
Hybrid Parallel Programming
Slide 1 Höchstleistungsrechenzentrum Stuttgart

Hybrid MPI & OpenMP
Parallel Programming

MPI + OpenMP and other models on clusters of SMP nodes

Rolf Rabenseifner1) Georg Hager2) Gabriele Jost3)

Rabenseifner@hlrs.de Georg.Hager@rrze.uni-erlangen.de gjost@tacc.utexas.edu

1) High Performance Computing Center (HLRS), University of Stuttgart, Germany
2) Regional Computing Center (RRZE), University of Erlangen, Germany
3) Texas Advanced Computing Center, The University of Texas at Austin, USA

HPC-Europa2 Virtual Surgery on “Hybrid MPI/OpenMP”
Dec. 3, 2010

(Summary from “Tutorial M02 at SC10, November 15, 2010, New Orleans, LA, USA”)

Slide 2 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

MPI process
8 x multi-
threaded

MPI process
8 x multi-
threaded

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

MPI MPI

Motivation

• Which programming model
is fastest?

• MPI everywhere?

• Fully hybrid
MPI & OpenMP?

• Something between?
(Mixed model)

?• Often hybrid programming
slower than pure MPI
– Examples, Reasons, …

Node Interconnect

Socket 1

Quad-core
CPU

SMP node SMP node

Socket 2

Quad-core
CPU

Socket 1

Quad-core
CPU

Socket 2

Quad-core
CPU

Slide 3 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Conclusion

Slides are available from
www.hlrs.de/people/rabenseifner
� List of publications � International teaching

Slide 4 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each core

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each core

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Slides: www.hlrs.de/people/rabenseifner � List of publications � International teaching

Slide 5 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Pure MPI

Advantages
– No modifications on existing MPI codes
– MPI library need not to support multiple threads

Major problems
– Does MPI library uses internally different protocols?

• Shared memory inside of the SMP nodes
• Network communication between the nodes

– Does application topology fit on hardware topology?
– Unnecessary MPI-communication inside of SMP nodes!

pure MPI
one MPI process

on each core

Discussed
in detail later on
in the section
Mismatch
Problems

Slides: www.hlrs.de/people/rabenseifner � List of publications � International teaching

Slide 6 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Hybrid Masteronly

Advantages
– No message passing inside of the SMP nodes
– No topology problem

for (iteration ….)
{
#pragma omp parallel

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside
of parallel regions

Major Problems

– All other threads are sleeping
while master thread communicates!

– Which inter-node bandwidth?

– MPI-lib must support at least
MPI_THREAD_FUNNELED

Slides: www.hlrs.de/people/rabenseifner � List of publications � International teaching

Slide 7 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Conclusion

Slides: www.hlrs.de/people/rabenseifner � List of publications � International teaching

Slide 8 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Multi-Zone NAS Parallel Benchmarks

OpenMP

Call MPI

MPI
Processes

sequential

MPI/OpenMP

OpenMPdata copy+
sync.

exchange
boundaries

sequentialsequentialTime step

OpenMPOpenMPintra-zones

OpenMPMLP
Processesinter-zones

Nested
OpenMPMLP

� Multi-zone versions of the NAS Parallel Benchmarks
LU,SP, and BT

� Two hybrid sample implementations
� Load balance heuristics part of sample codes
� www.nas.nasa.gov/Resources/Software/software.html

Courtesy of Gabriele Jost, TACC

Slide 9 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

• Aggregate sizes:
– Class D: 1632 x 1216 x 34 grid points
– Class E: 4224 x 3456 x 92 grid points

• BT-MZ: (Block tridiagonal simulated CFD application)
– Alternative Directions Implicit (ADI) method
– #Zones: 1024 (D), 4096 (E)
– Size of the zones varies widely:

• large/small about 20
• requires multi-level parallelism to achieve a good load-balance

• SP-MZ: (Scalar Pentadiagonal simulated CFD application)
– #Zones: 1024 (D), 4096 (E)
– Size of zones identical

• no load-balancing required

The Multi-Zone NAS Parallel Benchmarks

Load-balanced on
MPI level: Pure MPI
should perform best

Pure MPI: Load-
balancing problems!
Good candidate for

MPI+OpenMP

Expectations:

Courtesy of Gabriele Jost, TACC

Slide 10 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

NPB-MZ Class E Scalability on Sun Constellation

0
500000

1000000
1500000

2000000
2500000

3000000
3500000

4000000
4500000

5000000

1024 2048 4096 8192core#

M
F

lo
p/

s

SP-MZ (MPI)
SP-MZ MPI+OpenMP
BT-MZ (MPI)
BT-MZ MPI+OpenMP

• Scalability in Mflops
• MPI/OpenMP outperforms pure MPI
• Use of numactl essential to achieve scalability

SUN: NPB-MZ Class E Scalability on Ranger

BT
Significant improve-

ment (235%):
Load-balancing

issues solved with
MPI+OpenMP

SP
Pure MPI is already

load-balanced.
But hybrid

9.6% faster, due to
smaller message

rate at NIC

Cannot be build for
8192 processes!

Hybrid:
SP: still scales

BT: does not scale

Courtesy of Gabriele Jost, TACC

Slide 11 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

����������	
������
��

������ �
������������
���

� ���� ��	����� �����������	��
�
������
���

� ���� ��� �� ! 	��� � ��������
�
������
���

� ���� ��� �� ! 	��� �

��	���
�" ��	����� ����
��
������
���

� #$�� ��� ����
����
�������

� #$�� ��� �� ! 	��� � ��������
�
�������
���%�
��	���
�" ��	����
� ��

Cray XT5: NPB-MZ Class D Scalability

�����
���
�����
���

������
���

������
���

&��'	�����(

)'	�����*�

+� ���	�
��������," ,����

)'	�����*�-
���

�" .��������
��

	����� ��

best of category

Courtesy of Gabriele Jost, TACC

Slide 12 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

� ���������
�����������
�
���

� ! ��/�������
����0 ����
�1�,��.����
���2��
�'	��," ����

� #$�� ���������� ��
�2
0 �.����,����
" �
��������	
���

 �������	����� 3�
 �4*�
������2������

��������
���

NPB-MZ Class D on IBM Power 6:
Exploiting SMT for 2048 Core Results

�����
���

�����
���

������
���

�����
���

�
�
�
�
'�

Doubling the number of threads
through hyperthreading (SMT):
#!/bin/csh
#PBS -l select=32:ncpus=64:
mpiprocs=NP:ompthreads=NT

�����

5�
���6

best of category

Courtesy of Gabriele Jost, TACC

Slide 13 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Intra-node MPI characteristics: IMB Ping-Pong benchmark

• Code (to be run on 2 processors):

• Intranode (1S): mpirun –np 2 –pin “1 3” ./a.out
• Intranode (2S): mpirun –np 2 –pin “2 3” ./a.out
• Internode: mpirun –np 2 –pernode ./a.out

wc = MPI_WTIME()

do i=1,NREPEAT

if(rank.eq.0) then
MPI_SEND(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD,ierr)
MPI_RECV(buffer,N,MPI_BYTE,1,0,MPI_COMM_WORLD, &

status,ierr)
else
MPI_RECV(…)
MPI_SEND(…)

endif

enddo

wc = MPI_WTIME() - wc

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Courtesy of Georg Hager, RRZE

Slide 14 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

IMB Ping-Pong: Latency
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)

3,24

0,55
0,31

0

0,5

1

1,5

2

2,5

3

3,5

La
te

nc
y

[µ
s]

IB internode IB intranode 2S IB intranode 1S

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Affinity matters!

Courtesy of Georg Hager, RRZE

Slide 15 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

IMB Ping-Pong: Bandwidth Characteristics
Intra-node vs. Inter-node on Woodcrest DDR-IB cluster (Intel MPI 3.1)

Shared cache
advantage

intranode
shm comm

P
C

Chipset

Memory

P
C

C

P
C

P
C

C

Affinity matters!

Between two cores of
one socket

Between two nodes
via InfiniBand

Between two sockets
of one node

Slide 16 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Thread/Process Affinity (“Pinning”)

• Highly OS-dependent system calls
– But available on all systems

Linux: sched_setaffinity(), PLPA (see below) � hwloc
Solaris: processor_bind()
Windows: SetThreadAffinityMask()
…

• Support for “semi-automatic” pinning in some compilers/environments
– Intel compilers > V9.1 (KMP_AFFINITY environment variable)
– Pathscale
– SGI Altix dplace (works with logical CPU numbers!)
– Generic Linux: taskset, numactl, likwid-pin

• Affinity awareness in MPI libraries
– SGI MPT
– OpenMPI
– Intel MPI
– …

Used on SUN Ranger slides

Courtesy of Georg Hager, RRZE

Slide 17 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Conclusion

Slide 18 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Mismatch Problems

• None of the programming models
fits to the hierarchical hardware
(cluster of SMP nodes)

• Several mismatch problems
� following slides

• Benefit through hybrid programming
� Opportunities, see next section

• Quantitative implications
� depends on you application

Examples: No.1 No.2
Benefit through hybrid (see next section) 30% 10%
Loss by mismatch problems –10% –25%
Total +20% –15%

In most
cases:
Both
categories!

Core

CPU(socket)

SMP board

ccNUMA node

Cluster of ccNUMA/SMP nodes

Slide 19 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

17 x inter-node connections per node

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

1 x inter-socket connection per node

Sequential ranking of
MPI_COMM_WORLD

Does it matter?

Slide 20 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Topology Problem with

Application example on 80 cores:
• Cartesian application with 5 x 16 = 80 sub-domains
• On system with 10 x dual socket x quad-core

pure MPI
one MPI process

on each core

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79

Two levels of
domain decomposition

12 x inter-node connections per node

2 x inter-socket connection per node

Good affinity of cores to thread ranks

Slide 21 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

The Mapping Problem with mixed model

Several multi-threaded MPI
process per SMP node:

Problem
– Where are your processes

and threads really located?

Solutions:
– Depends on your platform,
– e.g., with numactl

hybrid MPI+OpenMP

pure MPI
&

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

MPI
process

4 x multi-
threaded

MPI
process

4 x multi-
threaded

Node Interconnect

Socket 1

Quad-core
CPU

SMP node

Socket 2

Quad-core
CPU

Do we have this? … or that?

MPI
pro-
cess

0

MPI
pro-
cess

1

� Case study on
Sun Constellation Cluster

Ranger
with BT-MZ and SP-MZ

Further questions:
– Where is the NIC1) located?
– Which cores share caches?

1) NIC = Network Interface Card

Slide 22 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Unnecessary intra-node communication

Problem:
– If several MPI process on each SMP node

� unnecessary intra-node communication
Solution:

– Only one MPI process per SMP node
Remarks:

– MPI library must use appropriate
fabrics / protocol for intra-node communication

– Intra-node bandwidth higher than
inter-node bandwidth
� problem may be small

– MPI implementation may cause
unnecessary data copying
� waste of memory bandwidth

Quality aspects
of the MPI library

Mixed model
(several multi-threaded MPI
processes per SMP node)

pure MPI

Slide 23 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Sleeping threads and network saturation
with

Problem 1:
– Can the master thread

saturate the network?
Solution:
– If not, use mixed model
– i.e., several MPI

processes per SMP node

Problem 2:
– Sleeping threads are

wasting CPU time
Solution:
– Overlapping of

computation and
communication

Problem 1&2 together:
– Producing more idle time

through lousy bandwidth
of master thread

for (iteration ….)
{
#pragma omp parallel

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside of

parallel regions

Node Interconnect

Master
thread

Socket 1

SMP node SMP node

Socket 2

Master
thread

Socket 1

Socket 2

Master
thread

Master
thread

sle
ep

ing

sle
ep

ing

Slide 24 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

OpenMP: Additional Overhead & Pitfalls

• Using OpenMP
� may prohibit compiler optimization
� may cause significant loss of computational performance

• Thread fork / join overhead

• On ccNUMA SMP nodes:

– Loss of performance due to missing memory page locality
or missing first touch strategy

– E.g. with the masteronly scheme:
• One thread produces data

• Master thread sends the data with MPI

�data may be internally communicated from one memory to the other one

• Amdahl’s law for each level of parallelism

• Using MPI-parallel application libraries? � Are they prepared for hybrid?

See, e.g., the necessary –O4 flag
with mpxlf_r on IBM Power6 systems

Slide 25 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping communication and computation

Three problems:
• the application problem:

– one must separate application into:
• code that can run before the halo data is received
• code that needs halo data

�very hard to do !!!

• the thread-rank problem:
– comm. / comp. via

thread-rank
– cannot use

work-sharing directives
�loss of major

OpenMP support
(see next slide)

• the load balancing problem

if (my_thread_rank < 1) {
MPI_Send/Recv….

} else {
my_range = (high-low-1) / (num_threads-1) + 1;
my_low = low + (my_thread_rank+1)*my_range;
my_high=high+ (my_thread_rank+1+1)*my_range;
my_high = max(high, my_high)
for (i=my_low; i<my_high; i++) {

….
}

}

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Slide 26 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Overlapping: Using OpenMP tasks

NEW OpenMP Tasking Model gives a new way to achieve more parallelism
form hybrid computation.

Courtesy of Alice Koniges, NERSC, LBNL

Alice Koniges et al.:
Application Acceleration on Current and Future Cray Platforms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Slide 27 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

No silver bullet

• The analyzed programming models do not fit on hybrid architectures

– whether drawbacks are minor or major

� depends on applications’ needs

– But there are major opportunities � next section

• In the NPB-MZ case-studies

– We tried to use optimal parallel environment

• for pure MPI

• for hybrid MPI+OpenMP

– i.e., the developers of the MZ codes and we
tried to minimize the mismatch problems

� the opportunities in next section dominated the comparisons

Slide 28 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Outline

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs hybrid MPI+OpenMP

• Mismatch Problems

• Opportunities:
Application categories that can benefit from hybrid parallelization

• Conclusion

Slide 29 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Nested Parallelism

• Example NPB: BT-MZ (Block tridiagonal simulated CFD application)
– Outer loop:

• limited number of zones ���� limited parallelism
• zones with different workload ���� speedup <

– Inner loop:
• OpenMP parallelized (static schedule)
• Not suitable for distributed memory parallelization

• Principles:
– Limited parallelism on outer level
– Additional inner level of parallelism
– Inner level not suitable for MPI
– Inner level may be suitable for static OpenMP worksharing

Sum of workload of all zones
Max workload of a zone

Slide 30 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Load-Balancing
(on same or different level of parallelism)

• OpenMP enables
– Cheap dynamic and guided load-balancing
– Just a parallelization option (clause on omp for / do directive)
– Without additional software effort
– Without explicit data movement

• On MPI level
– Dynamic load balancing requires

moving of parts of the data structure through the network
– Significant runtime overhead
– Complicated software / therefore not implemented

• MPI & OpenMP
– Simple static load-balancing on MPI level, medium quality

dynamic or guided on OpenMP level cheap implementation

#pragma omp parallel for schedule(dynamic)
for (i=0; i<n; i++) {
/* poorly balanced iterations */ …

}

Slide 31 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Memory consumption

• Shared nothing
– Heroic theory
– In practice: Some data is duplicated

• MPI & OpenMP
With n threads per MPI process:
– Duplicated data may be reduced by factor n

Slide 32 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Using more
OpenMP threads
could reduce the
memory usage
substantially,
up to five times on
Hopper Cray XT5
(eight-core nodes).

Case study: MPI+OpenMP memory usage of NPB

Hongzhang Shan, Haoqiang Jin, Karl Fuerlinger,
Alice Koniges, Nicholas J. Wright:
Analyzing the Effect of Different Programming Models Upon
Performance and Memory Usage on Cray XT5 Platorms.
Proceedings, CUG 2010, Edinburgh, GB, May 24-27, 2010.

Courtesy of
Alice Koniges, NERSC, LBLN

Always same
number of cores

Slide 33 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

How many threads per MPI process?

• SMP node = with m sockets and n cores/socket
• How many threads (i.e., cores) per MPI process?

– Too many threads per MPI process
� overlapping of MPI and computation may be necessary,
� some NICs unused?

– Too few threads
� too much memory consumption (see previous slides)

• Optimum
– somewhere between 1 and m x n threads per MPI process,
– Typically:

• Optimum = n, i.e., 1 MPI process per socket
• Sometimes = n/2 i.e., 2 MPI processes per socket
• Seldom = 2n, i.e., each MPI process on 2 sockets

Slide 34 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

To overcome MPI scaling problems

compared to pure MPI
• Reduced number of MPI messages,

reduced aggregated message size

• MPI has a few scaling problems

– Handling of more than 10,000 MPI processes

– Irregular Collectives: MPI_....v(), e.g. MPI_Gatherv()

� Scaling applications should not use MPI_....v() routines

– MPI-2.1 Graph topology (MPI_Graph_create)

� MPI-2.2 MPI_Dist_graph_create_adjacent

– Creation of sub-communicators with MPI_Comm_create

� MPI-2.2 introduces a new scaling meaning of MPI_Comm_create

– … see P. Balaji, et al.: MPI on a Million Processors. Proceedings EuroPVM/MPI 2009.

• Hybrid programming reduces all these problems (due to a smaller number of processes)

Slide 35 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Summary: Opportunities of hybrid parallelization
(MPI & OpenMP)
• Nested Parallelism

� Outer loop with MPI / inner loop with OpenMP

• Load-Balancing
� Using OpenMP dynamic and guided worksharing

• Memory consumption
� Significantly reduction of replicated data on MPI level

• Opportunities, if MPI speedup is limited due to algorithmic problem
� Significantly reduced number of MPI processes

• Reduced MPI scaling problems
� Significantly reduced number of MPI processes

Slide 36 / 169 Rabenseifner, Hager, Jost
Hybrid Parallel Programming

Conclusions
• Future hardware will be more complicated

– Heterogeneous � GPU, FPGA, …
– ccNUMA quality may be lost on cluster nodes
– ….

• High-end programming � more complex
• Medium number of cores � programming will be more simple

(provided that #cores / SMP-node will not shrink)
• MPI+OpenMP ���� work horse on large systems
• Pure MPI � still on smaller cluster
• OpenMP � on large ccNUMA nodes

(but not with shared virtual memory systems (e.g., ClusterOpenMP))

Thank you for your interest

���� Next talk by Rainer Keller

