
Hybrid Parallel Programming
Slide 1 Höchstleistungsrechenzentrum Stuttgart

Hybrid MPI and OpenMP
Parallel Programming

MPI + OpenMP and other models
on clusters of SMP nodes

Rolf Rabenseifner1) Georg Hager2) Gabriele Jost3) Rainer Keller1)

Rabenseifner@hlrs.de Georg.Hager@rrze.uni-erlangen.de Keller@hlrs.de

1) High Performance Computing Center (HLRS), University of Stuttgart, Germany
2) Regional Computing Center (RRZE), University of Erlangen, Germany
3) Sun Microsystems, USA

Tutorial at EuroPVM/MPI 2006
Bonn, Germany, Aug. 17–20

Slide 2 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Outline

slide number

• Introduction / Motivation 2

• Programming models on clusters of SMP nodes 7

• Case Studies / pure MPI vs. hybrid MPI+OpenMP 14

• Mismatch Problems 44

• Thread-safety quality of MPI libraries 83

• Case Studies / pure OpenMP 101

• Summary 118

• Appendix 124

14:30 – 16:00

16:30 – 18:00

Slide 3 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Motivation

• Efficient programming of clusters of SMP nodes
SMP nodes:
• Dual/multi core CPUs
• Multi CPU shared memory
• Multi CPU ccNUMA
• Any mixture with shared memory programming model

• Hardware range
• mini-cluster with dual-core CPUs
• …
• large constellations with large SMP nodes

• Hybrid MPI/OpenMP programming seems natural
• MPI between the nodes
• OpenMP inside of each SMP node

• Often hybrid programming slower than pure MPI
• Examples, Reasons, …

Node Interconnect

SMP nodes
CPUs
shared
memory

Slide 4 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Motivation

• Using the communication bandwidth of the hardware optimal usage
• Minimizing synchronization = idle time of the hardware

• Appropriate parallel programming models / Pros & Cons

Node Interconnect

SMP nodes
CPUs
shared
memory

Slide 5 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

But results may surprise!

• Example code - HYDRA
• Domain-decomposed hydrodynamics

– (almost) independent mesh domains with ghost cells on boundaries
– ghost cells communicate boundary information ~40-50 times per cycle

• Parallelism model: single level
– MPI divides domains among compute nodes
– OpenMP further subdivides domains among processors
– domain size set for cache efficiency

• minimizes memory usage, maximizes efficiency
• scales to very large problem sizes (>107 zones, >103 domains)

• Results:
– MPI (256 proc.) ~20% faster

than MPI / OpenMP (64 nodes x 4 proc./node)
– domain-domain communication not threaded,

i.e., MPI communication is done only by main thread
• accounts for ~10% speed difference, remainder in thread overhead

Slide 6 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Example from SC

• Pure MPI versus
Hybrid MPI+OpenMP (Masteronly)

• What‘s better?
� it depends on?

Figures: Richard D. Loft, Stephen J. Thomas,
John M. Dennis:
Terascale Spectral Element Dynamical Core for
Atmospheric General Circulation Models.
Proceedings of SC2001, Denver, USA, Nov. 2001.
http://www.sc2001.org/papers/pap.pap189.pdf
Fig. 9 and 10.

Explicit C154N6 16 Level SEAM:
NPACI Results with

7 or 8 processes or threads per node

0 200 400 600 800 1000
Processors

35

30

25

20

15

10

5

0

In
te

gr
at

io
n

ra
te

[Y

ea
rs

pe
r

da
y

]

Explicit/Semi Implicit C154N6 SEAM
vs T170 PSTSWM, 16 Level, NCAR

0 100 200 300 400 500 600
Processors

25

20

15

10

5

0

In
te

gr
at

io
n

ra
te

[Y

ea
rs

pe
r

da
y

]

Slide 7 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs. hybrid MPI+OpenMP
• Mismatch Problems
• Thread-safety quality of MPI libraries
• Case Studies / pure OpenMP
• Summary

Slide 8 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Major Programming models on hybrid systems

• Pure MPI (one MPI process on each CPU)
• Hybrid MPI+OpenMP

– shared memory OpenMP
– distributed memory MPI

• Other: Virtual shared memory systems, HPF, …
• Often hybrid programming (MPI+OpenMP) slower than pure MPI

– why?

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each CPU

Explicit Message Passing
by calling MPI_Send & MPI_Recv

Node Interconnect

OpenMP inside of the
SMP nodes

MPI between the nodes
via node interconnect

Slide 9 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each CPU

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Slide 10 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Pure MPI

Advantages
– No modifications on existing MPI codes
– MPI library need not to support multiple threads

Major problems
– Does MPI library uses internally different protocols?

• Shared memory inside of the SMP nodes
• Network communication between the nodes

– Does application topology fit on hardware topology?
– Unnecessary MPI-communication inside of SMP nodes!

pure MPI
one MPI process

on each CPU

Slide 11 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Hybrid Masteronly

Advantages
– No message passing inside of the SMP nodes
– No topology problem

for (iteration ….)
{
#pragma omp parallel

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside
of parallel regions

Major Problems

– MPI-lib must support at least
MPI_THREAD_FUNNELED

– Which inter-node bandwidth?

– All other threads are sleeping
while master thread communicates!

Slide 12 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Overlapping communication and computation

if (my_thread_rank < …) {

MPI_Send/Recv….
i.e., communicate all halo data

} else {

Execute those parts of the application
that do not need halo data
(on non-communicating threads)

}

Execute those parts of the application
that need halo data
(on all threads)

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Slide 13 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Pure OpenMP (on the cluster)

• Distributed shared virtual memory system needed

• Must support clusters of SMP nodes

• e.g., Intel® Cluster OpenMP

– Shared memory parallel inside of SMP nodes

– Communication of modified parts of pages
at OpenMP flush (part of each OpenMP barrier)

OpenMP only
distributed virtual
shared memory

i.e., the OpenMP memory and parallelization model
is prepared for clusters!

Slide 14 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes

• Case Studies / pure MPI vs. hybrid MPI+OpenMP
– The Single-Zone Computational Fluid Dynamics Benchmark BT
– The Multi-Zone NAS Parallel Benchmarks
– For each application we discuss:

• Benchmark implementations based on different strategies and
programming paradigms

• Performance results and analysis on different hardware architectures

Gabriele Jost, SUN Microsystems

• Mismatch Problems
• Thread-safety quality of MPI libraries
• Case Studies / pure OpenMP
• Summary

Slide 15 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

A Computational Fluid Dynamics (CFD) Benchmark

• The NAS Parallel Benchmark BT:
– Simulated CFD application
– Uses ADI method to solve Navier-Stokes

equations in 3D
– Decouples the three spatial dimensions
– Solves a tri-diagonal system of equation in

each dimension
• Compare 5 different implementations:

– Message Passing based on MPI
– OpenMP
– Hybrid MPI/OpenMP (2 Versions)

����������

��	
���

�

�������	

��	
���

��	
���

Paraver Timeline View for some iterations of BT

Slide 16 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

MPI Based Parallelization Strategy

• As in the benchmark distribution NPB3.2:
– 3D Multi-partition Scheme
– Each process receives multiple blocks
– For each sweep directions all processes can start their work in parallel
– Exchange of boundary data before each iteration
– Each process synchronizes with its neighbors within each sweep

Slide 17 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

(Nested) OpenMP Parallelization

!$omp parallel do
do k= 1, nz

!$omp parallel do
do j= 1, ny
do i=1,nx
.. = u(i,j,k-1)

+ u(i,j,k+1)
enddo
enddo
enddo

����������	
�

• Add OpenMP directives to 2 outermost loops within the time
consuming routines
– Outer level as in NPB3.2

Slide 18 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Hybrid MPI/OpenMP Parallelization (V1)

• MPI: 1D data distribution in z-dimension (k-loop).
• OpenMP: directives in y-dimension (j-loop).

!$omp parallel
do k=k_low,k_high
synchronize neighbor threads

!$omp do
do j=1,ny
do i=1,nx
rhs(i,j,k) = rhs(i,j-1,k)

+ ...
enddo
enddo
synchronize neighbor threads

enddo
!$omp end parallel

!$omp parallel do
do j=1,ny
call receive
do k=k_low,k_high
do i=1,nx
rhs(i,j,k) = rhs(i,j,k-1)

+ ...
enddo

enddo
call send
enddo

Slide 19 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Hybrid MPI/OpenMP (V2)

• 3D Multi-partition scheme as in NPB3.2
• Add OpenMP directives to outermost loop in time consuming

routines.
• MPI/OpenMP (2) without OpenMP <=> BT MPI

do ib = 1, nblock
call receive
!$omp parallel do
do j=j_low,j_high
do i=i_low,i_high
do k=k_low,k_high
rhs(i,j,k,ib)=

rhs(i,j,k-1,ib)+ . . .
enddo

enddo
enddo
call send
end do

– Differences to MPI/OpenMP
(1):

• 3D Data Decomposition.
• MPI and OpenMP

employed in same
dimension.

• All communication occurs
outside of parallel regions.

Slide 20 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Testbed Configurations

• Gigabit Ethernet (GE) MPI:
– 100 us latency
– 100 MB/s bandwidth

• Sun Fire Link (SFL) MPI:
– 4 us latency
– 2GB/s bandwidth

• 4 Sun Fire 6800 connected by GE
– 96 (4x24) CPU total

• 4 Sun Fire 6800 connected by SFL
– 96 (4x24) CPUs total

• 1 Sun Fire 15K node
– 72 (1x72) CPUs total

• SGI Origin 3000
– 512 CPUs
– Type R12000
– 400 MHz
– 4 CPUs per node
– 256GB of main memory

(2GB per node)
– 8MB L2 cache
– 0.8 Gflops peak

performance per CPU
– Compiler:

• MIPSpro 7.4 Fortran for hybrid
codes

• MIPSpro 7.4 Fortran + Nanos
Compiler for nested OpenMP

• Always use -mp –O3 –64

Slide 21 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Hardware Details Sun Fire Cluster

• UltraSPARC-III Cu processors
– Superscalar 64-bit processor
– 900 MHz
– L1 cache (on chip) 64KB data and 32KB instructions
– L2 cache (off chip) 8 MB for data and instructions

• Sun Fire 6800 node:
– 24 UltraSPARC-III 900 MHz CPU
– 24 GB of shared main memory
– Flat memory system: approx. 270 ns latency, 9.6 GB/s bandwidth

• Sun Fire 15K node:
– 72 UltraSPARC-III 900 MHz CPU
– 144 GB of shared main memory
– NUMA memory system: Latency 270 ns onboard to 600 ns off board

Bandwidth 173GB/s on board to 43 GB (worst case)
• Located at RWTH Aachen

Slide 22 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Results SGI Origin 3000

1 4 16 49 64 81 100 121 144
0

10

20

30

40

50

60

70

80

90

100

110

120

130

140

BT Class A Speedup SGI Origin 3000

MPI
MPI/OpenMP (1)
MPI/OpenMP (1)+
Thread binding
Nested OpenMP

Number of CPUs

S
p

ee
d

up

• Problem size:
– 64x64x64 Points

• Speed-up:
– Measured against

time of fastest
implementation on
1 CPU (OpenMP)

• For multilevel versions
the best time of the
nesting combination is
reported.

Slide 23 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Paraver Timeline View of BT-MPI (100 CPUs)

100 MPI Processes

Vertical axis
displays process ID

Horizontal axis
displays time

Colours indicate time
in communication

Very long MPI_Isends (red) and
MPI_Irecvs (green)

Sometime very long MPI_Wait (dark red) ...

...sometimes not so long

Slide 24 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Flow of Useful Computations of BT-Hybrid (V1) (100 CPUs)

y_solve:
� Contains 2 parallel regions
� Pipelined thread execution within each process in second

parallel region

10 Processes running
on 10 threads each

Vertical axis
displays thread ID

Horizontal axis
displays time

Colors indicate different
parallel regions

White indicate non-
useful time

Slide 25 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Paraver Timeline View of Hybrid (1) (100 CPUs)

z_solve:
� Contains communication within parallel regions
� 1 dimensional pipeline across all processes

Slide 26 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

�����������	
���
����������	
���	���

�

��

��

��

��

��

��

� � �� �� �� ��

�����
��������

	
��
�

	
�
��

	
����������

	
����������

	
����������

	
����������

Sun Fire using Fast Networks

• BT MPI shows best scalability
• BT Hybrid V1:

– Best performance for 16 MPI processes and 4 or 5 thread
• Solid lines indicate speed-up compared to best implementation on 1 CPU (BT-OMP), dashed

lines indicate the speed-up compared to 1 CPU of the same implementation
• BT Hybrid V2:

– Best performance with only 1 thread per MPI process:
– No benefit employing hybrid programming paradigm

�����������	
�����

�

��

��

��

��

��

��

� � �� �� ��

�����
��������

�
�
�
�

!�
�

	
��
�

	
�
��

	
�����������

	
����������

	
�����������

	
����������

Slide 27 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

BT Class A (64x64x64 Grid Points) using GE

• Performance using
Gigabit Ethernet (GE):
– Hybrid implementations

outperform pure MPI
implementation

– BT Hybrid V1:
shows best scalability

– BT Hybrid V1:
best performance employing
16 MPI processes and
4 or 5 threads respectively:

• Tight interaction between MPI and OpenMP limits number of threads that
can be used efficiently

– BT Hybrid V2 achieves best performance using 4 MPI processes employing 16
threads each:

• Large messages saturate slow network and limit number of MPI processes
that can be used efficiently

������� !�����������	
���
�����"��

�

�

��

��

��

��

��

��

� � �� �� �� ��

�����
��������

�
�
�
�

!�
�

	
��
�

	
�
��

	
����������

	
����������

	
����������

	
����������

Slide 28 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Characteristics of Hybrid Codes
• BT Hybrid V1:

– Message exchange with 2
neighbour processes

– Many short messages
– Length of messages

remain the same
– Increase number of

threads:
• Increase of OpenMP barrier

time (threads from different
MPI processes have to
synchronize)

• Increase of MPI time (MPI
calls within parallel regions
are serialized)

• BT Hybrid V2:
– Message exchange

with 6 neighbour
processes

– Few long messages
– Length of messages

decreases with
increasing number
of processes

– Increase number of
threads:

– Increase of OpenMP
barrier time

Slide 29 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Observation on fast networks:

• Single Level MPI:
– Best performance, best scalability
– Coarse-grained well balanced distribution and scheduling of

work
• Hybrid MPI/OpenMP V2 did not yield performance advantage
• Hybrid MPI/OpenMP V1:

– Implementation non-typical: pipelined thread execution,
communication within parallel regions.

– Low percentage of useful thread work time:
• 1D data distribution limits parallelism on coarse grain
• OpenMP introduces extra synchronization overhead at the

end of parallel regions
• Interaction of OpenMP and MPI yields thread pre-emption

and thread migration
– Performance improves through explicit binding.

Slide 30 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Observation on slow networks:

• Hybrid MPI/OpenMP V1 showed better performance than
V2 or pure MPI:
– Message exchange with only 2 neighbours vs 6

neighbours
– Many short messages vs few longer messages:

• BT V1 4x16: 14880 send, avg. length 10600 bytes
• BT V2 4x16: 960 send, avg. length 116360 bytes

– Long messages sent by many MPI processes potentially
saturate a slow network quickly.

Slide 31 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

The Multi-zone NAS Parallel Benchmarks

OpenMP

Call MPI

MPI
Processes

sequential

MPI/OpenMP

OpenMPdata copy+
sync.

exchange
boundaries

sequentialsequentialTime step

OpenMPOpenMPintra-zones

OpenMPMLP
Processesinter-zones

Nested
OpenMPMLP

� Multi-zone versions of the NAS Parallel
Benchmarks LU,SP, and BT

� Two hybrid sample implementations
� Load balance heuristics part of sample codes
� Nested OpenMP based on NanosCompiler

extensions was developed for this study

Slide 32 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Using MPI/OpenMP

call omp_set_numthreads (weight)
do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call ssor(u,rsd,…)

end if

end do

end do

...

call mpi_send/recv

subroutine ssor(u, rsd,…)

...

!$OMP PARALLEL DEFAUL(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5
rsd(m,i,j,k)=
dt*rsd(m,i,j,k-1)

end do

end do

end do

!$OMP END DO nowait

end do

...

!$OMP END PARALLEL

Slide 33 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Using MLP

call omp_set_numthreads (weight)
do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call ssor(u,rsd,…)

end if

end do

end do

...

subroutine ssor(u, rsd,…)

...

!$OMP PARALLEL DEFAUL(SHARED)

!$OMP& PRIVATE(m,i,j,k...)

do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5
rsd(m,i,j,k)=

dt*rsd(m,i,j,k-1)

end do

end do

end do

!$OMP END DO nowait

end do

...

!$OMP END PARALLEL

do i = 1, n

sh_buf(i) = u(i)
end do

call mlp_barrier

Slide 34 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Using Nested OpenMP

call omp_set_numthreads (weight)
do step = 1, itmax

call exch_qbc(u, qbc, nx,…)

!$OMP PARALLEL

!$OMP& PRIVATE(iam, zone,...)

!$OMP& NUM_THREADS(num)

iam = omp_get_thread_num()
do zone = 1, num_zones

if (iam .eq. pzone_id(zone)) then

call ssor(u,rsd,…)

end if

end do

!$OMP END PARALLEL

end do

...

subroutine ssor(u, rsd,…)

...

!$OMP PARALLEL DEFAUL(SHARED)

!$OMP& PRIVATE(m,i,j,k...)
!$OMP&

NUM_THREADS(weight(iam))

do k = 2, nz-1

!$OMP DO

do j = 2, ny-1

do i = 2, nx-1

do m = 1, 5

rsd(m,i,j,k)=

dt*rsd(m,i,j,k-1)

end do

end do

end do

!$OMP END DO nowait

end do

!$OMP END PARALLEL

Slide 35 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Benchmark Characteristics

• Aggregate sizes:
– Class W: aggregate 64x64x8 grid points
– Class A: aggregate 128x128x16 grid points
– Class B: aggregate 304x208x17 grid points

• BT-MZ:
– #Zones: 16 (Class W), 16 (Class A), 64 (Class B)
– Size of the zones varies widely:

• large/small ≈≈≈≈ 20
• requires multi-level parallelism to achieve a good load-balance

• LU-MZ:
– #Zones: 16 (Class W), 16 (Class A), 16 (Class B)
– Size of the zones identical:

• no load-balancing required
• limited parallelism on outer level

• SP-MZ:
– #Zones: 16 (Class W), 16 (Class A), 64 (Class B)
– Size of zones identical

Slide 36 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Performance of BT-MZ on SGI Origin 3000

BT-MZ Performance on SGI Origin 3000

0

50

100

150

200

250

300

4x2 (Class W) 4x4 (Class W) 4x4 (Class A) 16x4 (Class A) 16x4 (Class B)
M

Fl
op

s
pe

r
th

re
ad

MPI/OpenMP MPI/OpenMP (binding) MLP MLP (binding) Nested OpenMP (binding)

Slide 37 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Performance of LU-MZ on SGI Origin 3000

LU-MZ Performance on SGI Origin 3000

0
50

100
150
200
250
300
350

8x1 (Class W) 8x2 (Class W) 16x1 (Class
A)

16x4 (Class
A)

16x4 (Class
B)

M
flo

ps
/th

re
ad

MPI/OpenMP

MPI/OpenMP (binding)

MLP

MLP (binding)

Nested OpenMP (binding)

Slide 38 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Comparison of the different implementations

• Thread binding improves performance for all implementations
• Little performance difference between the different

implementations
• Which paradigm is best for NPB-MZ?

shared onlyshared onlyshared and
SMP Clusters

Portability

goodgoodgoodPerformance

easymediumdifficultEase of use

Nested OpenMPMLPMPI +OpenMP

Slide 39 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

NAS NPB-MZ on Sun Fire 72 US-IV+ 25K

���!#$��%&��������
'��������������	
��(��

�

���

�

���

�

���

���� ���� ���� ��� ����

�
�)������*��+
�& �

	
�
�

���
�

���
�

Slide 40 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Combining Processes and Threads

• SP-MZ runs fastest when using as many processes as
possible on the outer level.

• LU-MZ the number of MPI processes that can be used is
very small. Threads are necessary to exploit extra
parallelism

• BT-MZ can not achieve a good load balance on the MPI
level. Threads are necessary to counter balance the
uneven workload distribution.

• Thread binding is essential when running hybrid codes on
cc-NUMA architectures.

Slide 41 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Hybrid code on cc-NUMA architectures

MPI:
– Initially not designed for NUMA architectures or mixing of

threads and processes
– API does not provide support for memory/thread placement
– Vendor specific APIs to control thread and memory placement

Slide 42 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Thread binding and memory placement

������

��� ��� ��� ���

������

��� ��� ��� ���

������������
��		�	�

	���������������	�

 �

�����	�
 ��

��
��		���������
��

��!������"�#	$

% %

����
���"�#	

������ ��

�� ��

��� ��� ���& & & ������

Slide 43 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Scalability of the Multi-Zone Benchmarks

• Thread binding and efficient placement was used for all runs
• Benchmarks show good scalability
• Low communication overhead:

– 1-10% depending on benchmark and number of MPI processes

Scalability of the NPB-MZ MPI/OpenMP on an SGI Origin 3000

0

10

20

30

40

50

60

70

(8x1,8x1,8x1) (16x1,16x1,16x1) (32x1,16x2,32x1) (64x1,16x4,64x1) (64x2,16x8,128x1)(64x4,16x16,256x1)

Processes xThreads

To
ta

l G
ig

af
lo

p/
se

c

BT-MZ LU-MZ SP-MZ

Slide 44 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / pure MPI vs. hybrid MPI+OpenMP

• Mismatch Problems
• Thread-safety quality of MPI libraries
• Case Studies / pure OpenMP
• Summary

Slide 45 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Mismatch Problems

• Topology problem [with pure MPI]

• Unnecessary intra-node communication [with pure MPI]

• Inter-node bandwidth problem [with hybrid MPI+OpenMP]

• Sleeping threads and [with masteronly]
saturation problem [with pure MPI]

• Additional OpenMP overhead [with hybrid MPI+OpenMP]
– Thread startup / join
– Cache flush (data source thread – communicating thread – sync. � flush)

• Overlapping communication and computation [with hybrid MPI+OpenMP]
– an application problem � separation of local or halo-based code
– a programming problem � thread-ranks-based vs. OpenMP work-sharing
– a load balancing problem, if only some threads communicate / compute

• Communication overhead with DSM [with pure (Cluster) OpenMP]

� no silver bullet, i.e., each parallelization scheme has its problems

Slide 46 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

The Topology Problem with

Problems
– To fit application topology on hardware topology

Solutions for Cartesian grids:
– E.g. choosing ranks in MPI_COMM_WORLD ???

• round robin (rank 0 on node 0, rank 1 on node 1, ...)
• Sequential (ranks 0-7 on 1st node, ranks 8-15 on 2nd …)

… in general
– load balancing in two steps:

• all cells among the SMP nodes (e.g. with ParMetis)
• inside of each node: distributing the cells among the CPUs

– or …

pure MPI
one MPI process

on each CPU

���� using hybrid programming models

1 2 30

9 10 118

5 6 74

13 14 1512

1 2 30

9 10 118

5 6 74

13 14 1512

1 2 30

9 10 118

5 6 74

13 14 1512

Round-robin x14

Sequential x8

Optimal ? x2

Slow inter-node link

Exa.: 2 SMP nodes, 8 CPUs/node

Mismatch Problems
�Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM

Slide 47 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Unnecessary intra-node communication

inter-node
8*8*1MB:

9.6 ms

vertical AND horizontal messages

intra-node
8*8*1MB:

2.0 ms

...

pure MPI: Σ=11.6 ms

Timing:
Hitachi SR8000, MPI_Sendrecv
8 nodes, each node with 8 CPUs

pure MPI

Node
CPU Alternative:

• Hybrid MPI+OpenMP
• No intra-node messages
• Longer inter-node

messages
• Really faster ???????

(… wait 2 slides)

Mismatch Problems
• Topology problem
�Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM

Slide 48 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Programming Models on Hybrid Platforms:
Hybrid Masteronly

Advantages
– No message passing inside of the SMP nodes
– No topology problem

Problems
– MPI-lib must support MPI_THREAD_FUNNELED

Disadvantages
– do we get full inter-node bandwidth? … next slide

– all other threads are sleeping
while master thread communicates

�Reason for implementing
overlapping of
communication & computation

for (iteration ….)
{
#pragma omp parallel

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside
of parallel regions

Slide 49 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Experiment:
Orthogonal parallel communication

inter-node
8*8*1MB:

9.6 ms

pure MPI:
vertical AND horizontal messages

intra-node
8*8*1MB:

2.0 ms

...

pure MPI: Σ=11.6 ms

Hitachi SR8000
• 8 nodes
• each node

with 8 CPUs
• MPI_Sendrecv

Masteronly

pure MPI

� 1.6x slower than with pure MPI, although
• only half of the transferred bytes
• and less latencies due to 8x longer messages

8*8MB
hybrid: 19.2 ms

MPI+OpenMP:
only vertical

message size
:= aggregated

message
size of
pure MPI

Mismatch Problems
• Topology problem
• Unnecessary intra-node comm.
� Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM

Slide 50 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Results of the experiment

• pure MPI is better for
message size > 32 kB

• long messages:
Thybrid / TpureMPI > 1.6

• OpenMP master thread
cannot saturate the
inter-node network bandwidth

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

0,125 0,5 2 8 32 128 512 2048
 Message size [kB]

R
at

io

T_hybrid / T_pureMPI (inter+intra node)

0,01

0,1

1

10

100

0,125 0,5 2 8 32 128 512 2048
Message size [kB]

T
ra

ns
fe

r t
im

e
[m

s]

T_hybrid (size*8)

T_pure MPI: inter+intra

T_pure MPI: inter-node

T_pure MPI: intra-node

128 512 2k 8k 32k 128k 512k 2M (pureMPI)
1k 4k 16k 64k 256k 1M 4M 16M (hybrid)

pure MPI
is

faster

MPI+OpenMP
(masteronly)

is faster

Masteronly

pure MPI

Slide 51 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Ratio on several platforms

Ratio T_hybrid_masteronly / T_pure_MPI

0

0,5

1

1,5

2

2,5

3

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Message size (used with pure MPI on each CPU or
MSP)

ra
ti

o
 T

_h
yb

ri
d

_m
as

te
ro

n
ly

 /
 T

_p
u

re
_M

P
I

 _

IBM SP 8x16 CPUs,
1 CPU Masteronly

SGI O3000 16x4 CPUs,
1 CPU Masteronly

Hitachi SR8000 8x8 CPUs,
1 CPU Masteronly

Pure MPI,
horizontal + vertical

Cray X1 8x4 MSPs,
1 MSP Masteronly

NEC SX6 glmem 4x8 CPUs,
1 CPU Masteronly

Pure MPI
is faster

Hybrid
is faster

Cray X1 and NEC SX are well
prepared for hybrid
masteronly programming

Cray X1 and SGI results are preliminary

IBM SP and SR 8000
Masteronly:
MPI cannot saturate
inter-node bandwidth

Masteronly

pure MPI

Slide 52 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Possible Reasons

• Hardware:
– is one CPU able to saturate the inter-node network?

• Software:
– internal MPI buffering may cause additional memory traffic

� memory bandwidth may be the real restricting factor?

���� Let’s look at parallel bandwidth results

Masteronly

pure MPI

Slide 53 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Multiple inter-node communication paths

inter-node
8*8*1MB

hybrid: 3*8*8/3MB

MPI+OpenMP:
only vertical

pure MPI:
vertical AND horizontal messages

intra-node
8*8*1MB

...

pure MPI: intra- + inter-node
(= vert. + horizontal)

Multiple vertical
communication paths, e.g.,

• 3 of 8 CPUs in each node

• stride 2

stride

Following benchmark
results with one MPI
process on each CPU

Masteronly

pure MPI

Slide 54 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Inter-node bandwidth per SMP node, accumulated over its CPUs,
on IBM at Juelich (32 Power4+ CPUs/node,
FederationSwitch with 4 adapters per node)

0

200

400

600

800

1000

1200

1400

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Message size (used with pure MPI on each CPU)

A
cc

um
ul

at
ed

 b
an

dw
id

th
 p

er
 S

M
P

 n
od

e
[M

B
]

16x16 CPUs, Hybrid
Multiple,12/16 CPUs Stride 1

16x16 CPUs, Hybrid Multiple,
6/16 CPUs Stride 1

16x16 CPUs, Hybrid Multiple,
4/16 CPUs Stride 1

16x16 CPUs, Hybrid Multiple,
3/16 CPUs Stride 1

16x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 1

16x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 4

16x16 CPUs, Pure MPI,
horizontal + vertical

16x16 CPUs, Hybrid
Masteronly, MPI: 1 of 16CPUs

Multiple inter-node communication paths: IBM SP

More than 4 CPUs
per node needed
to achieve full
inter-node
bandwidth

*) Bandwidth per node: totally transferred bytes on the
inter-node network / wall clock time / number of nodes

*)

With 3-4 CPUs
similar to
pure MPI

M
ea

su
re

m
en

ts
: T

ha
nk

s
to

B
er

n
M

oh
r,

 Z
A

M
, F

Z
Lü

lic
h

But only if second process is
located on CPU connected
with 2nd adapter!

The second CPU doubles the
accumulated bandwidth

Masteronly

pure MPI

Slide 55 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Inter-node bandwidth per SMP node, accumulated over its CPUs,
on NEC SX6 (with MPI_Alloc_mem)

0

1000

2000

3000

4000

5000

6000

7000

8000

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Message size (used with pure MPI on each CPU)

A
cc

u
m

u
la

te
d

 b
an

d
w

id
th

 p
er

 S
M

P
 n

od
e

[M
B

]

 4x8 CPUs, Hybrid Multiple,
8/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
6/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
4/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
3/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 4
 4x8 CPUs, Hybrid
Masteronly, MPI: 1 of 8 CPUs
 4x8 CPUs, Pure MPI,
horizontal + vertical

Intra-node
messages do
not count for
bandwidth

Multiple inter-node communication paths:
NEC SX-6 (using global memory)

Inverse:
More CPUs
= less bandwidth

*)

*) Bandwidth per node: totally transferred bytes on the
inter-node network / wall clock time / number of nodes

Measurements:
Thanks to Holger Berger, NEC.

Masteronly

pure MPI

Slide 56 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Inter-node bandwidth per SMP node, accumulated over its CPUs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0,0% 12,5% 25,0% 37,5% 50,0% 62,5% 75,0% 87,5% 100,0%

communicating CPUs per SMP node
as percentage

of the total number of CPUs per SMP node

ac
cu

m
u

la
te

d
 b

an
d

w
id

th
 a

s
p

er
ce

n
ta

g
e

o
f

th
e

p
ea

k
b

an
d

w
id

th

Cray X1 MSP shmem_put / 7680 kB

Cray X1 MSP / 7680 kB

NEC SX6 glmem / 7680 kB

Hitachi SR8000 / 7680 kB

IBM SP/Power3+ / 7680 kB

accumulated message
size from node to node

Comparison (as percentage of maximal bandwidth and #CPUs)

Cray X1 results are preliminary

Nearly full bandwidth
• with 1 MSP on Cray
• with 1 CPU on NEC

50 % and less
on the other platforms

Nearly all platforms:
>80% bandwidth with

25% of CPUs/node

Masteronly

pure MPI

Slide 57 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Inter-node bandwidth per SMP node, accumulated over its CPUs,
on HELICS, 2 CPUs / node, Myrinet

0

20

40

60

80

100

120

140

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Message size (used with pure MPI on each CPU)

A
cc

um
ul

at
ed

 b
an

dw
id

th
 p

er
 S

M
P

no

de

 [M
B

/s
]

128x2 CPUs, Hybrid Multiple,
2/2 CPUs Stride 1
128x2 CPUs, Hybrid Masteronly,
MPI: 1 of 2 CPUs
128x2 CPUs, Pure MPI,
horizontal + vertical

Myrinet Cluster

• 1 CPU can achieve
full inter-node bandwidth

• Myrinet-cluster is well
prepared for hybrid
masteronly programming

Masteronly

pure MPI

Slide 58 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Inter-node bandwidth problem –
Summary and Work-around
With (typically) more than 4 threads / MPI process

inter-node communication network
cannot be saturated

Mismatch Problems
• Topology problem
• Unnecessary intra-node comm.
� Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM

� On constellation type systems
(more than 4 CPUs per SMP node)
– With (typically) more than 4 threads / MPI process

inter-node communication network cannot be saturated
– Work-around:

Several multi-threaded MPI process on each SMP node
– Finished problems come back:

• Topology problem:
– those processes should work on neighboring domains
– to minimize inter-node traffic

• Unnecessary intra-node communication between these processes
– instead of operating on common shared memory
– but less intra-node communication than with pure MPI

What are the implications on
constellation type systems, this

means on systems with more than

Slide 59 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

The sleeping-threads and
the saturation problem

• Masteronly:
– all other threads are sleeping while master thread calls MPI

� wasting CPU time
��� wasting plenty of CPU time

if master thread cannot saturate the inter-node network

• Pure MPI:
– all threads communicate,

but already 1-3 threads could saturate the network
� wasting CPU time

���� Overlapping communication and computation

Mismatch Problems
• Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
�Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM

Slide 60 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Additional OpenMP Overhead

• Thread fork / join

• Cache flush
– synchronization between data source thread and

communicating thread implies � a cache flush

• Amdahl’s law for each level of parallelism

Mismatch Problems
• Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
�Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM

Slide 61 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Mismatch Problems

• Topology problem [with pure MPI]

• Unnecessary intra-node communication [with pure MPI]

• Inter-node bandwidth problem [with hybrid MPI+OpenMP]

• Sleeping threads and [with masteronly]
saturation problem [with pure MPI]

• Additional OpenMP overhead [with hybrid MPI+OpenMP]
– Thread fork / join
– Cache flush (data source thread – communicating thread – sync. � flush)

• Overlapping communication and computation [with hybrid MPI+OpenMP]
– an application problem � separation of local or halo-based code
– a programming problem � thread-ranks-based vs. OpenMP work-sharing
– a load balancing problem, if only some threads communicate / compute

• Communication overhead with DSM [with pure (Cluster) OpenMP]

� no silver bullet, i.e., each parallelization scheme has its problems

Slide 62 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Overlapping communication and computation

• the application problem:
– one must separate application into:

• code that can run before the halo data is received
• code that needs halo data

�very hard to do !!!

• the thread-rank problem:
– comm. / comp. via

thread-rank
– cannot use

work-sharing directives

�loss of major
OpenMP support

• the load balancing problem

if (my_thread_rank < 1) {
MPI_Send/Recv….

} else {
my_range = (high-low-1) / (num_threads-1) + 1;
my_low = low + (my_thread_rank+1)*my_range;
my_high=high+ (my_thread_rank+1+1)*my_range;
my_high = max(high, my_high)
for (i=my_low; i<my_high; i++) {

….
}

}

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Slide 63 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Overlapping communication and computation

Subteams
• Important proposal

for OpenMP 3.x
or OpenMP 4.x

#pragma omp parallel
{
#pragma omp single onthreads(0)

{
MPI_Send/Recv….

}
#pragma omp for onthreads(1 : omp_get_numthreads()-1)

for (……..)
{ /* work without halo information */
} /* barrier at the end is only inside of the subteam */
…

#pragma omp barrier
#pragma omp for

for (……..)
{ /* work based on halo information */
}

} /*end omp parallel */

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Barbara Chapman et al.:
Toward Enhancing OpenMP’s
Work-Sharing Directives.
In proceedings, W.E. Nagel et
al. (Eds.): Euro-Par 2006,
LNCS 4128, pp. 645-654,
2006.

Slide 64 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each CPU

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only

on master-thread

Multiple
more than one thread

may communicate

Funneled &
Reserved

reserved thread
for communication

Funneled
with

Full Load
Balancing

Multiple &
Reserved

reserved threads
for communication

Multiple
with

Full Load
Balancing

C
om

pa
ri

so
n

I.
(2

 e
xp

er
im

en
ts

)

Comparison II.
(theory + experiment)

Comparison III.

Different strategies
to simplify the
load balancing

Slide 65 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Overlapping communication and computation (cont’d)

• the load balancing problem:
– some threads communicate, others not
– balance work on both types of threads
– strategies:

– reservation of one a fixed amount of
threads (or portion of a thread) for
communication

– see example last slide: 1 thread was
reserved for communication

� a good chance !!! … see next slide

� very hard to do !!!

Funneled
with

Full Load
Balancing

Funneled &
Reserved

reserved thread
for communi.

Multiple &
Reserved

reserved threads
for communic.

Multiple
with

Full Load
Balancing

Slide 66 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Overlapping computation & communication (cont’d)

Funneled & reserved or Multiple & reserved:
• reserved tasks on threads:

– master thread or some threads: communication
– all other threads ……………... : computation

• cons:
– bad load balance, if

Tcommunication ncommunication_threads
≠

Tcomputation ncomputation_threads
• pros:

– more easy programming scheme than with full load balancing
– chance for good performance!

funneled &
reserved

Slide 67 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Performance ratio (theory)

• ε = ()–1Thybrid, funneled&reserved
Thybrid, masteronly

funneled &
reserved

Masteronly

εεεε > 1
funneled&
reserved
is faster

εεεε < 1
masteronly

is faster

fcomm [%]

pe
rf

or
m

an
ce

ra
tio

 (ε
)

fcomm [%]

Good chance of funneled & reserved:
εmax = 1+m(1– 1/n)

Small risk of funneled & reserved:
εmin = 1–m/n

Thybrid, masteronly = (fcomm + fcomp, non-overlap + fcomp, overlap) Thybrid, masteronly

n = # threads per SMP node, m = # reserved threads for MPI communication

Slide 68 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Experiment: Matrix-vector-multiply (MVM)

• Jacobi-Davidson-Solver

• Hitachi SR8000

• 8 CPUs / SMP node

• JDS (Jagged Diagonal
Storage)

• vectorizing

• nproc = # SMP nodes

• DMat =

512*512*(nk
loc*nproc)

• Varying nk
loc

� Varying 1/fcomm
• fcomp,non-overlap =

1

fcomp,overlap 6

funneled &
reserved

Masteronly

pe
rf

or
m

an
ce

ra
tio

 (
ε)

(Theory)

Experiments

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models.
EWOMP 2002, Rome, Italy, Sep. 18–20, 2002

fu
nn

el
ed

&
 r

es
er

ve
d

is
fa

st
er

m
as

te
ro

nl
y

is
fa

st
er

Slide 69 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Experiment: Matrix-vector-multiply (MVM)

• Same experiment
on IBM SP Power3 nodes
with 16 CPUs per node

• funneled&reserved is
always faster in this
experiments

• Reason:
Memory bandwidth
is already saturated
by 15 CPUs, see inset

• Inset:
Speedup on 1 SMP node
using different
number of threads

funneled &
reserved

Masteronly

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures.
International Journal of High Performance Computing Applications, Vol. 17, No. 1, 2003, Sage Science Press .

fu
nn

el
ed

 &
 r

es
er

ve
d

is
 fa

st
er

m
as

te
ro

nl
y

is
 fa

st
er

pe
rf

or
m

an
ce

 r
at

io
 (

ε)

Slide 70 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each CPU

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only

on master-thread

Multiple
more than one thread

may communicate

Funneled &
Reserved

reserved thread
for communication

Funneled
with

Full Load
Balancing

Multiple &
Reserved

reserved threads
for communication

Multiple
with

Full Load
Balancing

C
om

pa
ri

so
n

I.
(2

 e
xp

er
im

en
ts

)

Comparison II.
(theory + experiment)

Comparison III.

Slide 71 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Compilation and Optimization

• Library based communication (e.g., MPI)
– clearly separated optimization of

(1) communication � MPI library
(2) computation � Compiler

• Compiler based parallelization (including the communication):
– similar strategy OpenMP Source (Fortran / C)

with optimization directives

(1) OMNI Compiler

C-Code + Library calls
Communication-
& Thread-Library (2) optimizing native compiler

Executable

– preservation of original …
• … language?
• … optimization directives?

• Optimization of the computation more important than
optimization of the communication

essential for
success of MPI

hybrid MPI+OpenMP OpenMP only

Slide 72 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

OpenMP/DSM

• Distributed shared memory (DSM) //
• Distributed virtual shared memory (DVSM) //
• Shared virtual memory (SVM)

• Principles
– emulates a shared memory
– on distributed memory hardware

• Implementations
– e.g., Intel® Cluster OpenMP

OpenMP only

Slide 73 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Intel® Compilers with Cluster OpenMP –
Consistency Protocol

Basic idea:
• Between OpenMP barriers, data exchange is not necessary, i.e.,

visibility of data modifications to other threads only after synchronization.
• When a page of sharable memory is not up-to-date,

it becomes protected.
• Any access then faults (SIGSEGV) into Cluster OpenMP runtime library,

which requests info from remote nodes and updates the page.
• Protection is removed from page.
• Instruction causing the fault is re-started,

this time successfully accessing the data.

OpenMP only

Courtesy of J. Cownie, Intel

Slide 74 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Consistency Protocol Detail of Intel® Cluster OpenMP

Node 0

A
B
C

Write A[1]
Write C[1]

OMP Barrier
notices received and pro-
pagaded by master thread
WriteNotice(0A,2A,2B,0C)

WriteNotice(0A,1B,0C)

Calculate Diffs(A,TwinA)

Node 1

A
B
C

Write B[2]

OMP Barrier
WriteNotice(1B)

node page

Read A[1]
Page Fault

Diff Request(A)

Re-Read A[1]

Node 2

A
B
C

Write A[2]
Write B[1]

OMP Barrier
WriteNotice(2A,2B)

Calculate Diffs(A,TwinA)

by additional
service thread

Courtesy of J. Cownie, Intel

Pages:

by additional
service thread

page A starts
read-only

Page Fault
allocate (TwinA)

memcpy
(TwinA := A)
Re-Write A[2]

Slide 75 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Real consistency protocol is more complicated

• Diffs are done only when requested
• Several diffs are locally stored and transferred later

if a thread first reads a page after several barriers.
• Each write is internally handled as a read followed by a write.
• If too many diffs are stored, a node can force a "reposession" operation,

i.e., the page is marked as invalid and fully re-send if needed.
• Another key point:

– After a page has been made read/write in a process,
no more protocol traffic is generated by the process for that page until
after the next synchronization (and similarly if only reads are done
once the page is present for read).

– This is key because it’s how the large cost of the protocol is averaged
over many accesses.

– I.e., protocol overhead only “once” per barrier
• Examples in the Appendix

Courtesy of J. Cownie, Intel

Slide 76 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Comparison: MPI based parallelization � �� �� �� � DSM

• MPI based:
– Potential of boundary exchange between two domains in one large message

� Dominated by bandwidth of the network

• DSM based (e.g. Intel® Cluster OpenMP):
– Additional latency based overhead in each barrier

� May be marginal

– Communication of updated data of pages
� Not all of this data may be needed

� i.e., too much data is transferred

� Packages may be to small

� Significant latency

– Communication not oriented on boundaries
of a domain decomposition

� probably more data must be transferred than
necessary

hybrid MPI+OpenMP OpenMP only

by rule of thumb:

Communication
may be

10 times slower
than with MPI

Slide 77 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Comparing results with heat example

• Normal OpenMP on shared memory (ccNUMA) NEC TX-7

heat_x.c / heatc2_x.c with OpenMP on NEC TX-7

0

2

4

6

8

10

12

14

16

18

se
ria

l 1 2 3 4 6 8 10

threads

S
pe

ed
u

p 1000x1000

250x250

80x80

20x20

ideal speedup

Slide 78 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Heat example: Cluster OpenMP Efficiency

• Cluster OpenMP on a Dual-Xeon cluster

heats2_x.c with Cluster OpenMP on NEC dual Xeon EM64T cluster

0

1

2

3

4

5

6

7

se
ria

l
1/

2 1 2 3 4 5 6 7 8

nodes

S
pe

ed
up

6000x6000 static(default) 1 threads/node

6000x6000 static(default) 2 threads/node
6000x6000 static(1:1) 1 threads/node

6000x6000 static(1:2) 1 threads/node
6000x6000 static(1:10) 1 threads/node

6000x6000 static(1:50) 1 threads/node
3000x3000 static(default) 1 threads/node

3000x3000 static(default) 2 threads/node

1000x1000 static(default) 1 threads/node
1000x1000 static(default) 2 threads/node

250x250 static(default) 1 threads/node
250x250 static(default) 2 threads/node

No speedup with 1000x1000

Second CPU only usable in small cases

Up to 3 CPUs
with 3000x3000

Efficiency only with small
communication foot-print

Terrible with non-default schedule

Slide 79 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Mismatch Problems

• Topology problem [with pure MPI]

• Unnecessary intra-node communication [with pure MPI]

• Inter-node bandwidth problem [with hybrid MPI+OpenMP]

• Sleeping threads and [with masteronly]
saturation problem [with pure MPI]

• Additional OpenMP overhead [with hybrid MPI+OpenMP]
– Thread startup / join
– Cache flush (data source thread – communicating thread – sync. � flush)

• Overlapping communication and computation [with hybrid MPI+OpenMP]
– an application problem � separation of local or halo-based code
– a programming problem � thread-ranks-based vs. OpenMP work-sharing
– a load balancing problem, if only some threads communicate / compute

• Communication overhead with DSM [with pure (Cluster) OpenMP]

� no silver bullet, i.e., each parallelization scheme has its problems

Slide 80 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

No silver bullet

• The analyzed programming models do not fit on hybrid architectures

– whether drawbacks are minor or major

� depends on applications’ needs

– problems …

� to utilize the CPUs the whole time

� to achieve the full inter-node network bandwidth

� to minimize inter-node messages

� to prohibit intra-node
– message transfer,
– synchronization and
– balancing (idle-time) overhead

� with the programming effort

Slide 81 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Chances for optimization

– with hybrid masteronly (MPI only outside of parallel OpenMP regions), e.g.,

� Minimize work of MPI routines, e.g.,
� application can copy non-contiguous data into contiguous scratch arrays

(instead of using derived datatypes)

� MPI communication parallelized with multiple threads
to saturate the inter-node network
� by internal parallel regions inside of the MPI library

� by the user application

� Use only hardware that can saturate inter-node network with 1 thread

� Optimal throughput:
� reuse of idling CPUs by other applications

– On constellations:

� Hybrid Masteronly
with several MPI multi-threaded processes on each SMP node

Slide 82 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Summary of mismatch problems

OpenMP work sharing only
partially usable

Load balancing problem due to
hybrid programming model

Separation of (a) halo data and
(b) inner data based calculations

Additional OpenMP overhead

()Sleeping CPUs while MPI
communication

Do we achieve full inter-node
bandwidth on constellations?

Additional MPI communication
inside of SMP nodes

Application topology problem
(neighbor domains inside of SMP node)

Pure
OpenMP:
e.g., Intel
Cluster
OpenMP

Over-
lapping
several
processes
per node

Over-
lapping
1 process
per node

Master-
only
several
processes
per node

Master-
only
1 process
per node

Pure
MPI

Performance and Programming
Problems with ...

Slide 83 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / pure MPI vs. hybrid MPI+OpenMP
• Mismatch Problems

• Thread-safety quality of MPI libraries
Rainer Keller, High Performance Computing Center Stuttgart (HLRS)

• Case Studies / pure OpenMP
• Summary

Slide 84 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Thread-safety of MPI Libraries

• Make most powerful usage of hierarchical structure of hardware:
• Efficient programming of clusters of SMP nodes

SMP nodes:
• Dual/multi core CPUs
• Multi CPU shared memory
• Multi CPU ccNUMA
• Any mixture with shared memory programming model

Node Interconnect

Threads inside of the
SMP nodes

MPI between the nodes
via node interconnect

• No restriction to the usage of OpenMP for intranode-parallelism:
– OpenMP does not (yet) offer binding threads to processors
– OpenMP does not guarantee thread-ids to stay fixed.

• OpenMP is based on the implementation dependant thread-library:
LinuxThreads, NPTL, SolarisThreads.

Slide 85 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

MPI rules with OpenMP / Automatic SMP-parallelization

• Special MPI-2 Init for multi-threaded MPI processes:

• REQUIRED values (increasing order):
– MPI_THREAD_SINGLE: Only one thread will execute
– THREAD_MASTERONLY: MPI processes may be multi-threaded,

(virtual value, but only master thread will make MPI-calls
not part of the standard) AND only while other threads are sleeping

– MPI_THREAD_FUNNELED: Only master thread will make MPI-calls
– MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,

but only one at a time
– MPI_THREAD_MULTIPLE: Multiple threads may call MPI,

with no restrictions
• returned provided may be less than REQUIRED by the application

int MPI_Init_thread(int * argc, char ** argv[],
int thread_level_required,
int * thead_level_provided);

int MPI_Query_thread(int *thread_level_provided);
int MPI_Is_main_thread(int * flag);

Slide 86 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Calling MPI inside of OMP MASTER

• Inside of a parallel region, with “OMP MASTER”

• Requires MPI_THREAD_FUNNELED,
i.e., only master thread will make MPI-calls

• Caution: There isn’t any synchronization with “OMP MASTER”!
Therefore, “OMP BARRIER” normally necessary to
guarantee, that data or buffer space from/for other
threads is available before/after the MPI call!

!$OMP BARRIER #pragma omp barrier
!$OMP MASTER #pragma omp master

call MPI_Xxx(...) MPI_Xxx(...);
!$OMP END MASTER
!$OMP BARRIER #pragma omp barrier

• But this implies that all other threads are sleeping!
• The additional barrier implies also the necessary cache flush!

Slide 87 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

… the barrier is necessary – example with MPI_Recv

!$OMP PARALLEL
!$OMP DO

do i=1,1000
a(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP MASTER

call MPI_RECV(buf,...)
!$OMP END MASTER
!$OMP BARRIER
!$OMP DO

do i=1,1000
c(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP END PARALLEL

#pragma omp parallel
{
#pragma omp for nowait

for (i=0; i<1000; i++)
a[i] = buf[i];

#pragma omp barrier
#pragma omp master

MPI_Recv(buf,...);
#pragma omp barrier

#pragma omp for nowait
for (i=0; i<1000; i++)

c[i] = buf[i];

}
/* omp end parallel */

Slide 88 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Threads – Overview 1/2

• Abstraction of the concept of a UNIX process.
• Change between processes is expensive (Context-Switch):

– Switch into + out of privileged kernel mode.
– Save the complete register set + status of processor.
– Change the memory mapping of processes of MMU.

Program counter
Processor register
Processor status
Signal masks
Stack

Address space
Open Files
Child processes
Signal handler
Timer
Accounting

Data per threadData per process

Process 1 Process 2

• POSIX:
– Set of standards produced by IEEE Computer Society.
– POSIX Threads published under POSIX 1003.1c.
– Standardized by ISO as ISO/IEC 9945-1:1996.

Slide 89 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Threads – Overview 2/2

Process

T1

T2

T3

Process

Process

Process

Kernel-Level Threads:
+ Simple model.
+ SMP systems used
efficiently.

- Signals are not per
process
- On plattforms with
expensive switch to
kernelmode inefficient.

Kernel Process

T1

T2

T3

Process

Kernel

User-Level Threads:
+ Faster thread-switch
possible
+ Scheduler independent
of system

- Blocking thread blocks
all threads
- Programming bugs not
always noticeable
- SMP systems not
efficiently used.

Process

T1

T2

T3

LWP

LWP

LWP

Kernel

Hybrid Implement.:
+ Flexible
+ Application may
interact (request more
LWPs)

- Very complex
- Error-prone to
implement (Signals).

Slide 90 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Threads – Drawbacks 1/2

• Threads have a major drawback:

Thread-Safety

• Ensure, that all accesses to shared resources are protected
• Ensure, that all possible execution orders are sensible
• When using multiple locks, always lock/unlock in same order!

Time

Thread 1

Thread 2

1a=1

a=a+1;

a=a*4;

2 4

Time

1 2 8

a=a*4;

unlock m;

unlock m;

lock m; a=a+1;

lock m;

Slide 91 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Threads – Drawbacks 2/2

• Many functions of the C-library are not thread-safe.
• These are:

asctime ctime getgrgid

getgrnam getpwnam getpwuid

gmtime localtime rand

readdir strtok

• For these functions, new thread-safe implementations are
defined (suffix _r).

• To use these definitions, compile with –D_REENTRANT.
Also will make the use of global error variable errno thread-
safe.
(With OpenMP compilation, this is on per default.)

Slide 92 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Testsuite – Goals

• There exist many different test-suites:
– MPIch: Collection regression tests for specific functions.
– Intel: Single program for every MPI-1.2 function.
– IBM: Single program MPI-1 and MPI-2 tests; but incomplete.

• Aims of the testsuite:
– Single program (PACX-MPI, Queue-System limits, late Errors)

Expected Passes: checking boundaries of the MPI standard.
– Easy to configure, compile and install.
– Easy integration of new tests
– Tests must be runable with any number of processes.
– Tests must run with as many:

• Communicators
• Datatypes
• Reduction-Operations
• Lengths

Slide 93 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Testsuite – Startup

• Easy startup – or complete control:
mpirun –np 16 ./mpi_test_suite

–d MPI_INT,TST_MPI_STRUCT_C_TYPES

–t ‘Many-to-one,Collective,!Bcast‘

–c ‘MPI_COMM_WORLD,Halved Intercommunicator‘

–r FULL –x STRICT

• Each test has to implement three functions:
– Init One time test-initialization (buffer allocation
– Run Main test-function, may be run multiple times.
– Cleanup After the particular test was run.

• Make usage of convenience functions:
– tst_test_setstandardarray Set buffer to known value.
– tst_test_checkstandardarray Corresponding check

Slide 94 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Testsuite – Derived Datatypes

• Make usage of convenience functions:
– tst_test_setstandardarray Set buffer to known value.

• Sets the following buffer (so e.g. for Integers):

0x00 0x00 0x00 0x80

4B Min Integer

0xFF 0xFF 0xFF 0x7F

4B Max Integer

MIN of Type MAX of Type 2

0xA5

1 Byte Hole

• E.g. the following derived datatype MPI_TYPE_MIX_LB_UB:
1B Char

2B Short

4B Int

4B Long

4B Float

8B Double

MIN

Zero Position
MPI_LB MPI_UB

8B Double

MAX

Slide 95 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Testsuite – Implemented Communicators

• List of implemented communicators:

Fully-connected
Topology

Three-dimensional
CartesianTwo-dimensional

Cartesian

Halved
Intercommunicators

Intracomm merged of
Halved Intercomms

Zero-and-Rest
Intercommunicator

Odd-/Even Split
MPI_COMM_WORLD

Halved
MPI_COMM_WORLD

Reversed
MPI_COMM_WORLD

Duplicated
MPI_COMM_WORLD

MPI_COMM_SELFMPI_COMM_NULLMPI_COMM_WORLD

Slide 96 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Testsuite – Implemented threaded tests

• Additional tests added:
– Local send from one thread to self on MPI_COMM_SELF
– Calling MPI_Init_thread from thread.

• Threaded running of already implemented tests:
– Scheduling the same test to many threads (pt2pt)

– Scheduling different tests to different threads:

Process 0 Process 1

e.g. Simple Ring
(w/ different tag)

Process 0 Process 1

e.g. Bcast, Scatter,Gather
(on the same comm?)

Slide 97 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Testsuite – Implemented threaded tests

• Scheduling different Collective Operations to different threads but
on the same communicator? Allowed?
(MPI-2, p195): Matching of collective calls on a
communicator, window, or file handle is done
according to the order in which they are issued at
each process.

User has to order calling sequence, or the execution sequence?

thr0 thr1

MPI_Bcast

MPI_Gather

Of course, one may use MPI-2’s
MPI_Comm_dup(MPI_COMM_WORLD,

&new_comm);

Slide 98 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Thread support in MPI libraries

• The following MPI libraries offer thread support:

Always announces MPI_THREAD_FUNNELED.

ch:sock3 (default) supports MPI_THREAD_MULTIPLE
MPI_THREAD_FUNNELED

MPI_THREAD_SERIALIZED

Not thread-safe?
Full MPI_THREAD_MULTIPLE

Full MPI_THREAD_MULTIPLE

MPIch-1.2.7p1

MPIch2-1.0.4

Intel MPI 2.0

Intel MPI 3.0

SGI MPT-1.14

IBM MPI

Nec MPI/SX

Thread support levelImplemenation

• Examples of failures in MPI libraries uncovered are shown.
• Failure logs are shown only for Open MPI.

Slide 99 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Examples of failed multi-threaded tests

• Standard send in comm. “Reversed MPI_COMM_WORLD”:
P2P tests Ring, comm Reversed MPI_COMM_WORLD, type MPI_INT

mpi_test_suite:
../../../../../ompi/mca/pml/ob1/pml_ob1_sendreq.c:196:
mca_pml_ob1_match_completion_free: Assertion `0 == sendreq-
>req_send.req_base.req_pml_complete' failed.

• 2-threads Collective (Bcast, Gather) on different comms hangs:
mpirun -np 4 ./mpi_test_suite -r FULL -j 2 -t "Bcast,Gather"
-c "MPI_COMM_WORLD,Duplicated MPI_COMM_WORLD"

• 2-threads Collective (Bcast, Bcast) on different comms wrong data:
mpirun -np 4 ./mpi_test_suite -r FULL -j 2 -t "Bcast" -c
"MPI_COMM_WORLD,Duplicated MPI_COMM_WORLD"

• Of course, a test-suite may contain errors as well ,-]

Slide 100 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Thread support within Open MPI

• In order to enable thread support in Open MPI, configure with:

configure --enable-mpi-threads --enable-progress-threads

• This turns on:
– Support for threaded initialization functions and internal checks

to enable locking when run with threads
– Progress threads to asynchronously transfer/receive data per

network BTL.
– However, some BTLs (mvapi, openib, mx) are still marked non-

thread-safe.

Slide 101 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / pure MPI vs. hybrid MPI+OpenMP
• Mismatch Problems
• Thread-safety quality of MPI libraries

• Case Studies / pure OpenMP
– First Experiences with Intel® Cluster OpenMP (CLOMP)

Georg Hager, Regionales Rechenzentrum Erlangen (RRZE)

• Summary

Slide 102 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Overview

• Cluster OpenMP is part of every 9.1 Intel compiler
– separate license must be purchased

• Systems used
– EM64T (dual Nocona) with Gbit Ethernet and Infiniband, Debian 3.1

(Sarge)
– Itanium2 (HP zx6000) with Gbit Ethernet, SLES9pl3
– AMD Opteron is supported with latest CLOMP compiler versions

• Basic numbers: Triad tests on Nocona nodes

• Application: Lattice-Boltzmann code
– influence of algorithmic details (locality of access, page sharing)
– data layout considerations

• Odds and ends

Slide 103 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

General Remarks on Intel® Cluster OpenMP (CLOMP)

• CLOMP == "extreme" ccNUMA

– very long latencies, expensive non-local access

– page replications can lead to memory problems

– but: placement is handled “automatically”

• Consequence: A well-optimized, ccNUMA-aware OMP code that
scales well on Altix does not necessarily scale well with CLOMP

– example: boundary code must be optimized for local access

• Good stability on all systems with latest CLOMP release

• No problems and good performance with IP over IB

– native IB not working yet (but check latest CLOMP versions!)

Slide 104 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

General Remarks

• Problems
– memory footprint is about 2.5 times larger than expected from

serial code (270MB instead of 61MB for vector triad)
• Partially resolved by Intel (Jim C.)

• Problem is specific to RRZE kernel and system libs

– huge core dumps even with small sharable heap and resident
memory (2.4GB core with 200MB code)

• Problem is specific to RRZE kernel and system libs

Slide 105 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Parallel Triad A(:)=B(:)+C(:)*D(:)

Three flavors
1. Standard triad, OMP parallel

#pragma omp parallel for
for(i=0; i<N; i++)

a[i]=b[i]+c[i]*d[i];

2. Throughput triad (separate local arrays on each thread)

#pragma omp parallel
sub_triad(N);

3. Padded triad

#pragma omp parallel
do_triad(N[myID],
start[myID],a,b,c,d)

T0 T1 T2 T3

T0

T1

T2

T3

T0 T1 T2 T3

Slide 106 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Standard Triad on
GBit Ethernet vs. IP over IB (1T/node)

0

100

200

300

400

500

600

51
1

73
5

10
58

15
22

21
91

31
54

45
40

65
37

94
12

13
55

2
19

51
4

28
09

9
40

46
1

58
26

3
83

89
8

12
08

12
17

39
68

25
05

13
36

07
38

51
94

62
74

80
24

10
77

15
3

15
51

09
9

22
33

58
1

32
16

35
6

46
31

55
2

66
69

43
4

N

M
F

lo
p

/s

1T GBit
2T GBit
4T GBit
2T IB
4T IB

Report only on IP over IB in
the following

Slide 107 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Filled vs. Half-filled nodes

• 2 ways to „fill the node“
1. Keep unique names in hostfile and use 2 „real“ OpenMP

threads per node with -–process_threads=2
2. Duplicate names in hostfile and use --process_threads=1

• Observations
– breakdown of performance compared to the half-filled case for

large N
– Improvement with OpenMP for medium-sized arrays
– --process_threads=2: quite erratic performance data

• Breakdown was actually expected (the same happens on single
node with pure OpenMP)

• Erratic behaviour
– influence of „loaded“ switch? (improbable)
– Threads losing CPU affinity?

Slide 108 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Threads vs. processes on node

0

100

200

300

400

500

600

51
1

73
5

10
58

15
22

21
91

31
54

45
40

65
37

94
12

13
55

2
19

51
4

28
09

9
40

46
1

58
26

3
83

89
8

12
08

12
17

39
68

25
05

13
36

07
38

51
94

62
74

80
24

10
77

15
3

15
51

09
9

22
33

58
1

32
16

35
6

N

M
F

lo
p

/s

8T 2PPN 8T 1PPN

• Erratic behavior
• influence of „loaded“

switch? (improbable)
• threads losing CPU

affinity?

Slide 109 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Pinning of threads

• Performance results seem quite erratic when using all available CPUs
on a node

• Possible remedy? � pin threads to CPUs
– using PLPA (http://www.open-mpi.org/software/plpa/) for portability

#pragma omp parallel
{
#pragma omp critical
{

if(PLPA_NAME(api_probe)()!=PLPA_PROBE_OK) {
cerr << "PLPA failed!" << endl;

} else {
plpa_cpu_set_t msk;
PLPA_CPU_ZERO(&msk);
PLPA_CPU_SET((omp_get_thread_num() & 1),&msk);
PLPA_NAME(sched_setaffinity)((pid_t)0, (size_t)32, &msk);

}
}
}

Slide 110 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Results for pinned triad (4 and 8 threads)

0

100

200

300

400

500

600

51
1

73
5

10
58

15
22

21
91

31
54

45
40

65
37

94
12

13
55

2
19

51
4

28
09

9
40

46
1

58
26

3
83

89
8

12
08

12
17

39
68

25
05

13
36

07
38

51
94

62
74

80
24

10
77

15
3

15
51

09
9

22
33

58
1

32
16

35
6

N

M
F

lo
p

/s

4T 1PPN 4T 1PPN pinned 8T OMP pinned 8T OMP

• 4T: no change

• 8T Numbers get less erratic,
but performance is worse

• Observation: IB completion
thread (ts_ib_completion)
frequently using CPU time

Slide 111 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Remedy for the IB completion problem: Hyperthreading!

0

100

200

300

400

500

600

700

800

900

1000

10
00

14
40

20
73

29
84

42
96

61
86

89
07

12
82

5
18

46
8

26
59

3
38

29
3

55
14

1
79

40
2

11
43

38
16

46
46

23
70

90
34

14
09

49
16

28
70

79
43

10
19

43
7

14
67

98
8

21
13

90
2

30
44

01
8

43
83

38
5

63
12

07
4

pin 2T nopin 2T HT pin 2T HT nopin 2T HT 8 threads (half-filled)

• HT is generally good for
CLOMP!

• If HT is used, pinning is
mandatory

• If HT is not used, pinning
worsens performance in some
cases

Slide 112 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Application: Lattice Boltzmann Method

• Numerical Method for Simulation of Fluids
Stream-Collide (Pull-Method)

Get the distributions from the neighboring cells
in the source array and store the relaxated values
to one cell in the destination array

Collide-Stream (Push-Method)

Take the distributions from one cell in the source
array and store the relaxated values to the
neighboring cells in the destination array

D3Q19 model:

source destinationΩΩΩΩ

Two Grids:

�

Compressed Grid
(not used here):

Slide 113 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

double precision f(0:xMax+1,0:yMax+1,0:zMax+1,0:18,0:1)
!$OMP PARALLEL DO
do z=1,zMax

do y=1,yMax
do x=1,xMax

if(fluidcell(x,y,z)) then

LOAD f(x,y,z, 0:18,t)

...Relaxation (complex computations)...
SAVE f(x ,y ,z , 0,t+1)
SAVE f(x+1,y+1,z , 1,t+1)
SAVE f(x ,y+1,z , 2,t+1)
SAVE f(x-1,y+1,z , 3,t+1)
…
SAVE f(x ,y-1,z-1,18,t+1)

endif
enddo

enddo
enddo

LBMKernel – Code Structure for Collide-Stream Step

Slide 114 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

LBMKernel

• Scalability beyond 2 nodes was very bad with standard code
• proper choice of geometry (long thin channel) can restore

scalability
– not a general solution

• Solution: bounceback (boundary) routine was
not properly optimized for local access
– on ccNUMA, this is a negligible effect for

small obstacle density (n2)
– on CLOMP, it is devastating

• Still: indexing has significant impact on performance
– "push" vs. "pull" algorithm
– parallelized dimension should be the outermost one to

minimize false sharing: (i,j,v,t,k) better than (I,j,k,v,t)
• Might profit from ghost layers, but is this still OpenMP???

Slide 115 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Influence of Bounceback and Push vs. Pull
for 128x64x128 and (i,j,k,v,t) layout

0

2

4

6

8

10

12

14

push push
nobb

pull pull nobb orig
(push
wrong

BB)

push
nobb
optidx

M
LU

P
s 1T

2T
4T

(I,j,v,t,k)
layout

Slide 116 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

DMRG (work in progress)

• Large C++ code, OpenMP parallelized
– good scalability not really expected, but a good example for

porting
– cache-bound, so not optimized for ccNUMA

• Important issues:
– use new (kmp_sharable) for dynamic objects used in

parallel regions
– derive classes from kmp_sharable_base if dynamic objects

are used in parallel regions

• Possible problem with global objects (still under investigation)

Slide 117 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Conclusions on CLOMP

• Cluster OpenMP is an interesting programming experience

• Imagine a ccNUMA machine with automatic page migration (wow!)
and an awfully slow network

• If something strange happens (performancewise), use profiler by all
means
– Otherwise (with OMP) negligible boundary effects may become

dominant with CLOMP

• With CLOMP, performance results tend to be more scattered than
usual

• There is a lot more to say
– role of pinning on ccNUMA nodes (Opteron)
– automatic padding
– C++ issues
– Intel tools for profiling

Slide 118 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Case Studies / pure MPI vs. hybrid MPI+OpenMP
• Mismatch Problems
• Thread-safety quality of MPI libraries
• Case Studies / pure OpenMP

• Summary

Slide 119 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Acknowledgements

• I want to thank
– Gerhard Wellein, RRZE
– Monika Wierse, Wilfried Oed, and Tom Goozen, CRAY
– Holger Berger, NEC
– Reiner Vogelsang, SGI
– Gabriele Jost, NASA
– Dieter an Mey, RZ Aachen
– Horst Simon, NERSC
– Matthias Müller, HLRS
– my colleges at HLRS

Slide 120 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

OpenMP work sharing only partially
usable

Load balancing problem due to
hybrid programming model

Separation of (a) halo data and
(b) inner data based calculations

Additional OpenMP overhead

() () Sleeping CPUs while MPI
communication

Do we achieve full inter-node
bandwidth on constellations?

Additional MPI communication inside
of SMP nodes

Application topology problem
(neighbor domains inside of SMP node)

Pure
OpenMP:
e.g., Intel
Cluster
OpenMP

Over-
lapping
several
processes
per node

Over-
lapping
1 process
per node

Master-
only
several
processes
per node

Master-
only
1 process
per node

Pure
MPI

Performance and Programming
Problems with ...

On clusters
with small nodes (≤≤≤≤ 4 CPUs)

Good candidates
with limited programming expense

Slide 121 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

OpenMP work sharing only partially
usable

Load balancing problem due to
hybrid programming model

Separation of (a) halo data and
(b) inner data based calculations

Additional OpenMP overhead

() Sleeping CPUs while MPI
communication

Do we achieve full inter-node
bandwidth on constellations?

Additional MPI communication inside
of SMP nodes

Application topology problem
(neighbor domains inside of SMP node)

Pure
OpenMP:
e.g., Intel
Cluster
OpenMP

Over-
lapping
several
processes
per node

Over-
lapping
1 process
per node

Master-
only
several
processes
per node

Master-
only
1 process
per node

Pure
MPI

Performance and Programming
Problems with ...

Good candidates
with limited programming expense

On constellations (> 4 CPUs per node)

For extreme HPC,
probably best chance

Slide 122 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

OpenMP work sharing only partially
usable

Load balancing problem due to
hybrid programming model

Separation of (a) halo data and
(b) inner data based calculations

Additional OpenMP overhead

() Sleeping CPUs while MPI
communication

Do we achieve full inter-node
bandwidth on constellations?

Additional MPI communication inside
of SMP nodes

Application topology problem
(neighbor domains inside of SMP node)

Pure
OpenMP:
e.g., Intel
Cluster
OpenMP

Over-
lapping
several
processes
per node

Over-
lapping
1 process
per node

Master-
only
several
processes
per node

Master-
only
1 process
per node

Pure
MPI

Performance and Programming
Problems with ...

Maybe a candidate
with limited programming expense

Non-MPI applications
with extremely small communication foot-print

therefore
irrelevant
aspects

Slide 123 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Conclusions

• Constellations (>4 CPUs per SMP node):
– Only a few platforms

• e.g., Cray X1 in MSP mode, NEC SX-6
• are well designed hybrid MPI+OpenMP masteronly scheme

– Other platforms
• masteronly style cannot saturate inter-node bandwidth
• Several multi-threaded MPI processes per SMP node may help

• Clusters with small SMP nodes:
• Simple masteronly style is a good candidate
• although some CPU idle (while one is communicating)

• DSM systems (pure OpenMP, e.g Intel Cluster OpenMP):
• may help for some (but only some) applications

• Optimal performance:
• overlapping of communication & computation � extreme programming effort

• Pure MPI:
• often the cheapest and (nearly) best solution

See also www.hlrs.de/people/rabenseifner � list of publications

Slide 124 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Appendix

• Abstract
• Intel® Compilers with Cluster OpenMP –

Consistency Protocol – Examples
• Authors
• References (with direct relation to the content of this tutorial)
• Further references

Slide 125 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Abstract

Half-Day Tutorial (Level: 25% Introductory, 50% Intermediate, 25% Advanced)

Rolf Rabenseifner, HLRS, Germany Georg Hager, University of Erlangen-Nuremberg, Germany
Gabriele Jost, Sun Microsystems, Germany Rainer Keller, HLRS, Germany

Abstract. Most HPC systems are clusters of shared memory nodes. Such systems can be PC clusters with
dual or quad boards, but also "constellation" type systems with large SMP nodes. Parallel programming
must combine the distributed memory parallelization on the node inter-connect with the shared memory
parallelization inside of each node.

This tutorial analyzes the strength and weakness of several parallel programming models on clusters of
SMP nodes. Various hybrid MPI+OpenMP programming models are compared with pure MPI. Benchmark
results of several platforms are presented. A hybrid-masteronly programming model can be used more
efficiently on some vector-type systems, but also on clusters of dual-CPUs. On other systems, one CPU is
not able to saturate the inter-node network and the commonly used masteronly programming model suffers
from insufficient inter-node bandwidth. The thread-safety quality of several existing MPI libraries is also
discussed. Case studies from the fields of CFD (NAS Parallel Benchmarks and Multi-zone NAS Parallel
Benchmarks, in detail), Climate Modelling (POP2, maybe) and Particle Simulation (GTC, maybe) will be
provided to demonstrate various aspect of hybrid MPI/OpenMP programming.

Another option is the use of distributed virtual shared-memory technologies which enable the utilization of
"near-standard" OpenMP on distributed memory architectures. The performance issues of this approach
and its impact on existing applications are discussed. This tutorial analyzes strategies to overcome typical
drawbacks of easily usable programming schemes on clusters of SMP nodes.

Slide 126 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Intel® Compilers with Cluster OpenMP –
Consistency Protocol – Examples

Notation

• ..=A[i] Start/End Start/end a read on element i on page A

• A[i]=.. Start/End Start/end a write on element i on page A,
trap to library

• Twin(A) Create a twin copy of page A

• WriteNotice(A) Send write notice for page A to other processors

• DiffReq_A_n(s:f) Request diffs for page A from node n between s and f

• Diff_A_n(s:f) Generate a diff for page A in writer n between s and
where s and f are barrier times.
This also frees the twin for page A.

Courtesy of J. Cownie, Intel

Slide 127 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Exa. 1

Node 0 Node 1
Barrier 0 Barrier 0
A[1]=.. Start
Twin(A)
A[2]=.. End

A[5]=.. Start
Twin(A)
A[5]=.. End

Barrier 1 Barrier 1
WriteNotice(A) Writenotice(A)
A[5]=.. Start
Diffreq_A_1(0:1)->

<-Diff_A_1(0:1)
Apply diffs
A[5]=.. End
Barrier 2
WriteNotice(A)

Barrier 2

Courtesy of J. Cownie, Intel

Slide 128 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Exa. 2
Node 0 Node 1 Node 2
Barrier 0 Barrier 0 Barrier 0
A[1]=.. Start
Twin(A)
A[1]=.. End
Barrier 1
WriteNotice(A)
A[2]=.. (no trap to library)
Barrier 2
(No WriteNotice(A) required)
A[3]=.. (no trap to lib)

..=A[1] Start
<-Diffreq_A_0(0:2)

Diff_A_0(0:2)->
Apply diffs
..=A[1] End

Barrier 3
(no WriteNotice(A) required because diffs
were sent after the A[3]=..)
A[1]=.. Start
Twin(A)
Barrier 4
WriteNotice(A)

..=A[1] Start
<- Diffreq_A_0(0:4)

Create Diff_A_0(2:4) send Diff_A_O(0:4)->
Apply diffs
..=A[1] End

Barrier 1 Barrier 1

Barrier 2 Barrier 2

Barrier 3 Barrier 3

Barrier 4 Barrier 4

Courtesy of J. Cownie, Intel

Slide 129 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Exa. 3
(start)

Node 0 Node 1 Node 2 Node 3
Barrier 0 Barrier 0 Barrier 0 Barrier 0
A[1]=.. Start A[5]=.. Start
Twin(A) Twin(A)
A[1]=.. End A[5]=.. End
Barrier 1 Barrier 1
WriteNotice(A) WriteNotice(A)
A[2]=.. Start A[1]=.. Start
Diffreq_A_1(0:1)-> <-Diffreq_A_0(0:1)
Diff_A_0(0:1)-> <-Diff_A_1_(0:1)
Apply diff Apply diff
Twin(A) Twin(A)
A[2]=.. End A[1]=.. End
Barrier 2 Barrier 2
WriteNotice(A) WriteNotice(A)
A[3]..= Start A[6]..= Start
Diffreq_A_1(1:2)-> <-Diffreq_A_A(1:2)
Diffs_A_0(1:2)-> <-Diffs_A_1(1:2)
Apply diffs Apply diffs
Twin(A) Twin(A)
A[3]=.. End A[6]=.. End

..=A[1] Start
<-Diffreq_A_0(0:2)
<-Diffreq_A_1(0:2)

Create Diff_A_0(1:2) Create Diff_A_1(1:2)
Send Diff_A_0(0:2)-> Send Diff_A_1(0:2)->

Apply all diffs
..=A[1] End

Barrier 1

Barrier 2 Barrier 2

Barrier 1

Courtesy of J. Cownie, Intel

Slide 130 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Exa. 3
(end)

These examples may give an impression of the overhead
induced by the Cluster OpenMP consistency protocol.

Node 0 Node 1 Node 2 Node 3
Barrier 3 Barrier 3
Writenotice(A) Writenotice(A)
A[1]=.. Start
Diffreq_A_1(2:3)->

<-Diffs_A_1_(2:3)
Apply diffs
Twin(A)
A[1]..= End
Barrier 4
Writenotice(A)

..=A[1] Start
<-Diffreq_A_0(0:4)
<-Diffreq_A_1(0:4)

Create Diff_A_0(3:4) Create Diff_A_1(2:4)
Send Diff_A_0(0:4)-> Send Diff_A_1(0:4)->

Apply diffs
..=A[1] End

Barrier 3 Barrier 3

Barrier 4 Barrier 4 Barrier 4

Courtesy of J. Cownie, Intel

Slide 131 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Rolf Rabenseifner

Dr. Rolf Rabenseifner studied mathematics and physics at the University of
Stuttgart. Since 1984, he has worked at the High-Performance Computing-
Center Stuttgart (HLRS). He led the projects DFN-RPC, a remote procedure
call tool, and MPI-GLUE, the first metacomputing MPI combining different
vendor's MPIs without loosing the full MPI interface. In his dissertation, he
developed a controlled logical clock as global time for trace-based profiling of
parallel and distributed applications. Since 1996, he has been a member of
the MPI-2 Forum. From January to April 1999, he was an invited researcher at
the Center for High-Performance Computing at Dresden University of
Technology.

Currently, he is head of Parallel Computing - Training and Application
Services at HLRS. He is involved in MPI profiling and benchmarking, e.g., in
the HPC Challenge Benchmark Suite. In recent projects, he studied parallel
I/O, parallel programming models for clusters of SMP nodes, and optimization
of MPI collective routines. In workshops and summer schools, he teaches
parallel programming models in many universities and labs in Germany.

Slide 132 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Georg Hager

Dr. Georg Hager studied theoretical physics at the University of Bayreuth,
specializing in nonlinear dynamics. Since 2000 he is a member of the
HPC Services group at the Regional Computing Center Erlangen (RRZE),
which is part of the University of Erlangen-Nürnberg. His daily work
encompasses all aspects of user support in High Performance Computing
like tutorials and training, code parallelization, profiling and optimization
and the assessment of novel computer architectures and tools.
In his dissertation he developed a shared-memory parallel density-matrix
renormalization group algorithm for ground-state calculations in strongly
correlated electron systems. Recent work includes architecture-specific
optimization strategies for current microprocessors and special topics in
shared memory programming.

Slide 133 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Gabriele Jost

Gabriele Jost obtained her doctorate in Applied Mathematics from the
University of Göttingen, Germany. For more than a decade she worked
for various vendors (Suprenum GmbH, Thinking Machines Corporation,
and NEC) of high performance parallel computers in the areas of
vectorization, parallelization, performance analysis and optimization of
scientific and engineering applications.
In 1998 she joined the NASA Ames Research Center in Moffett Field,
California, USA as a Research Scientist. Here her work focused on
evaluating and enhancing tools for parallel program development and
investigating the usefulness of different parallel programming paradigms.
In 2005 she moved from California to the Pacific Northwest and joined
Sun Microsystems as a staff engineer in the Compiler Performance
Engineering team. Her task is the analysis of compiler generated code
and providing feedback and suggestions for improvement to the compiler
group. Her research interest remains in area of performance analysis and
evaluation of programming paradigms for high performance computing.

Slide 134 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Rainer Keller

Rainer Keller is a scientific employee at the High Performance
Computing Center Stuttgart (HLRS) since 2001. He earned his diploma
in Computer Science at the University of Stuttgart. Currently, he is the
head of the group Applications, Models and Tools at the HLRS.
His professional interest are Parallel Computation using and working on
MPI with Open MPI and shared memory parallelization with OpenMP, as
well as distributed computing using the Meta-Computing Library PACX-
MPI.

His work includes performance analysis and optimization of parallel
applications, as well as the assessment of and porting to new hardware
technologies, including the training of HLRS users in parallel application
development. He is involved in several European projects, such as HPC-
Europa.

Slide 135 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

References (with direct relation to the content of this tutorial)

• NAS Parallel Benchmarks:
http://www.nas.nasa.gov/Resources/Software/npb.html

• R.v.d. Wijngaart and H. Jin,
NAS Parallel Benchmarks, Multi-Zone Versions,
NAS Technical Report NAS-03-010, 2003

• H. Jin and R. v.d.Wijngaart,
Performance Characteristics of the multi-zone NAS Parallel Benchmarks,
Proceedings IPDPS 2004

• G. Jost, H. Jin, D. an Mey and F. Hatay,
Comparing OpenMP, MPI, and Hybrid Programming,
Proc. Of the 5th European Workshop on OpenMP, 2003

• E. Ayguade, M. Gonzalez, X. Martorell, and G. Jost,
Employing Nested OpenMP for the Parallelization of Multi-Zone CFD Applications,
Proc. Of IPDPS 2004

Slide 136 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

References

• Rolf Rabenseifner,
Hybrid Parallel Programming on HPC Platforms.
In proceedings of the Fifth European Workshop on OpenMP, EWOMP '03,
Aachen, Germany, Sept. 22-26, 2003, pp 185-194, www.compunity.org.

• Rolf Rabenseifner,
Comparison of Parallel Programming Models on Clusters of SMP Nodes.
In proceedings of the 45nd Cray User Group Conference, CUG SUMMIT 2003,
May 12-16, Columbus, Ohio, USA.

• Rolf Rabenseifner and Gerhard Wellein,
Comparison of Parallel Programming Models on Clusters of SMP Nodes.
In Modelling, Simulation and Optimization of Complex Processes (Proceedings of
the International Conference on High Performance Scientific Computing,
March 10-14, 2003, Hanoi, Vietnam) Bock, H.G.; Kostina, E.; Phu, H.X.;
Rannacher, R. (Eds.), pp 409-426, Springer, 2004.

• Rolf Rabenseifner and Gerhard Wellein,
Communication and Optimization Aspects of Parallel Programming Models
on Hybrid Architectures.
In the International Journal of High Performance Computing Applications,
Vol. 17, No. 1, 2003, pp 49-62. Sage Science Press.

Slide 137 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

References

• Rolf Rabenseifner,
Communication and Optimization Aspects on Hybrid Architectures.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface, J.
Dongarra and D. Kranzlmüller (Eds.), Proceedings of the 9th European PVM/MPI
Users' Group Meeting, EuroPVM/MPI 2002, Sep. 29 - Oct. 2, Linz, Austria, LNCS,
2474, pp 410-420, Springer, 2002.

• Rolf Rabenseifner and Gerhard Wellein,
Communication and Optimization Aspects of Parallel Programming Models on
Hybrid Architectures.
In proceedings of the Fourth European Workshop on OpenMP (EWOMP 2002),
Roma, Italy, Sep. 18-20th, 2002.

• Rolf Rabenseifner,
Communication Bandwidth of Parallel Programming Models on Hybrid
Architectures.
Proceedings of WOMPEI 2002, International Workshop on OpenMP: Experiences
and Implementations, part of ISHPC-IV, International Symposium on High
Performance Computing, May, 15-17., 2002, Kansai Science City, Japan, LNCS
2327, pp 401-412.

Slide 138 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

References

• Barbara Chapman et al.:
Toward Enhancing OpenMP’s Work-Sharing Directives.
In proceedings, W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 645-654,
2006.

Slide 139 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Further references

• Sergio Briguglio, Beniamino Di Martino, Giuliana Fogaccia and Gregorio Vlad,
Hierarchical MPI+OpenMP implementation of parallel PIC applications on
clusters of Symmetric MultiProcessors,
10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,
29 Sep - 2 Oct, 2003

• Barbara Chapman,
Parallel Application Development with the Hybrid MPI+OpenMP Programming
Model,
Tutorial, 9th EuroPVM/MPI & 4th DAPSYS Conference, Johannes Kepler University
Linz, Austria September 29-October 02, 2002

• Luis F. Romero, Eva M. Ortigosa, Sergio Romero, Emilio L. Zapata,
Nesting OpenMP and MPI in the Conjugate Gradient Method for Band Systems,
11th European PVM/MPI Users' Group Meeting in conjunction with DAPSYS'04,
Budapest, Hungary, September 19-22, 2004

• Nikolaos Drosinos and Nectarios Koziris,
Advanced Hybrid MPI/OpenMP Parallelization Paradigms for Nested Loop
Algorithms onto Clusters of SMPs,
10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,
29 Sep - 2 Oct, 2003

Slide 140 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Further references

• Holger Brunst and Bernd Mohr,
Performance Analysis of Large-scale OpenMP and Hybrid MPI/OpenMP
Applications with VampirNG
Proceedings for IWOMP 2005, Eugene, OR, June 2005.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

• Felix Wolf and Bernd Mohr,
Automatic performance analysis of hybrid MPI/OpenMP applications
Journal of Systems Architecture, Special Issue "Evolutions in parallel distributed
and network-based processing", Volume 49, Issues 10-11, Pages 421-439,
November 2003.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

• Felix Wolf and Bernd Mohr,
Automatic Performance Analysis of Hybrid MPI/OpenMP Applications
short version: Proceedings of the 11-th Euromicro Conference on Parallel,
Distributed and Network based Processing (PDP 2003), Genoa, Italy, February
2003.
long version: Technical Report FZJ-ZAM-IB-2001-05.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

Slide 141 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Further references

• Frank Cappello and Daniel Etiemble,
MPI versus MPI+OpenMP on the IBM SP for the NAS benchmarks,
in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/cappello00mpi.html
www.sc2000.org/techpapr/papers/pap.pap214.pdf

• Jonathan Harris,
Extending OpenMP for NUMA Architectures,
in proceedings of the Second European Workshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

• D. S. Henty,
Performance of hybrid message-passing and shared-memory parallelism for
discrete element modeling,
in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/henty00performance.html
www.sc2000.org/techpapr/papers/pap.pap154.pdf

Slide 142 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Further references

• Matthias Hess, Gabriele Jost, Matthias Müller, and Roland Rühle,
Experiences using OpenMP based on Compiler Directed Software DSM on a
PC Cluster,
in WOMPAT2002: Workshop on OpenMP Applications and Tools, Arctic Region
Supercomputing Center, University of Alaska, Fairbanks, Aug. 5-7, 2002.
http://www.hlrs.de/people/mueller/papers/wompat2002/wompat2002.pdf

• John Merlin,
Distributed OpenMP: Extensions to OpenMP for SMP Clusters,
in proceedings of the Second EuropeanWorkshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

• Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka,
Design of OpenMP Compiler for an SMP Cluster,
in proceedings of the 1st European Workshop on OpenMP (EWOMP'99), Lund,
Sweden, Sep. 1999, pp 32-39. http://citeseer.nj.nec.com/sato99design.html

• Alex Scherer, Honghui Lu, Thomas Gross, and Willy Zwaenepoel,
Transparent Adaptive Parallelism on NOWs using OpenMP,
in proceedings of the Seventh Conference on Principles and Practice of Parallel
Programming (PPoPP '99), May 1999, pp 96-106.

Slide 143 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Further references

• Weisong Shi, Weiwu Hu, and Zhimin Tang,
Shared Virtual Memory: A Survey,
Technical report No. 980005, Center for High Performance Computing,
Institute of Computing Technology, Chinese Academy of Sciences, 1998,
www.ict.ac.cn/chpc/dsm/tr980005.ps.

• Lorna Smith and Mark Bull,
Development of Mixed Mode MPI / OpenMP Applications,
in proceedings of Workshop on OpenMP Applications and Tools (WOMPAT 2000),
San Diego, July 2000. www.cs.uh.edu/wompat2000/

• Gerhard Wellein, Georg Hager, Achim Basermann, and Holger Fehske,
Fast sparse matrix-vector multiplication for TeraFlop/s computers,
in proceedings of VECPAR'2002, 5th Int'l Conference on High Performance Computing
and Computational Science, Porto, Portugal, June 26-28, 2002, part I, pp 57-70.
http://vecpar.fe.up.pt/

Slide 144 / 122 Rabenseifner, Hager, Jost, Keller
Hybrid Parallel Programming

Further references

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,
Load Balanced Parallel Simulated Annealing on a Cluster of SMP Nodes.
In proceedings, W. E. Nagel, W. V. Walter, and W. Lehner (Eds.): Euro-Par 2006,
Parallel Processing, 12th International Euro-Par Conference, Aug. 29 - Sep. 1,
Dresden, Germany, LNCS 4128, Springer, 2006.

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,
Nesting OpenMP in MPI to Implement a Hybrid Communication Method of
Parallel Simulated Annealing on a Cluster of SMP Nodes.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Beniamino Di Martino, Dieter Kranzlmüller, and Jack Dongarra (Eds.), Proceedings
of the 12th European PVM/MPI Users' Group Meeting, EuroPVM/MPI 2005,
Sep. 18-21, Sorrento, Italy, LNCS 3666, pp 18-27, Springer, 2005

