMB Ping-Pong: Latency
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)
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Affinity matters!

Courtesy of Georg Hager, RRZE
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IMB Ping-Pong: Bandwidth Characteristics 
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)

Shared cache 
advantage

intranode
shm comm

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Affinity matters!

Between two cores of 
one socket

Between two nodes 
via InfiniBand

Between two sockets 
of one node



Slide 16 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread/Process Affinity (“Pinning”)

• Highly OS-dependent system calls
– But available on all systems

Linux: sched_setaffinity(), PLPA (see below) � hwloc
Solaris: processor_bind()
Windows: SetThreadAffinityMask()
…

• Support for “semi-automatic” pinning in some compilers/environments
– Intel compilers > V9.1 (KMP_AFFINITY environment variable)
– Pathscale
– SGI Altix dplace (works with logical CPU numbers!)
– Generic Linux: taskset, numactl, likwid-pin

• Affinity awareness in MPI libraries
– SGI MPT
– OpenMPI
– Intel MPI
– …

Used on SUN Ranger slides

Courtesy of Georg Hager, RRZE
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Outline

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization

• Conclusion



Slide 18 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Mismatch Problems

• None of the programming models
fits to the hierarchical hardware 
(cluster of SMP nodes)

• Several mismatch problems
� following slides

• Benefit through hybrid programming
� Opportunities, see next section

• Quantitative implications 
� depends on you application 

Examples: No.1 No.2
Benefit through hybrid (see next section) 30% 10%
Loss by mismatch problems –10% –25%
Total +20% –15%

In most 
cases: 
Both
categories!

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes
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The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

17 x inter-node connections per node

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

1 x inter-socket connection per node

Sequential ranking of
MPI_COMM_WORLD

Does it matter?
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The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of 
domain decomposition

12 x inter-node connections per node

2 x inter-socket connection per node

Good affinity of cores to thread ranks
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The Mapping Problem with mixed model

Several multi-threaded MPI 
process per SMP node:

Problem
– Where are your processes 

and threads really located?

Solutions:
– Depends on your platform,
– e.g., with numactl

hybrid MPI+OpenMP

pure MPI
&

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

MPI 
process

4 x multi-
threaded

MPI 
process

4 x multi-
threaded

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

Do we have this? … or that?

MPI 
pro-
cess

0

MPI 
pro-
cess

1

� Case study on 
Sun Constellation Cluster 

Ranger
with BT-MZ and SP-MZ

Further questions:
– Where is the NIC1) located?
– Which cores share caches?

1) NIC = Network Interface Card
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Unnecessary intra-node communication

Problem:
– If several MPI process on each SMP node

� unnecessary intra-node communication
Solution:

– Only one MPI process per SMP node
Remarks:

– MPI library must use appropriate
fabrics / protocol for intra-node communication

– Intra-node bandwidth higher than 
inter-node bandwidth
� problem may be small

– MPI implementation may cause 
unnecessary data copying
� waste of memory bandwidth 

Quality aspects
of the MPI library

Mixed model
(several multi-threaded MPI 
processes per SMP node)

pure MPI
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Sleeping threads and network saturation 
with

Problem 1:
– Can the master thread 

saturate the network?
Solution:
– If not, use mixed model
– i.e., several MPI 

processes per SMP node

Problem 2:
– Sleeping threads are 

wasting CPU time
Solution:
– Overlapping of 

computation and 
communication

Problem 1&2 together:
– Producing more idle time 

through lousy bandwidth 
of master thread

for (iteration ….)
{
#pragma omp parallel 

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas 
in other SMP nodes)

MPI_Recv (halo data 
from the neighbors)

} /*end for loop

Masteronly
MPI only outside of 

parallel regions

Node Interconnect

Master
thread

Socket 1

SMP node SMP node

Socket 2

Master
thread

Socket 1

Socket 2

Master
thread

Master
thread

sle
ep

ing

sle
ep

ing
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OpenMP:  Additional Overhead & Pitfalls

• Using OpenMP 
� may prohibit compiler optimization
� may cause significant loss of computational performance

• Thread fork / join overhead

• On ccNUMA SMP nodes:

– Loss of performance due to missing memory page locality 
or missing first touch strategy

– E.g. with the masteronly scheme:
• One thread produces data

• Master thread sends the data with MPI

�data may be internally communicated from one memory to the other one

• Amdahl’s law for each level of parallelism

• Using MPI-parallel application libraries?  � Are they prepared for hybrid? 

See, e.g., the necessary –O4 flag 
with mpxlf_r on IBM Power6 systems
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Overlapping communication and computation

Three problems:
• the application problem:

– one must separate application into: 
• code that can run before the halo data is received
• code that needs halo data

�very hard to do !!!

• the thread-rank problem:
– comm. / comp. via

thread-rank
– cannot use

work-sharing directives
�loss of major

OpenMP support
(see next slide)

• the load balancing problem

if (my_thread_rank < 1) {
MPI_Send/Recv….

} else {
my_range = (high-low-1) / (num_threads-1) + 1;
my_low = low + (my_thread_rank+1)*my_range;
my_high=high+ (my_thread_rank+1+1)*my_range;
my_high = max(high, my_high)
for (i=my_low; i<my_high; i++) {

….
}

}

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing
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Overlapping: Using OpenMP tasks

NEW OpenMP Tasking Model gives a new way to achieve more parallelism
form hybrid computation. 

Courtesy of Alice Koniges, NERSC, LBNL 

Alice Koniges et al.:
Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.
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No silver bullet

• The analyzed programming models do not fit on hybrid architectures

– whether drawbacks are minor or major

� depends on applications’ needs

– But there are major opportunities � next section

• In the NPB-MZ case-studies

– We tried to use optimal parallel environment

• for pure MPI

• for hybrid MPI+OpenMP

– i.e., the developers of the MZ codes and we 
tried to minimize the mismatch problems

� the opportunities in next section dominated the comparisons
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Outline

• Programming models on clusters of SMP nodes

• Case Studies  /  pure MPI vs hybrid MPI+OpenMP

• Mismatch Problems

• Opportunities: 
Application categories that can benefit from hybrid parallelization 

• Conclusion
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Nested Parallelism

• Example NPB: BT-MZ  (Block tridiagonal simulated CFD application)
– Outer loop: 

• limited number of zones  ���� limited parallelism
• zones with different workload ���� speedup <

– Inner loop:
• OpenMP parallelized (static schedule)
• Not suitable for distributed memory parallelization 

• Principles:
– Limited parallelism on outer level
– Additional inner level of parallelism
– Inner level not suitable for MPI
– Inner level may be suitable for static OpenMP worksharing 

Sum of workload of all zones 
Max workload of a zone
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Load-Balancing
(on same or different level of parallelism)

• OpenMP enables
– Cheap dynamic and guided load-balancing
– Just a parallelization option (clause on omp for / do directive)
– Without additional software effort
– Without explicit data movement

• On MPI level
– Dynamic load balancing requires 

moving of parts of the data structure through the network
– Significant runtime overhead
– Complicated software  /   therefore not implemented

• MPI & OpenMP
– Simple static load-balancing on MPI level, medium quality

dynamic or guided on OpenMP level cheap implementation

#pragma omp parallel for schedule(dynamic)
for (i=0; i<n; i++) {
/* poorly balanced iterations */ …

}
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Memory consumption

• Shared nothing
– Heroic theory
– In practice: Some data is duplicated

• MPI & OpenMP
With n threads per MPI process:
– Duplicated data may be reduced by factor n
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Using more 
OpenMP threads 
could reduce the 
memory usage 
substantially, 
up to five times on 
Hopper Cray XT5 
(eight-core nodes).

Case study: MPI+OpenMP memory usage of NPB

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger, 
Alice Koniges, Nicholas J. Wright:
Analyzing the Effect of Different Programming Models Upon 
Performance and Memory Usage on Cray XT5 Platorms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Courtesy of 
Alice Koniges, NERSC, LBLN 

Always same 
number of cores
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How many threads per MPI process?

• SMP node = with m sockets and n cores/socket
• How many threads (i.e., cores) per MPI process?

– Too many threads per MPI process
� overlapping of MPI and computation may be necessary,
� some NICs unused? 

– Too few threads
� too much memory consumption (see previous slides)

• Optimum
– somewhere between 1 and m x n threads per MPI process,
– Typically:

• Optimum = n, i.e., 1 MPI process per socket
• Sometimes = n/2 i.e., 2 MPI processes per socket
• Seldom = 2n, i.e., each MPI process on 2 sockets
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To overcome MPI scaling problems

compared to pure MPI
• Reduced number of MPI messages,

reduced aggregated message size

• MPI has a few scaling problems

– Handling of more than 10,000 MPI processes

– Irregular Collectives: MPI_....v(), e.g. MPI_Gatherv()

� Scaling applications should not use MPI_....v() routines

– MPI-2.1 Graph topology (MPI_Graph_create)

� MPI-2.2 MPI_Dist_graph_create_adjacent

– Creation of sub-communicators with MPI_Comm_create

� MPI-2.2 introduces a new scaling meaning of MPI_Comm_create

– … see P. Balaji, et al.: MPI on a Million Processors. Proceedings EuroPVM/MPI 2009.

• Hybrid programming reduces all these problems (due to a smaller number of processes)
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Summary: Opportunities of hybrid parallelization 
(MPI & OpenMP)
• Nested Parallelism 

� Outer loop with MPI  /  inner loop with OpenMP

• Load-Balancing
� Using OpenMP dynamic and guided worksharing

• Memory consumption
� Significantly reduction of replicated data on MPI level

• Opportunities, if MPI speedup is limited due to algorithmic problem
� Significantly reduced number of MPI processes

• Reduced MPI scaling problems
� Significantly reduced number of MPI processes
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Conclusions 
• Future hardware will be more complicated

– Heterogeneous � GPU, FPGA, …
– ccNUMA quality may be lost on cluster nodes
– ….

• High-end programming � more complex
• Medium number of cores � programming will be more simple

(provided that  #cores / SMP-node will not shrink)
• MPI+OpenMP ���� work horse on large systems
• Pure MPI � still on smaller cluster
• OpenMP � on large ccNUMA nodes

(but not with shared virtual memory systems (e.g., ClusterOpenMP))

Thank you for your interest

���� Next talk by Rainer Keller


