Check for
Updates

An MPI interface for application and hardware aware Cartesian
topology optimization

Christoph Niethammer
High-Performance Computing Center Stuttgart
Stuttgart, Germany
niethammer@hlrs.de

ABSTRACT

Many scientific applications perform computations on a Cartesian
grid. The common approach for the parallelization of these applica-
tions with MPI is domain decomposition. To help developers with
the mapping of MPI processes to subdomains, the MPI standard
provides the concept of process topologies. However, the current
interface causes problems and requires too much care in its us-
age: MPI_Dims_create does not take into account the application
topology and most implementations of MPI_Cart_create do not
consider the underlying network topology and node architecture.
To overcome these shortcomings, we defined a new interface that
includes application-aware weights to address the communication
needs of grid-based applications. The new interface provides a
hardware-aware factorization of the processes together with an op-
timized process mapping onto the underlying hardware resources.
The paper describes the underlying implementation, which uses a
new multi-level factorization and decomposition approach mini-
mizing slow inter-node communication. Benchmark results show
the significant performance gains on multi node NUMA systems.

CCS CONCEPTS

« Computing methodologies — Parallel programming lan-
guages.

KEYWORDS

MPI, Cartesian communication, grid, mapping

ACM Reference Format:

Christoph Niethammer and Rolf Rabenseifner. 2019. An MPI interface for
application and hardware aware Cartesian topology optimization. In 26th
European MPI Users’ Group Meeting (EuroMPI 2019), September 11-13, 2019,
Ziirich, Switzerland. ACM, New York, NY, USA, 8 pages. https://doi.org/10.
1145/3343211.3343217

1 INTRODUCTION

Many scientific applications are implemented through computa-
tions on a Cartesian grid. The common approach for the paralleliza-
tion of these applications with MPI is domain decomposition. To

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

EuroMPI 2019, September 11-13, 2019, Ziirich, Switzerland

© 2019 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-7175-9/19/09...$15.00
https://doi.org/10.1145/3343211.3343217

Rolf Rabenseifner
High-Performance Computing Center Stuttgart
Stuttgart, Germany
rabenseifner@hlrs.de

help developers with the mapping of MPI processes to subdomains,
the MPI standard provides the concept of process topologies.

Two useful functions for Cartesian-type topologies are
MPI_Dims_create and MPI_Cart_create. While the first function
helps finding a factorization for a Cartesian process grid from a
given number of processes, the second function creates an MPI
Cartesian communicator from a given Cartesian process grid. How-
ever, this interface requires care in its usage as neither
MPI_Dims_create takes into account the application topology nor
MPI_Cart_create takes care of the underlying network topology
and node architecture of the system. This results into a problem
for today’s multi node NUMA systems because of the limited com-
munication bandwidth at the different hardware levels, namely
inter-node, inter-socket and inter-core communication.

Figure 1 shows different communication schemes (a) and the
corresponding duplex accumulated ring bandwidth per node (b)
for varying number of processes per node and process placements.
As expected, the limit of accumulated intra-CPU and intra-node
bandwidth (green and blue) is 8 times larger than the limit of ac-
cumulated node-to-node bandwidth (red and purple). To achieve
good performance it is therefore essential to make a better (or
the best) usage of the available bandwidth at the different levels:
Inter-node communication must be reduced in favor of intra-node
communication.

This paper addresses the optimization of communication pat-
terns that are analogous to the halo communication in a Cartesian
domain decomposition of a data mesh for a given application, as
shown in Figure 2. For given number of processes N on given multi-
level hierarchical hardware resources, number of dimensions, and
data mesh and halo sizes of the application, this paper describes
how to achieve an optimized factorization of N into the dimen-
sions d; of a Cartesian virtual process grid, and a mapping of the
application processes on the hardware resources in such a way that
the total communication time is minimized. Moreover, this paper
describes how an MPI library interface can be designed for this
purpose and how it can be implemented.

The paper is organized as follows: Section 2 will discuss re-
lated work. The background of the existing problem is outlined in
Section 2.1. Section 3 proposes a multi-level mapping strategy to
provide an application- and hardware-aware, optimized Cartesian
process topology. Sections 4 and 5 propose how this new strategy
can be included into the MPI standard and the MPI libraries, and
show details about our implementation of this process mapping.
Sections 6 and 7 present an example and benchmark results, includ-
ing hints for some further developments. Section 8 concludes this

paper.

https://doi.org/10.1145/3343211.3343217
https://doi.org/10.1145/3343211.3343217
https://doi.org/10.1145/3343211.3343217
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3343211.3343217&domain=pdf&date_stamp=2019-09-11

EuroMPI1 2019, September 11-13, 2019, Zirich, Switzerland

- ‘\
1

D T
g

_ Intra-CPU: core-to-core/

(D)

(]

@ Il Infliliglhd Iliglhglha @
‘ TR) o=]‘ ‘ T) oru)
Inter-node, only
NG with one CPU / g)

Inter-node and
all CPUs communicate

(a) Communication schemes

Duplex accumulated ring bandwidth per node [protocol 10)
(each message is counted twice, as outgoing and incoming)
Intra-CPU 2 cores/cpu
Intra-CPU 3 cores/cpu
#-Intra-CPU 4 cores/cpu
—%~Intra-CPU 6 cores/cpu
—s+=Intra-CPU 8 cores/cpu
—&Intra-CPU 12 cores/cpu
O Intra-node 1 core/cpu
Intra-node 2 cores/cpu
Intra-node 3 cores/cpu
—#-Intra-node 4 cores/cpu
Y, -==Intra-node 6 cores/cpu
=~Intra-node 8 cores/cpu
—4—Intra-node 12 cores/cpu
O Inter-node, 1 CPU, 1 core/cpu
Inter-node, 1 CPU, 2 cores/cpu
Inter-node, 1 CPU, 4 cores/cpu
—-Inter-node, 1 CPU, 8 cores/cpu
—4—Inter-node, 1 CPU, 12 cores/cpu
O Inter-node, 2 CPUs, 1 core/cpu
Inter-node, 2 CPUs, 2 cores/cpu
o) Inter-node, 2 CPUs, 4 cores/cpu
=-Inter-node, 2 CPUs, 8 cores/cpu
—4-Inter-node, 2 CPUs, 12 cores/cpu

g
g
8

bandwidth
[MB/s]
intra-node

g
8

inter-node

64 512 4096 32768 262144 2097152 16777216
message size [bytes]

(b) Duplex accumulated bandwidth per node

Figure 1: Duplex accumulated bandwidth benchmark: Mes-
sages are sent bidirectionally in rings.

h,
Total communication size in this direction 1 to the right:
G
92 —
> ——h; wih G= 1_[i
g_z dy hy 91 * j 9
dy /
d 9o
r'4
To feg—af 0
9 e do
91
d;

Figure 2: The global application data mesh with G = []; g;
elements, and its domain decomposition on N = []; d; pro-
cesses. The halo width is h;.

2 STATE OF THE ART

In order to specify the communication characteristics of an appli-
cation, the current MPI 3.1 standard [1] includes the MPI topology
mechanism. Therein, the MPI interface provides a convenient way
of process naming. The relation between communicating processes
builds topological patterns, which are referred to as virtual topol-
ogy. These topologies can be described with the provided naming
mechanism.

Christoph Niethammer and Rolf Rabenseifner

Currently, the MPI standard supports three different virtual
topologies: Cartesian, graph, and distributed graph. For each topol-
ogy a specialized interface is provided. The Cartesian topology
interface allows to create corresponding communicators based on
the desired process grid dimensions, which implicitly define the
virtual topology. In contrast, the two graph topology interfaces are
based on the explicit user’s definition of the virtual topology graph
to create a corresponding communicator.

While the graph topology interfaces additionally allow to specify
weights reflecting the amount or frequency of communication be-
tween processes, the Cartesian topology lacks this feature, always
assuming equal weights. This clearly restricts the current optimiza-
tion opportunities to choose an optimal factorization of the given
number of processes into the sizes of the dimensions of the Carte-
sian process topology (for a given number of dimensions), but also
to reorder the process ranks to minimize the communication time
along the edges in the virtual Cartesian grid.

The difference between the two graph interfaces lies in their
scalability: In the graph interface, the entire topology information
is held by each process, while in the distributed graph interface,
each process holds only the topology information related to the
direct neighbors in the graph. Therefore, the graph interface has the
disadvantage of lacking scalability due to a quadratically increasing
memory footprint.

Beside the virtual topology, we must consider the topology of
the underlying physical hardware. At the moment, this topology
information is not exposed to the user via the MPI interface. How-
ever, the MPI standard states that the virtual topology information
can assist an MPI runtime in the efficient mapping of processes
onto the hardware. A variety of approaches to solve such a problem
of embedding the virtual topology graph into the hardware topol-
ogy graph were developed in the past. The embedding problem is
often also combined with the load balancing of the computations.
A variety of partitioning libraries exist to solve this task, such as
METIS, ParMETIS [12], SCOTCH [16], PT-SCOTCH [7], or others
[10]. Other approaches try to solve this problem using information
collected from application runs to optimize the placement of the
processes at launch time, e.g., via the mpich rank reorder method
provided on Cray systems [2].

While the embedding problem for general graphs is NP-hard,
polynomial solutions exist for relevant, special cases. One of those
special cases includes Cartesian topologies. One approach is there-
fore to handle Cartesian topologies as graphs and to apply similar
heuristics as for graph topologies [14]. Of course, such an approach
does not take into account the opportunities of optimizing the Carte-
sian factorization. Research has also been done for special optimiza-
tion of collective operations on hierarchical networks, e.g., [14, 18].
Note that an MPI library can choose a different rank-remapping
for each collective operation, i.e., independent of the mapping used
for Cartesian neighbor communication, as, e.g., proposed in this
paper. The importance of topology-aware optimizations on the way
to exascale was also shown before in [6]. Depending on the clus-
ter network itself, the re-ranking may also be optimized for the
hardware grid topology of the cluster network [4, 5, 19].

An MPI interface for application and hardware aware Cartesian topology opt. EuroMPI 2019, September 11-13, 2019, Ziirich, Switzerland

600 300
> 1800 — 1800
< ¢

v

=
2

2
n
<

580

290

I

Figure 3: Decomposition of a data mesh with 580 x 1800 grid
points onto 12 processes. Left: Suggestion from
MPI_Dims_create. Right: Optimal distribution.

Non-optimal communications:

<> 26 node-to-node (outer)
<~ 20 CPU-to-CPU (middle)
<> 36 core-to-core (inner)

Optimized placement:
<> Only 14 node-to-node
~— Only 12 CPU-to-CPU
<> 56 core-to-core

Figure 4: Process mapping to nodes, sockets and cores. Left:
Non-optimal default mapping behavior of
MPI_Cart_create. Right: Optimized placement suggested by
the multi-level decomposition in this work.

2.1 Background

At this point, there are three problems with the MPI API: First,
MPI_Dims_create computes only a process grid with dimensions
as close to each other as possible, e.g., based on the algorithm in
[20]. If the underlying data mesh of a simulation is not close to a
quadratic or cubic shape, the decomposition becomes non-optimal
[3]. Figure 3 shows an example of a 580 X 1800 mesh, which shall
be distributed across 12 processes. MPI_Dims_create will suggest

a 4 X 3 process grid for the virtual topology of the 12 processes.

However, assuming that all 12 processes are connected with links
that have the same performance, such a distribution is not optimal.
In this case, a 2 X 6 decomposition would be better, as it would lead
to almost quadratic subdomains and therefore less communication
at the subdomain boundaries.

The second problem arises from calculating the factorization of
the number of MPI processes independently from the knowledge
of the underlying hardware.

The third problem arises from not optimized implementations
of MPI_Cart_create, which map the processes sequentially to the
processor grid as shown on the left side of Figure 4. This leads to
an unnecessary high amount of slow inter-node communication.
To compare, an optimized mapping, which takes into account the
network topology and the system architecture, is shown on the
right. This mapping problem is n general non-trivial, as shown in
[11].

All three problems are closely coupled and therefore have to be
solved together.

3 MAPPING STRATEGY

Hereinafter, the application topology is given as a d-dimensional
Cartesian mesh with a total of G = H‘iiz_ol gi elements, where g; are
the data mesh dimensions in directions i € [0, d—1]. The halo width
in direction i is h;, see Figure 2. The target system shall consist of
N nodes with P cores per node.

To achieve optimal domain decomposition and MPI process map-
ping for a given hardware topology, we present in the following
a multi-level optimization approach. The benchmark in Figure 1
shows that the node-to-node communication is dominant in the
whole communication overhead. Therefore, this communication
must be minimized first, i.e., our approach starts at the node level
and ends at the core level.

On each hardware level, from the coarsest to the finest, i.e., from
the slowest communication path to the fastest, the factorization
of the given amount of nodes into the d dimensions is calculated
in such a way that the surface per node in each direction is as
evenly balanced as possible. This approach is different from other
approaches based solely on graph mapping, because we influence
the factorization and therefore also the domain decomposition
complying with the given hardware constraints.

3.1 Grid decomposition at the node level

The application shall be run on N nodes. The domain decomposition
nodes form a d-dimensional Cartesian node topology with n; nodes
in the i-th dimension. It holds

N = nj . (1)

The communication within the application requires for each
node the exchange of halo data with its neighbors. The amount
of data to be transferred depends on the subdomain surface deter-
mined by its dimensions, so that the communication costs ¢ can be
described as
d-1

U

-1
LI 2

9 _,8
Onj N <4 gi

1

d-1
c=2 Z cih;
i=0

Il
=

#1i

~ .

The factors c; are additional cost factors (e.g., representing different
communication costs due to contiguous or strided data in different
directions).

The present goal is to reduce the inter-node communication
costs. This is achieved by finding a factorization (n;);-g._4_1, which
minimizes the sum in (2) under the condition (1).

3.2 Grid decomposition at the core level

After achieving an optimized node mapping, the same approach
is applied at the next hardware topology level for the subdomains.
The submesh at the new level has mesh dimensions g; = g;/n;.
Assuming the core level as the next level, we construct a Cartesian
core topology with dimensions p;. The communication costs ¢’ at
this level are now given by

1 d-1
ini . _ | |)
7n,~pi with P = Pi (3)

G’ ihi G
o =9— E cl_”pi 92—
9i i=0

i=0 1 NP i=0

EuroMPI1 2019, September 11-13, 2019, Zirich, Switzerland

Again, we search a factorization (p;);—¢. 4—; that minimizes the
term in (3).

3.3 Multi-level decomposition

The approach shown so far for the node and core level can be
applied hierarchically to any number of hardware topology levels
by subsequently minimizing the communication costs

Hi:oN(k) = 9 ke
d-1

with NO = []nl",)
i=0

starting from hardware topology level [= 0. Input requirements
for this algorithm are the number of dimensions d and the number
N of nodes on each hardware level [of L levels, e.g., the number
of ccNUMA nodes, the number of NUMA domains within each
ccNUMA node, and the number of cores per NUMA domain. The
product ﬂngol N® must be equal to the total number of MPI pro-

cesses N. The resulting dimensions (d;);—g._4—; of the Cartesian
O

process grid is defined by the product of the n;” over all hardware

levels: d; =]_[lL;O1 ngl).

Based on this decomposition, a rank reordering can be finally
performed to create a new optimized MPI communicator. A result is
shown in Figure 4 with 2 dimensions and three levels, and (N (1)) =
(4,2,6).

A first implementation! showed execution times for the factor-
ization in the order of Jesper Trift’s algorithm [20].

4 EXTENSIONS TO THE EXISTING MPI
INTERFACE

The current MPI interface consists mainly of the two routines:
MPI_Dims_create, with the number of processes N and dimen-
sions d as input, and the factorization (n;);—¢. 4_1 as output, and
MPI_Cart_create, with a communicator consisting of a group of
processes on the given hardware resources, an appropriate factor-
ization, and a reorder flag as input, and a communicator reflecting
the Cartesian topology with the goal of an optimized reordering of
the processes if reorder=true as output. The major problem is that
the input of MPI_Dims_create does neither include any hardware
information nor any information about the ratio of the data mesh
sizes of the application, (g;);—g..4—1-

Consequently, the proposed interface is a combination of both
routines together with an additional input argument (w;);—o. 4-1
representing the communication needs of the application’s data
mesh. As seen above, optimization on each hardware level requires
the minimization of the sum G Z?:_()l C’g—};’n: with n} =]_[i:0 nE.k).
Consequently, we define the weights w; as

wi =G (6)

Cihi
gi

1Our poster from 2018 [15] and a free implementation from Feb. 2019 in a form suitable
for MPI libraries are available at fs.hlrs.de/projects/par/mpi/EuroMPI2018-Cartesian
and latest results from this paper on fs.hlrs.de/projects/par/mpi/EuroMPI2019-
Cartesian

Christoph Niethammer and Rolf Rabenseifner

comm_old or level_comms|[0]

level_comms[1].

level_comms[2]

@Ey) [@) | (-] @D &) | 1| @
sl laelas
D (RS R (B S)
Colsollseles

Ranks and i
d 1 comm_cart

1
@@
0

BHS

= dimension 0

T 1
o

Figure 5: Example with a comm_old with 48 processes, d = 2
dimensions, (w;) = (1./4,1./12), and 2 split types, e.g., split-
ting into 3 ccNUMA nodes, each consisting of 4 CPUs, with
each containing 4 cores. The level_comms[i] show this split-
ting of comm_old into hierarchical subcommunicators. The
renumbering in comm_cart should first minimize the com-
munication A (here, the communication between the cc-
NUMA nodes), then B (CPU to CPU communication), and
last C (core to core communication)

With this definition, the weights reflect the total communication
cost in one direction, i.e., before the data mesh is divided into
subdomains as shown in Figure 2, i.e., the total communication size
G% multiplied this additional cost factor c;.

This interface reflects the hardware resources through the com-
municator input argument and the application communication
needs through the weights input argument. In our proposal for
MPI-4.0 and in our implementation, we pass to the new routine the
weights as an array of double precision numbers. For the case of
equal weights, we reserve the constant MPI_WEIGHTS_EQUAL to be
passed as an alternative.

This interface is in principle independent from details regarding
the hardware resources. On the other hand, the proposed algorithm
above requires that the hardware is symmetric in structure, i.e., that
on each level I, the number of units N'Y) of the underlying level
is always identical, such that the communicator with N processes
can be characterized through N =]_[f‘z_o1 N,

4.1 Further interfaces

Further interfaces and info arguments can be defined to directly
describe which hardware levels should be taken into account for
the multi-level factorization of N. This case can be defined through
split-types or split info arguments valid for MPI_Comm_split_type,
or by directly providing a hierarchical set of communicators as
shown in Figure 5.

A weighted factorization MPI_Dims_create_weighted should
also be provided as an MPI interface. Compared to
MPI_Dims_create, the argument list should additionally include
the weights array and an info argument.

This routine should find a factorization (n;);—g._4—; of N, which

d-1 win;.

minimizes the sum .77,

An MPI interface for application and hardware aware Cartesian topology opt. EuroMPI 2019, September 11-13, 2019, Ziirich, Switzerland

5 IMPLEMENTATION
5.1 MPI_Dims_create_weighted

One of the key functions is MPI_Dims_create_weighted. It can
be implemented based on the brute-force algorithm developed by
Jesper Traff and Felix Liibbe [20]. Important is that this algorithm
does not traverse the whole space of possible factorizations, but
only traverses all factorizations with not strictly decreasing factors.
As selection criterion it uses only the difference between first and
last factor, dyp — d;_1, which is minimized.

For weighted factorization, one has to modify the algorithm as
follows.

First, the weights have to be sorted from the smallest to the
largest value, then the factorization must be realized with the sum-
criterion, and finally the sorting must be reverted such that the d;
fall in the correct sequence.

Second, as there can exist multiple solutions at this point, an
additional criteria is used, which targets another aspect of opti-
mization. If the sum criterion allows two different factorizations
with the same minimal sum, then the factorization with minimal
difference between largest and smallest factor shall be chosen. This
second criterion was the only one used in [20]. In this fashion more
“cubic shape”-like factorizations are favored. If there are still two
solutions with the same sum and the same difference, then one may
choose the factorization with the smallest largest factor. For exam-
ple, with equal data mesh sizes g;, 360 nodes can be factorized into
3 dimensions as 360=10x6x6 and 360=9x8x5, both having equal sum
Y. nj = 22 and difference ny — ng = 4. The first and second criterion
would allow both results, but the third would choose 9x8x5. For N <
10,000,000 and d between 2 and 10, there exist 4,630 factorizations
with identical sum and difference, e.g., with N < 10,000 and d = 3,
22x14x12=21x16x11, 21x16x15=20x18x14, and 26x16x15=24x20x13,
or for d = 4, 10xFx6x6=9x8xFx5 with F=6, 7, 8, or 9. Furthermore,
there are 6066 results in which the difference-criterion alone would
have implied a factorization that has a larger (and therefore worse)
sum, but only two cases for N below 50,000, for example N=35200
= 40x40x22 (with 3=102, A=18) = 44x32x25 (with =101, A=19).
Although these examples are rare cases, it is recommended to use
all three criteria.

5.2 MPI_Cart_create_weighted

This routine has to choose which hardware levels are used. This
may be based on information detected at the installation of the MPI
library. Then, the comm_old can be accordingly split. The next step
is to analyze whether on each level each subcommunicator has the
same size. If this criterion is fulfilled, then also on each level each
communicator has the same number of subcommunicators.

If the hardware has the described symmetric structure, then con-
dition (4) under the constraint (5) can be fulfilled by L times calling
MPI_Dims_create_weighted. The result is the matrix of factors
(n(il))fzg“éj, i.e., the multi-level multi-dimensional factorization
of the number of MPI processes N.

Each process calculates its rank on each hardware level. On

each level I each process can calculate its coordinates (cgl))i:()“d,l

based on its rank and ("EI))i:O..d—l- Then, on each dimension i,

AT /T7 Al MPI
5 Lt L processes of a
1, o‘&(\ / J ,I | /I ccNUMA node
<JO
1 L All MPI —
10 y - processes
g| | Primary and main of one CPU
3| | optimization goal: Y /
Whole communication V4 it II | “ T Z //
irtual location of
from gach node to all of T (1T an MP! process
its neighbors must be A th pCPU
minimized! within a
7 (core level) [m
6 3 5 g
:) p 4 %
o V4 / 7
° Z r v 27
B Lt Second and third
B imization goal:
38 Whole intra-node
2| © q q communication (CPU to /1
1 CPU and then core to
0 Y core) must be y
minimized!
Coordinate 1
0123 4567 8 910 11 12131415

Figure 6: Example with 24 nodes (level 0), 4 CPUs per node
(level 1) and 8 cores per CPU (level 2). The figure shows the
3-dimensional distribution calculated by
MPI_Cart_create_weighted based on weight values (1/12, 1/16,
1/8).

each process can calculate its final coordinate c; based on its multi-

(1))1:0.4L—1

level coordinates (c; , and the number of processes in the

given dimension for each level (n(il) y=0..L-1,

Based on these final coordinates and the implied dimensions d; =
HIL:_()l n(l.l), each process can calculate its new_rank according to the
algorithm of MPI_Cart_rank. The reordering can be implemented
through MPI_Comm_split with color=0 and key=new_rank, as
described in [1] in Section 7.5.8 as an advice to implementors for
MPI_Cart_map.

If the application chooses to predefine some of the dimensions
with a fixed value, then still a weighted factorization (with only one
level) can be used together with the algorithm of William Gropp
[8,9].

If the hardware cannot be described with symmetric levels, then
again MPI_Dims_create_weighted can be used with only one level,
and the existing MPI_Cart_create can be applied. The latter can
be optimized for example with the methods described in [17] or by
implementing MPI_Cart_create through MPI_Dist_graph_create,
and using an appropriate rank reordering as presented in [13].

6 EXAMPLE: MULTI-LEVEL VERSUS
SINGLE-LEVEL

In this example the number of processes on each hardware level
are N = (24, 4, 8), for example expressing 24 nodes with each 4
CPUs per node and 8 cores per CPU. The application weights are
wi = (%—2 }—(L), %), for example expressing a total data mesh of 1200
x 1600 x 800 elements. The following table and Figure 6 show the
results of the proposed MPI_Cart_create_weighted, i.e., the results
ngl) of minimizing (4) from level 0 until level 2 with the weights
defined in (6).

EuroMPI1 2019, September 11-13, 2019, Zirich, Switzerland

level [
1) _
(eg. ...) N n;’ =
O(nodes)| 24| 3 4
1(CPUs) | 4| 2 2
2 (cores) 8| 2 2 2 [1.00 1.00 0.50 | — 2.50
N = d; = wid; = X widi =
product 768 12 16 4 |1.00 1.00 0.50 | — 2.50

3 k Lt wi: k
Wi ni:o ”(z : Hi:o ”<z '
2 1025 025 0.25|—0.75
0.50 0.50 0.25|— 1.25

The most important optimization level is the minimization of
the inter-node communication. The minimal possible sum on level
01is 0.75.

Note that without this multi-level approach, i.e., using only
MPI_Dims_create_weighted, the result would be as described in
the following table:

i=0 i=1 i=2

levell | N = di = Widi = Zi Widi =
level 0 768 | 8 12 8 | 0.67 0.75 1.00 | — 2.42

Possible embedded factorizations on node-level:
Case A 241 4 6 1 0333 0375 0.125| — 0.833
Case B 24| 2 6 2 10.167 0.375 0.25 | — 0.792
Case C 241 4 3 2 10333 0.188 0.25 | — 0.771

The multi-level factorization with its total process grid dimen-
sions (d;) = 12x16x4 processes allows directly for an optimal node-
to-node communication using a virtual node grid with 3x4x2 nodes,
with the minimal sum of 0.75 as shown in the upper table. The
single-level factorization with 8x12x8 processes cannot be directly
mapped onto 3x4x2 nodes. This implies that optimization algo-
rithms as described in [8] cannot result in a virtual node grid with
3x4x2 nodes. Possible embedded node-level factorizations are 4x6x1
(Case A), 2x6x2 (Case B), and 4x3x2 (Case C). The minimal sum of
0.771 is achieved in case C, which would cause about 2.8% more
communication overhead than a factorization with 3x4x2 nodes
with the sum 0.750. Nevertheless, the total sum }}; w;d; seems with
2.42 more optimal than the total sum of the multi-level optimization,
which is only 2.50 (higher is worse!).

Note that the input values in this example were not chosen to
show a significant performance gain between the single-level and
the multi-level factorization, and that further improvements are
possible. For example, if ng.l) is 1, then one can take into account
that there is no communication in this direction i on this hardware
level I, and therefore when calculating the sum in (4) on level /, the
corresponding term may be removed. Furthermore, with non-cyclic
communication in direction i and for the case ngl) = 2, there may
be communication only in one direction (either left or right) on
this level I. Therefore, the corresponding term in the sum may be
accordingly reduced.

7 BENCHMARKING

A synthetic benchmark was implemented in order to test the pre-
sented approach for the computation of the subdomain sizes and
the reordering of the processes in the communicator. The bench-
mark takes the proportions of a global 3-dimensional data mesh
as input. For distributing the data mesh to the processes, a virtual

Christoph Niethammer and Rolf Rabenseifner

process topology is then created using the following three different
methods:

e MPI_Dims_create + MPI_Cart_create,
e MPI_Cart_weighted_create with equal weights,
e MPI_Cart_weighted_create with data mesh-based weights.

All three methods provide different factorizations of the given
total amount of processes into the three dimensions of the virtual
Cartesian process grid and also different mappings of the processes
onto the cores of the given hardware cluster of SMP nodes. One
can freely choose the ratio go:g1:g2 of the data mesh sizes. The
benchmark then measures the halo communication time for 10
different grid sizes G, enlarging them by a factor 8 at each step,
which implies a factor 4 for the communicated halos. For each
dimension, the benchmark communicates in both directions in
parallel in a ring using 2 times MPI_Irecv followed by 2 times
MPI_Send and an MPI_Waitall(2,...). After each communication
step, the role of send and receive buffer is swapped to prevent
cache effects related to data buffer reuse, which does not reflect
the behavior of real applications. The total of 6 messages into the 3
dimensions to the coord+1 and coord-1 neighbors is then repeated
50 times. The transfer time per 6 messages and the total halo size are
reported. The resulting average bandwidth is also calculated. Note
that the new interface allows to reduce the size of communicated
data (see also Table 2) by taking the ratio of the mesh dimensions
g; into account, and also enables a higher bandwidth due to the
optimized rank mapping (see also the grey columns in Table 3).
Both factors add to the total reduction of the communication time.

7.1 Benchmark Results

The benchmark was run on two different systems: Hazel Hen at
HLRS, a Cray XC 40 system with Cray MPI, and IvyMUC at LRZ,
an Infiniband cluster with Intel MPIL Table 3 shows the results of
the benchmark. In both cases 8 dual socket nodes with 12 core Intel
Xeon CPUs were used. The application data mesh ratios gp:g1:g2 in
the shown experiment were chosen to be 1:2:4.

The amount of communicated halo data depends on the chosen
factorization, as shown in Table 2. Therefore, for comparison, one
should only use the communication time.

As it can be seen, the version using MPI_Cart_create_weighted
with mesh-based weights achieves the best performance for all halo
sizes.

The percentages reflect the time saved compared to the original
MPI_Cart_create execution time, which serves as reference time.
The benchmark has some shortcomings in eliminating OS and
network jitter: Therefore, the results for small message sizes are
not exact, and we concentrate only on accumulated halo sizes larger
than 1 kByte.

The multi-level factorization and the implied factorization of the
total amount of processes into the dimensions (d;) of the Cartesian
virtual process grid are shown in Table 1. Note that for
MPI_Dims_create + MPI_Cart_create the multi-level factorization
is implied through the sequential ranking in MPI_COMM_WORLD
and the non-existing rank reordering in the used MPI libraries on
both systems.

In Table 3, one can see that for halo sizes larger than 1 kB, i.e,,

3I'd

starting from the row, using the multi-level factorization of

An MPI interface for application and hardware aware Cartesian topology opt. EuroMPI 2019, September 11-13, 2019, Ziirich, Switzerland

level MPI_Dims_create | MPI_Cart_create_weighted
+ Cart_create equal weights | mesh-based

O0=node | 8x1x1 2x2x2 1x2x4

1=CPU | 1x2x1 2x1x1 2x1x1

2=core 1x3x4 2x3x2 2x3x2

implied

(di) 8x6x4 8x6x4 4x6x8

Table 1: Implied factorization (d;) resulting from multi-level
factorizations in the three cases.

MPI_Cart_create_weighted with equal weights already results in
savings of about 40% to 60% on Hazel Hen and 20%-50% on IvyMUC.
These savings are due to the significant reduction of node-to-node
communications through the multi-level reordering, and to the
fact that CPU-to-CPU and core-to-core communication is signifi-
cantly faster than node-to-node communication. Note that these
measurements use the same halo sizes as the reference benchmark.

In order to appreciate the influence of the two optimizations per-
formed by MPI_Cart_weighted_create, Table 2 lists the halo sizes
for the original MPI_Dims_create-based virtual topology together
with the MPI_Cart_weighted_create-based decomposition using
mesh-based weights. The reduction of the halo size area is around
25%, which is based on the fact that the dimensions (d;) = 4x6x8
fit significantly better to the ratio of our mesh sizes, with ratios
go:91:g2 = 1:2:4.

The last 3 columns in Table 3 represent the results of the modified
factorization and process rank reordering by taking into account
the mesh-based weights and the implied 25% reduction of the halo
sizes. One can see that the final savings of the halo communication
time on Hazel Hen are about 60% to 75% and on IvyMUC 40% to
70%.

halo size in Byte
original | mesh-based | reduction

Mesh dimensions g;
(number of floats)

8x12x 24 160 128 20.0 %
12x24x 48 640 432 325 %
24 x 48 x 96 2216 1728 22.0 %
48 x 96 x 184 8864 6688 24.5 %
92 x 186 x 376 34968 26008 25.6 %
184 x 372 x 744 137208 103168 24.8 %
372 x 738 x 1480 548088 411192 25.0 %
740 x 1476 x 2960 2187192 1639840 25.0 %
1476 x 2958 x 5912 8740888 6551480 25.0 %
2956 x 5910 x 11816 | 34936960 26194104 25.0 %

Table 2: Halo sizes for the virtual topologies created with
equal and mesh-based weights for different (global) mesh di-
mensions. For calculating the subdomain mesh dimensions
and the implied halo sizes, these global values must be di-
vided by the number of processes in each direction. The
halo sizes are calculated within one MPI process and accu-
mulated over all directions. The halo width is chosen as one.

8 CONCLUSION

This work, investigates the problems of the current MPI interface
when it comes to optimal process mapping for applications which
are implemented through computations on a Cartesian process grid
using a regular stencil and are parallelized via domain decomposi-
tion.

An approach to achieve optimal domain decomposition is pre-
sented and evaluated with a synthetic benchmark. Our approach
takes into account the computational data mesh as well as the
hardware topology to optimize inter-process communication. The
optimization criteria is the minimization of slow bandwidth com-
munication and is applied hierarchically to the different hardware
layers. Based on our generalized approach, we intend to propose
the addition of a new API to the MPI standard, which would help
to create suitable communicators for such scenarios.

ACKNOWLEDGMENTS

This work has been supported by the EXPERTISE project that has
received funding from the European UnionaAZs Horizon 2020 re-
search and innovation programme under Grant Agreement No.
721865. Further, the authors would like to thank the members of
the MPI Forum and especially Guillaume Mercier and the hard-
ware topology group for their reviewing of the
MPI_Cart_create_weighted proposal and providing a lot of feed-
back for enhancements. The authors would also like to thank Jepser
Traff for his brute force algorithm used for the factorization, our
collaborators in the MPI+X tutorial, Claudia Blaas-Schenner, Georg
Hager and Irene Reichl for their helpful suggestions, all the Eu-
roMPI reviewers for their valuable feedback and corrections, and
HLRS and LRZ for the HPC resources used for the benchmarks.

REFERENCES

[1] 2015. MPI: A Message-Passing Interface Standard Version 3.1.

[2] 2017. Cray Performance Measurement and Analysis Tools User Guide 7.0.0.

[3] Pavan Balaji et al. 2009-2012. Topology awareness in MPI_Dims_create.
https://github.com/mpi-forum/mpi-forum-historic/issues/195. Accessed 2018-07-
19.

[4] Abhinav Bhatele, Gagan Raj Gupta, Laxmikant V. Kalé, and I-Hsin Chung. 2010.
Automated mapping of regular communication graphs on mesh interconnects. In
2010 International Conference on High Performance Computing, HiPC 2010, Dona
Paula, Goa, India, December 19-22, 2010. 1-10. https://doi.org/10.1109/HIPC.2010.
5713190

[5] Abhinav Bhatele and Laxmikant V. Kalé. 2008. Application-specific topology-
aware mapping for three dimensional topologies. In 22nd IEEE International
Symposium on Parallel and Distributed Processing, IPDPS 2008, Miami, Florida USA,
April 14-18, 2008. 1-8. https://doi.org/10.1109/IPDPS.2008.4536348

[6] Cy P. Chan, John D. Bachan, Joseph P. Kenny, Jeremiah J. Wilke, Vincent E.
Beckner, Ann S. Almgren, and John B. Bell. 2016. Topology-Aware Perfor-
mance Optimization and Modeling of Adaptive Mesh Refinement Codes for
Exascale. In First International Workshop on Communication Optimizations in
HPC, COMHPC@SC 2016, Salt Lake City, UT, USA, November 18, 2016. 17-28.
https://doi.org/10.1109/COMHPC.2016.008

[7] Cédric Chevalier and Francois Pellegrini. 2008. PT-Scotch: A tool for efficient
parallel graph ordering. Parallel computing 34, 6-8 (2008), 318-331.

[8] Bill Gropp. 2018. Using Node Information to Implement MPI Cartesian Topologies.
In Proceedings of the 25th European MPI Users’ Group Meeting (EuroMPI '18). ACM,
New York, NY, USA.

[9] William D Gropp. 2019. Using node and socket information to implement MPI
Cartesian topologies. Parallel Comput. 85 (17 2019), 98-108. https://doi.org/10.
1016/j.parco.2019.01.001

[10] T.Hoefler and M. Snir. 2011. Generic Topology Mapping Strategies for Large-scale
Parallel Architectures. In Proceedings of the 2011 ACM International Conference
on Supercomputing (ICS’11). ACM, 75-85.

[11] T.Hoefler and M. Snir. 2011. Generic Topology Mapping Strategies for Large-scale
Parallel Architectures. In Proceedings of the 2011 ACM International Conference

https://doi.org/10.1109/HIPC.2010.5713190
https://doi.org/10.1109/HIPC.2010.5713190
https://doi.org/10.1109/IPDPS.2008.4536348
https://doi.org/10.1109/COMHPC.2016.008
https://doi.org/10.1016/j.parco.2019.01.001
https://doi.org/10.1016/j.parco.2019.01.001

EuroMPI1 2019, September 11-13, 2019, Zirich, Switzerland Christoph Niethammer and Rolf Rabenseifner

MPI_Cart_create MPI_Cart_weighted_create
Mesh dimensions equal weights mesh-based weights
(number of floats) time in pys | bwin MB/s | time in ps bw in MB/s | time in ps bw in MB/s
8x 12x 24 8.240 19.418 23.880 (-189.8 %) 6.700 17.877 (-117.0 %) 7.160
12x24x48 11.001 58.178 14.424 (-31.1 %) 44.369 7.544 (31.4 %) 57.267
24 x 48 x 96 17.118 129.451 10.023 (41.4 %) 221.089 12.503 (27.0 %) 138.210
48 x 96 x 184 41.280 214.730 24.161 (415 %) 366.867 15.459 (62.6 %) 432.627
92 x 186 x 376 107.241 326.070 52.681 (50.9 %) 663.769 38.357 (64.2 %) 678.055
184 x 372 x 744 481.539 284.937 182.381 (62.1 %) 752.317 127.559 (73.5 %) 808.788
372 x 738 x 1480 1931.901 283.704 779319 (59.7 %) 703.291 480480 (75.1%) 855.794
740 x 1476 x 2960 7822.924 279.588 3467.302 (55.7 %) 630.805 1861.439 (76.2 %) 880.953
1476 x 2958 x 5912 32419.939 269.615 14402.356 (55.6 %) 606.907 8416.939 (74.0 %) 778.368
2956 x 5910 x 11816 | 168891.082 206.861 64691.877 (61.7 %) 540.052 38406.062 (77.3 %) 682.030
(a) Hazel Hen
MPI_Cart_create MPI_Cart_weighted_create

Mesh dimensions equal weights mesh-based weights

(number of floats) time in ps | bwin MB/s | time in ps bw in MB/s | time in ps bw in MB/s

8x12x24 12.341 12.965 13499 (94 %) 11.853 11.024 (10.7 %) 11.611

12x24x48 11.101 57.654 10300 (7.2 %) 51.264 7.257 (34.6 %) 59.525

24 x 48 X 96 14.482 153.022 11497 (20.6 %) 176.749 8.240 (43.1%) 209.715

48 x 96 x 184 23.236 381.473 15.759 (32.2 %) 515.753 10.843 (53.3 %) 616.788

92 x 186 x 376 49.562 705.534 32277 (349 %) 990.175 19.383 (60.9 %) 1341.765

184 x 372 x 744 187.821 730.524 86.279 (54.1 %) 1473.083 53.821 (71.3 %) 1916.886

372 x 738 x 1480 798.960 686.002 449576 (43.7 %) 1120.361 273.118 (65.8 %) 1505.547

740 x 1476 x 2960 3196.821 684.177 2047.000 (36.0 %) 978.474 1361.361 (57.4 %) 1204.560

1476 x 2958 x 5912 13538.141 645.649 8618.941 (36.3 %) 928.979 5793.381 (57.2 %) 1130.856

2956 x 5910 x 11816 54434.857 641.812 35900.860 (34.0 %) 892.158 22294.002 (59.0 %) 1174.940

(b) IvyMUC

Table 3: Comparison of the communication times between the original MPI_Cart_create and the virtual topologies created with
MPI_Cart_weighted_create using equal and mesh-based weights. Values in parenthesis show the percentage of saved execution
time compared to the original MPI_Cart_create procedure.

on Supercomputing (ICS’11). ACM, 75-85. https://doi.org/10.1109/CLUSTER.2011.43

[12] George Karypis and Vipin Kumar. 2009. MeTis: Unstructured Graph Partitioning [19] Hari Subramoni, Sreeram Potluri, Krishna Chaitanya Kandalla, Bill Barth, Jérome
and Sparse Matrix Ordering System, Version 4.0. http://www.cs.umn.edu/~metis. Vienne, Jeff Keasler, Karen A. Tomko, Karl W. Schulz, Adam Moody, and Dha-

[13] Guillaume Mercier and Emmanuel Jeannot. 2011. Improving MPI Applica- baleswar K. Panda. 2012. Design of a scalable InfiniBand topology service to
tions Performance on Multicore Clusters with Rank Reordering. In Recent enable network-topology-aware placement of processes. In SC Conference on
Advances in the Message Passing Interface - 18th European MPI Users’ Group High Performance Computing Networking, Storage and Analysis, SC ’12, Salt Lake
Meeting, EuroMPI 2011, Santorini, Greece, September 18-21, 2011. Proceedings City, UT, USA - November 11 - 15, 2012. 70. https://doi.org/10.1109/SC.2012.47
(Lecture Notes in Computer Science), Yiannis Cotronis, Anthony Danalis, Dim- [20] Jesper Larsson Traff and Felix Donatus Liibbe. 2015. Specification Guideline
itrios S. Nikolopoulos, and Jack J. Dongarra (Eds.), Vol. 6960. Springer, 39-49. Violations by MPI_Dims_Create. In Proceedings of the 22nd European MPI Users’
https://doi.org/10.1007/978-3-642- 24449-0 Group Meeting (EuroMPI ’15). ACM, New York, NY, USA, Article 19, 2 pages.

[14] Seyed Hessam Mirsadeghi and Ahmad Afsahi. 2016. Topology-Aware Rank
Reordering for MPI Collectives. In 2016 IEEE International Parallel and Distributed
Processing Symposium Workshops, IPDPS Workshops 2016, Chicago, IL, USA, May
23-27, 2016. 1759-1768. https://doi.org/10.1109/IPDPSW.2016.139

Christoph Niethammer and Rolf Rabenseifner. 2018. Topology aware Cartesian
grid mapping with MPL In Poster at the 25th European MPI Users’ Group Meeting
(EuroMPI °18), Barcelona, Spain.

Francois Pellegrini and Jean Roman. 1996. Scotch: A software package for static
mapping by dual recursive bipartitioning of process and architecture graphs.
In International Conference on High-Performance Computing and Networking.
Springer, 493-498.

Mohammad Javad Rashti, Jonathan Green, Pavan Balaji, Ahmad Afsahi, and
William Gropp. 2011. Multi-core and Network Aware MPI Topology Functions.
In Recent Advances in the Message Passing Interface - 18th European MPI Users’
Group Meeting, EuroMPI 2011, Santorini, Greece, September 18-21, 2011. Proceedings
(Lecture Notes in Computer Science), Yiannis Cotronis, Anthony Danalis, Dim-
itrios S. Nikolopoulos, and Jack J. Dongarra (Eds.), Vol. 6960. Springer, 50-60.
https://doi.org/10.1007/978-3-642-24449-0

Hari Subramoni, Krishna Chaitanya Kandalla, Jérome Vienne, Sayantan Sur, Bill
Barth, Karen A. Tomko, Robert T. McLay, Karl W. Schulz, and Dhabaleswar K.
Panda. 2011. Design and Evaluation of Network Topology-/Speed- Aware Broad-
cast Algorithms for InfiniBand Clusters. In 2011 IEEE International Conference on
Cluster Computing (CLUSTER), Austin, TX, USA, September 26-30, 2011. 317-325.

(15

[16

[17

(18

http://www.cs.umn.edu/~metis
https://doi.org/10.1007/978-3-642-24449-0
https://doi.org/10.1109/IPDPSW.2016.139
https://doi.org/10.1007/978-3-642-24449-0
https://doi.org/10.1109/CLUSTER.2011.43
https://doi.org/10.1109/SC.2012.47

	Abstract
	1 Introduction
	2 State of the Art
	2.1 Background

	3 Mapping Strategy
	3.1 Grid decomposition at the node level
	3.2 Grid decomposition at the core level
	3.3 Multi-level decomposition

	4 Extensions to the existing MPI interface
	4.1 Further interfaces

	5 Implementation
	5.1 MPI_Dims_create_weighted
	5.2 MPI_Cart_create_weighted

	6 Example: Multi-level versus single-level
	7 Benchmarking
	7.1 Benchmark Results

	8 Conclusion
	Acknowledgments
	References

