Published in the proceedings of WOMPEI 2002, International Workshop on OpenMP: Experiences
and Implementations, part of ISHPC-IV, International Symposium on High Performance Comput-
ing, May, 15-17., 2002, Kansai Science City, Japan. LNCS, Springer-Verlag, 2002.
©Springer-Verlag, http://www.springer.de/comp/Incs/index.html

Communication Bandwidth of Parallel
Programming Models on Hybrid Architectures

Rolf Rabenseifner

High-Performance Computing-Center (HLRS), University of Stuttgart
Allmandring 30, D-70550 Stuttgart, Germany
rabenseifner@hlrs.de,
www.hlrs.de/people/rabenseifner/

Abstract. Most HPC systems are clusters of shared memory nodes.
Parallel programming must combine the distributed memory paralleliza-
tion on the node inter-connect with the shared memory parallelization
inside of each node. This paper introduces several programming mod-
els for hybrid systems. It focuses on programming methods that can
achieve optimal inter-node communication bandwidth and on the hybrid
MPI+OpenMP approach and its programming rules. The communica-
tion behavior is compared with the pure MPI programming paradigm
and with RDMA and NUMA based programming models.

Keywords. OpenMP, MPI, Hybrid Parallel Programming, Threads and
MPI, HPC.

1 Motivation

Today, most systems in high performance computing (HPC) are clusters of SMP
(symmetric multi-processor) nodes, i.e., they are hybrid architectures, shared
memory systems are inside of each node, and a distributed memory parallel
(DMP) system is across the node boundaries. To achieve a minimal paralleliza-
tion overhead, often a hybrid programming model is proposed, e.g., OpenMP
[21] or automatic compiler based thread parallelization inside of each SMP node,
and message passing (e.g., with MPI [16]) on the node interconnect. Another of-
ten used programming model is the flat and pure massively parallel processing
(MPP) MPI model, where separate single-threaded MPI processes are running
on each CPU. Using the hybrid programming model instead of the MPP-MPI
model has the advantage that there is no message passing overhead inside of each
SMP node, because the threads can access the data provided by other threads
directly by accessing the shared memory instead of passing the data through a
message.

The hybrid MPI+OpenMP programming model is already used in many
applications, but often there is only a small benefit as, e.g., reported with the
climate model calculations of one of the Gordon Bell Prize finalists at SC 2001
[14], or sometimes losses are reported compared to the MPP-MPI model, e.g.,
as shown with an discrete element modelling algorithm in [12].

2 WOMPEI 2002, May 15, Kansai, Japan

One of the major drawbacks of the hybrid MPI-OpenMP programming model
is based on a very simple usage of this hybrid approach: If the MPI routines are
invoked only outside of parallel regions, all threads except the master thread are
sleeping while the MPI routines are executed.

This paper will discuss this phenomenon and other hybrid MPI-OpenMP
programming strategies. In Sect. 2, an overview on hybrid programming models
is given. Sect. 3 shows different methods to combine MPI and OpenMP. Further
rules on hybrid programming are discussed in Sect. 4. Pure MPI can also be used
on hybrid architectures, as shown Sect. 5. Sect. 6 presents the results of a par-
allel communication benchmark. Sect. 7 compares the MPI based programming
models with major shared and virtual shared memory models.

2 Programming Models on Hybrid Architectures

The available programming models depend on the type of cluster hardware. If
the node interconnect allows cache-coherent or non-cache-coherent non-uniform
memory access (ccNUMA and nccNUMA), i.e., if the memory access inside
of each SMP node and across the cluster interconnect is implemented by the
same instructions, then one can use programming models which need a shared
memory access across the whole cluster. This includes OpenMP on the whole
cluster, usage of nested parallelism inside of OpenMP, but also OpenMP with
cluster extensions, that are primarily based on a first touch mechanism [11] or
on data distribution extensions [15]. These cluster extensions may also benefit
from the availability of software based shared virtual memory (SVM) [5, 25, 26].
At NASA/Ames, a hybrid approach was developed. The parallelization is or-
ganized in two levels: The upper level is process based, and in the lower level
each process is multi-threaded with OpenMP. The processes are using a For-
tran wrapper around the System V shared memory module shm, that allows to
fork the processes, to initialize a shared memory segment, to associate portions
of this segment with Cray pointer based array in each process, and to make a
barrier synchronization over all processes. This system is named as Multi Level
Parallelism (MLP) and it allows very flexible, dynamic and simple way of load
balancing: At each start of a parallel region inside of each MLP process, the num-
ber of threads, i.e., the number of used CPUs, may be adapted [8]. Although
MLP is a proprietary method of NASA/Ames, the programming style based on
shm is non-proprietary.

If the node interconnect requires different methods for accessing local and
cluster-wide memory, but if there are remote direct memory access (RDMA)
methods available, i.e.; if one node can access the memory of another node
without interaction of a CPU on that node, then further programming methods
are available: Such systems can be programmed with Co-Array Fortran [20] or
Unified Parallel C (UPC) [7,9]. In Co-Array Fortran, the access to an array of
another process or thread is done by using an additional trailing array subscript
in square brackets addressing that process or thread. Both language extensions
can also be used to program clusters of SMP nodes, because they neither add

Rolf Rabenseifner: Communication Bandwidth on Hybrid Architectures 3

a message passing overhead nor the overhead of additional copies. A key issue
for a more widespread usage of UPC and Co-Array Fortran is the availability
of (portable) commpiling systems for a wide range of platforms with a clear
development path to achieve an optimal performance, as it was presented for
MPI by the early MPICH implementation [10]. Another approach to use the
RDMA hardware is based on one-sided communication, e.g., in Cray’s shmem
library or in MPI-2 [17]. These library-based methods allow to store (fetch)
data to (from) the memory of another process in a SPMD environment. The
shmem library was ported by many vendors to their systems. All programming
models available for RDMA-class node-interconnect are also usable on NUMA-
class interconnects.

The third class of hardware supports neither NUMA access nor RDMA. Only
pure message passing is available on the node-interconnect. Programming mod-
els designed for this class of hardware have the major advantage that they are
applicable to all other already mentioned classes. This paper focuses on this type
of hardware. The commonly accepted standard for message passing between the
nodes is the Message Passing Interface (MPI) [16,17]. The major programming
styles are pure MPI, i.e., the MPP model that uses each CPU for one MPI pro-
cess, and hybrid models, e.g., MPI on the node-interconnect and OpenMP or
automatic or semi-automatic compiler based thread-parallelization inside of each
SMP node. Inside of each node mainly two different SMP parallelization strate-
gies are used: (a) A coarse-grain SPMD-style parallelization similar to the work
distribution betwen the processes in a message passing program is applied; this
method allows a similar computational efficiency as with the pure MPI paral-
lelization; the efficiency of the communication is a major factor in the omparance
of this hybrid approach with the pure MPI solution. The present paper is focused
on the communication aspects. (b) A fine-grained SMP parallelization is done
in an incremental effort of parallelizing loops inside of the MPI processes. The
efficiency of such hybrid solution depends on both, the efficiency of the compu-
tation (Amdahl’s law must be considered on both levels of parallelization) and
of the communication, as shown in [6] for the NAS parallel benchmarks. Differ-
ent SMP parallelization strategies in the hybrid model are also studied in [27].
High-Performance Fortran (HPF) is also available on clusters of SMPs. In [3],
HPF based on hybrid MPI4+OpenMP is compared with pure MPI.

3 MPI and Thread-Based Parallelization

This model was already addressed by the MPI-2 Forum in Sect.8.7 MPI and
Threads in [17]. For hybrid programming, the MPI-1 routine MPI_Init() should
be substituted by a call to MPI_Init_threads() which has the input argument
named required to define which thread-support the application requests from
the MPI library, and the output argument provided which is used by the MPI
library to tell the application which thread-support is available. MPT libraries
may support the following thread-categories (higher categories are supersets of
all lower ones):

4 WOMPEI 2002, May 15, Kansai, Japan

TO No thread-support, represented providedl=MPI_THREAD_SINGLE.

T1la The MPI process may be multi-threaded but only the master thread
may call MPI routines AND only while the other threads do not exist, i.e., paral-
lel threads created by a parallel region must be destroyed before an MPI routine
is called. This class is not mentioned in the MPI standard and an MPI library
supporting this class (and not more) must also return provided=MPI_THREAD_
SINGLE because of the lack of this definition in the MPI-2 standard®.

T1b The definition T1a is relaxed in the sense, that more than one thread
may exist during the call of MPI routines, but all threads except the master
thread must sleep, i.e., must be blocked in some OpenMP synchronization. As
in Tla, an MPT library supporting T1b but not more must also return pro-
vided=MPI_THREAD_SINGLE.

T2 Only the master thread will make calls to MPI routines. The other
threads may run other application code while the master thread calls an MPI
routine. This is allowed if the MPI library returns a value greater or equal to
MPI_THREAD_FUNNELED in provided.

T3 Multiple threads may make MPI-calls, but only one thread may execute
an MPI routine at a time. This requires provided > MPI_THREAD_SERIALIZED.

T4 Multiple threads may call MPI without any restrictions. This hybrid
programming style is available when provided = MPI_THREAD _MULTIPLE was
returned.

The constants are monotonic, i.e.,
MPI_THREAD_SINGLE < MPI.THREAD_FUNNELED <

Usually, the application cannot distinguish whether an OpenMP paralleliza-
tion needs T1 or T2 to allow calls to MPI routines outside of OpenMP parallel
regions, because it is not defined, whether at the end of a parallel region the team
of threads is sleeping or is destroyed. And usually, this category is chosen, when
the MPI routines are called outside of parallel regions. Therefore, one should
summarize the cases Tla and T1b to only one case:

T1 — The MPI process may be multi-threaded but only the master thread
may call MPI routines AND only outside of parallel regions (in case of OpenMP)
or outside of parallelized code (if automatic parallelization is used). We define
here an additional constant THREAD_MASTERONLY with a value between
MPI_THREAD_SINGLE and MPI.THREAD_FUNNELED.

4 Rules with hybrid programming

T1 is the most simple hybrid programming model with MPI and OpenMP, be-
cause MPI routines may be called only outside of parallel regions. The new cache
coherence rules in OpenMP 2.0 guarantee, that the outcome of an MPI routine
is visible to all threads in a subsequent parallel region?, and that the outcome
of all threads of a parallel region is visible to a subsequent MPI routine.

! This may be solved in the revision 2.1 of the MPI standard.
2 There is still a lack in the draft from Nov. 2001 for the C language binding

Rolf Rabenseifner: Communication Bandwidth on Hybrid Architectures 5

T2 can be achieved by surrounding the call to the MPI routine with the
OMP MASTER and OMP END MASTER directives inside of a parallel region.
One must be very careful, because OMP MASTER does not imply an automatic
barrier synchronization or an automatic cache flush either at the entry to or at
the exit from the master section. If the application wants to send data computed
in the previous parallel region or wants to receive data into a buffer that was
also used in the previous parallel region (e.g., to use the data received in the
previous iteration), then a barrier with implied cache flush is necessary prior to
calling the MPT routine, i.e., prior to the master section. If the data or buffer is
also used in the parallel region after the exit of the MPI routine and its master
section, then also a barrier is necessary after the exit of the master section. If
both barriers must be done, then while the master thread is executing the MPI
routine, all other threads are sleeping, i.e., we are going back to the case T1b.

T3 can be achieved by using the OMP SINGLE directive, which has an
implied barrier only at the exit (unless NOWAIT is specified). Here again, the
same problems as with T2 must be taken into account.

These problems with T2 and T3 arise, because the communication needs
must be funneled from all threads to one thread (an arbitrary thread in T3, and
the master thread in T2). Only T4 allows a direct message passing from each
thread in one node to each thread in another node.

Based on these reasons and because T1 is available on nearly all clusters,
most hybrid and portable parallelization is using only the programming scheme
described in T1. This paper will evaluate this hybrid model by comparing it with
the non-hybrid model described in the next section.

5 MPP-MPI on hybrid architectures

Using a pure MPI model, the cluster must be viewed as a hybrid communication
network with typically fast communication paths inside of each SMP node and
slower paths between the nodes. It is important to implement a good mapping
of the communication paths used by application to the hybrid communication
network of the cluster. The MPI standard defines virtual topologies for this
purpose, but the optimization algorithm isn’t yet implemented in most MPI
implementations. Therefore, in most cases, it is important to choose a good
ranking in MPI_.COMM_WORLD. E.g.; on a Hitachi SR8000, the MPI library
allows two different ranking schemes, round robin (ranks 0, N, 2*N, ... on node 0;
ranks 1, N+1, 2*N+1, ... on node 1, ...; with N=number of nodes) and sequential
(rank 0-7 on node 0, ranks 8-15 on node 1, ...), and the user has to decide which
scheme may fit better to the communication needs of his application.

The MPP-MPI programming model implies additional message transfers due
to the higher number of MPI processes and higher number of boundaries. Let us
consider, for example, a 3-dimensional cartesian domain decomposition. Each do-
main may have to transfer boundary information to its neighbors in all six carte-
sian directions (1| ¥ 7). Bringing this model on a cluster with 8-way SMP
nodes, on each node, we should execute the domains belonging to a 2x2x2 cube.

6 WOMPEI 2002, May 15, Kansai, Japan

Domain-to-domain communcation occurs as node-to-node (inter-node) commu-
nication and as intra-node communication between the domains inside of each
cube. Hereby, each domain has 3 neighbors inside the cube and 3 neighbors
outside, i.e., in the inter-node and the intra-node communication the amount
of transferred bytes should be equivalent. If we compare this MPP-MPI model
with a hybrid model, assuming that the domains (in the MPP-MPI model) in
each 2x2x2 cube are combined to a super-domain in the hybrid model, then
the amount of data transferred on the node-interconnect should be the same in
both models. This implies, that in the MPP-MPI model, the total amount of
transferred bytes (inter-node plus intra-node) will be twice the number of bytes
in the hybrid model. This result is independent from the way, the inner-node
parallelization is implemented in the hybrid model, i.e., whether it is done in a
coarse grained domain decomposition style or as fine grained loop parallelism.

6 Benchmark Results

The following benchmark results will compare the communication behavior of
the hybrid MPI4+OpenMP model with the pure MPP-MPI model. Based on the
domain decomposition scenario discussed in the last section, we compare the
bandwidth of both models and the ratio of the total communication time pre-
suming that in the MPP-MPI model, the total amount of transferred data is
twice the amount in the hybrid model. The benchmark was done on a Hitachi
SR8000 with 16 nodes from which 12 nodes are available for MPI parallel appli-
cations. Each node has 8 CPUs. The effective communication benchmark b_eff
is used [13,22,23]. It accumulates the communication bandwidth values of the
communication done by each MPI process. To determine the bandwidth of each
process, the maximum time needed by all processes is used, i.e., this benchmark
models an application behavior, where the node with the slowest communication
controls the real execution time. To compare both models, we use the following
metrics:

— beff the accumulated bandwidth average for several ring and random
patterns;

— 3-d-cyclic-Lmax a 3-dimensional cyclic communication pattern with 6
neighbors for each MPI process; the bandwidth is measured with 8 MB
messages.

— 3-d-cyclic-avg same, but an average of 21 different message sizes.

For each metrics, the following rows are presented in Tab. 1:

— bpybria, the accumulated bandwidth b for the hybrid model measured with a
1-threaded MPI process on each node (12 MPT processes),

— and in parentheses the same bandwidth per node,

— by pp, the accumulated bandwidth for the MPP-MPI model (96 MPI pro-
cesses with sequential ranking in MPI_.COMM_WORLD)

— and in parentheses the same bandwidth per process,

3

Rolf Rabenseifner: Communication Bandwidth on Hybrid Architectures 7

b_eff |3-d-cyclic-Lmax|3-d-cyclic-avg

Dhybria [MB/s]| 1535 5638 1604
(per node) [MB/s]| (128) (470) (134)
bvpp [MB/s]| 5299 18458 5000
(per process) [MB/s]| (55) (192) (52)
bMpp/bhbeid (measured) 3.45 3.27 3.12
SMPP/Shybrid (assumed) 2 2 2

Thybrid/TMpp (concluding) 1.73 1.64 1.56

Table 1. Comparing the hybrid and the MPP communication needs.

— bypp/bhybria, the ratio of accumulated MPP bandwidth and accumulated
hybrid bandwidth,

— Thybria/Tvpp, the ratio of execution times 7', assuming that total size s of
the transferred data in the MPP model is twice of the size in the hybrid
model, i.e., Sprpp/Shybria = 2, as shown in Sect.5.

Note, that this comparison was done with no special optimized topology
mapping in the MPP model. The result shows, that the MPP communication
model is faster than the communication in the hybrid model. There are at least
two reasons: (1) In the hybrid model, all communication was done by the master
thread while the other threads were inactive; (2) One thread is not able to
saturate the total inter-node bandwidth that is available for each node.

This communication behavior may be a major reason when an application is
running faster in the MPP model than in the hybrid model.

7 Comparison

The comparison in this paper focuses on bandwidth aspects, i.e., how to achieve
a major percentage of the physical inter-node network bandwidth with various
parallel programming models.

7.1 Hybrid MPI4+OpenMP versus pure MPI

Although the benchmark results in the last section show a clear advantage of the
MPP model, there are also advantages of the hybrid model. In the hybrid model
there is no communication overhead inside of a node. The message size of the
boundary information of one process may be larger (although the total amount
of communication data is reduced). This reduces latency based overheads in
the inter-node communication. The number of MPI processes is reduced. This
may cause a better speedup based on Amdahl’s law and may cause a faster
convergence if, e.g., the parallel implementation of a multigrid numerics is only
computed on a partial grid. To reduce the MPI overhead by communicating
only through one thread, the MPI communication routines should be relieved
by unnecessary local work, e.g., concatenation of data should be better done

8 WOMPEI 2002, May 15, Kansai, Japan

by copying the data to a scratch buffer with a thread-parallelized loop, instead
of using derived MPI datatypes. MPI reduction operations can be split into
the inter-node communication part and the local reduction part by using user-
defined operations, but a local thread-based parallelization of these operations
may cause problems because these threads are running while an MPI routine
may communicate.

Hybrid programming is often done in two different ways: (a) the domain
decomposition is used for the inter-node parallelization with MPI and also for
the intra-node parallelization with OpenMP, i.e., in both cases, a coarse grained
parallelization is used. (b) The intra-node parallelization is implemented as a
fine grained parallelization, e.g., mainly as loop parallelization. The second case
also allows automatic intra-node parallelization by the compiler, but Amdahl’s
law must be considered independently for both parallelizations.

If the other application threads do not sleep while the master thread is com-
municating with MPI then communication time T},4,.5¢ in Tab. 1 counts only the
eighth (a node has 8 CPUs on the SR8000) because only one instead of 1 (ac-
tive) plus 7 (idling) CPUs is communicating. In this hybrid programming style,
the factor Thysria/Tvpp must be reduced to the eighth, i.e. from about 1.6 to
about 0.2. But in this case, the application must implement a load balancing
algorithm to guarantee that the load on the communicating master thread is
equal to the load on the other threads. This means that minimal transfer time
can be achieved with the hybrid model, but at the costs of implementing an
optimal load balancing between the thread(s) that computes and communicates
and those threads that only compute.

7.2 MPI versus Remote Memory Access

Now, we compare the MPI based models with the NUMA or RDMA based
models. To access data on another node with MPI, the data must be copied to
a local memory location (so called halo or shadow) by message passing, before
it can be loaded into the CPU. Usually all necessary data should be transferred
in one large message instead of using several short messages. Then, the transfer
speed is dominated by the asymptotic bandwidth of the network, e.g., as reported
for 3-d-cyclic-Lmax in Tab. 1 per node (470 MB/s) or per process (192 MB/s).
With NUMA or RDMA, the data can be loaded directly from the remote memory
location into the CPU. This may imply short accesses, i.e., the access is latency
bound. Although the NUMA or RDMA latency is usually 10 times shorter than
the message passing latency, the total transfer speed may be worse. E.g., [8]
reports on a ccNUMA system a latency of 0.33—1 us, which implies a bandwidth
of only 8-24 MB/s for a 8 byte data. This effect can be eliminated if the compiler
has implemented a remote pre-fetching strategy as described in [18], but this
method is still not used in all compilers.

The remote memory access can also be optimized by buffering or pipelining
the data that must be transferred. This approach may be hard to automate, and
current OpenMP compiler research already studies the bandwidth optimization
on SMP clusters [24], but it can be easily implemented as an directive-based

Rolf Rabenseifner: Communication Bandwidth on Hybrid Architectures 9

Access method copies|remarks bandwidth b(message size)

2-sided MPIT 2 |internal MPT buffer boo /(1 + 22llat) e g,

+ application receive buffer |300 MB/s / (1 + W)
+ application receive buffer |= 232 MB/s

1-sided MPI 1 [|application receive buffer same formula,

but probably better oo and T},
UPC, 1 |page based transter extremely poor
Co-Array Fortran,)] 0 |word based access 8 byte / Tiqt,
HPF, e.g., 8byte / 0.33 us = 24 MB/s
OpenMP with 0 |latency hiding with pre-fetch|bs

cluster extensions | 1 |latency hiding with buffering|see 1-sided communication

Table 2. Memory copies from remote memory to local CPU register.

optimization technique: The application thread can define the (remote) data it
will use in the next simulation step and the compiled OpenMP code can pre-
fetch the whole remote part of the data with a bandwidth-optimized transfer
method. Table 2 summarizes this comparison.

7.3 Parallelization and Compilation

Major advantages of OpenMP based programming are that the application can
be incrementally parallelized and that one still has a single source for serial
and parallel compilation. On a cluster of SMPs, the major disadvantages are,
that OpenMP has a flat memory model and that it does not know buffered
transfers to reach the asymptotic network bandwidth. But, as already mentioned,
these problems can be solved by tiny additional directives, like the proposed
migration and memory-pinning directives in [11], and additional directives that
allow a contiguous transfer of the whole boundary information between each
simulation step. Those directives are optimization features that do not modify
the basic OpenMp model, as this would be done with directives to define a
full HPF-like user-directed data distribution (as in [11, 15]). Another lack in the
current OpenMP standard is the absence of a strategy of combining automatic
parallelization with OpenMP parallelization, although this is implemented in a
non-standardized way in nearly all OpenMP compilers. This problem can be
solved, e.g., by adding directives to define scopes where the compiler is allowed
to automatically parallelize the code, e.g., similar to the parallel region, one can
define an autoparallel region. Usual rules for nested parallelism can apply, i.e., a
compiler can define that it cannot handle nested parallelism.

An OpenMP-based parallel programming model for SMP-clusters should be
usable for both, fine grained loop parallelization, and coarse grained domain
decomposition. There should be a clear path from MPI to such an OpenMP
cluster programming model with a performance that should not be worse than
with pure MPI or hybrid MPI+OpenMP.

10 WOMPEI 2002, May 15, Kansai, Japan

It is also important to have a good compilation strategy that allows the devel-
opment, of well optimizing compilers on any combination of processor, memory
access, and network hardware. The MPI based approaches, especially the hybrid
MPI+OpenMP approach, clearly separate remote from local memory access op-
timization. The remote access is optimized by the MPI library, and the local
memory access must be improved by the compiler. Such separation is realized,
e.g., in the NANOS project OpenMP compiler [2,19]. The separation of local and
remote access optimization may be more essential than the chance of achieving
a zero-latency by remote pre-fetching (Tab.2) with direct compiler generated
instructions for remote data access. Pre-fetching can also be done via macros or
library calls in the input for the local (OpenMP) compiler.

8 Conclusion

For many parallel applications on hybrid systems, it is important to achieve
a high communication bandwidth between the processes on the node-to-node
inter-connect. On such architectures, the standard programming models of SMP
or MPP systems do not longer fit well. The rules for hybrid MPI+OpenMP pro-
gramming and the benchmark results in this paper show that a hybrid approach
is not automatically the best solution if the communication is funnelled by the
master thread and long message sizes can be used. The MPI based parallel pro-
gramming models are still the major paradigm on HPC platforms. OpenMP
with further optimization features for clusters of SMPs and bandwidth based
data transfer on the node interconnect have a chance to achieve a similar per-
formance together with an incremental parallelization approach, but only if the
current, SMP model is enhanced by features that allow an optimization of the
total trafic, e.g., with an user-directed optimization of page migration. and by
features for latency-hiding, e.g., by allowing a user-directed transfer of the total
boundary all at once.

9 Future Work

In the future, we also want to examine hybrid programming models based on
aspects of latency and latency-hiding, especially in combination with vectoriz-
ing codes. Optimization of hybrid MPI+OpenMP programming will be done
with thread-parallel MPI techniques and compared with topology-optimized
non-hybrid MPI parallelization. To evaluate cluster programming models, we
want to compare proposed distributed OpenMP extensions [11,15] with fully
thread-parallel MPI and hybrid MPI+OpenMP solutions varying the chunk sizes
and cluster parameters to examine the influence of latency and bandwidth of lo-
cal and remote memory accesses. The work should be a basis to study and to
optimize MPI-based parallelization libraries on hybrid systems.

If OpenMP with the described cluster extensions should be used as a basic
programming concept, it is important, that an automatic analysis of the re-

Rolf Rabenseifner: Communication Bandwidth on Hybrid Architectures 11

mote and local memory access (e.g., integrated in existing analysis tools, e.g., in
VAMPIR [4]), and improved tools for detecting race-conditions are available [1].

Acknowledgments

The author would like to acknowledge his colleagues and all the people that supported
these projects with suggestions and helpful discussions. He would especially like to
thank Alice Koniges, David Eder and Matthias Brehm for productive discussions of
the limits of hybrid programming, Bob Ciotti and Gabrielle Jost for the discussions on
MLP, Gerrit Schulz for his work on the benchmarks, Gerhard Wellein for discussions
on network congestion in the MPP model, and Thomas Bonisch, Matthias Miiller,
Uwe Kiister, and John M. Levesque for discussions on OpenMP cluster extensions and
vectorization.

References

1. Assure and AssureView, http://www.kai.com/parallel/kappro/assure/.

2. Eduard Ayguade, Marc Gonzalez, Jesus Labarta, Xavier Martorell, Nacho Navarro,
and Jose Oliver, NanosCompiler: A Research Platform for OpenMP Extensions,
in proceedings of the 1st European Workshop on OpenMP (EWOMP’99), Lund,
Sweden, Sep. 1999.

3. Siegfried Benkner, Thomas Brandes, High-Level Data Mapping for Clusters of
SMPs, in proceedings of the 6th International Workshop on High-Level Parallel
Programming Models and Supportive Environments, HIPS 2001, San Francisco,
USA, April 2001, Springer LNCS 2026, pp 1 15.

4. Holger Brunst, Wolfgang E. Nagel, and Hans-Christian Hoppe, Group Based Per-
formance Analysis for Multithreaded SMP Cluster Applications, in proceedings of
Euro-Par2001, R. Sakellariou, J. Keane, J. Gurd, L. Freeman (Eds.), Manchester,
UK, August 28. 31., 2001, LNCS 2150, Springer, 2001, pp 148 153.

5. R. Berrendorf, M. Gerndt, W. E. Nagel and J. Prumerr, SVM
Fortran, Technical Report 1B-9322, KFA Julich, Germany, 1993,
www.fz-juelich.de/zam/docs/printable/ib/ib-93/ib-9322.ps.

6. Frank Cappello and Daniel Etiemble, MPI versus MPI+OpenMP on the IBM
SP for the NAS benchmarks, in Proc. Supercomputing’00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/cappello00mpi.html

7. William W. Carlson, Jesse M. Draper, David E. Culler, Kathy Yelick, Eugene
Brooks, and Karen Warren, Introduction to UPC and Language Specification,
CCS-TR-99-157, May 13, 1999, http://wuw.super.org/upc/, www.gwu.edu and
http://projects.seas.gwu.edu/~hpcl/upcdev/upctr.pdf.

8. Robert B. Ciotti, James R. Taft, and Jens Petersohn, Farly Ezperiences with the
512 Processor Single System Image Origin2000, proceedings of the 42nd Interna-
tional Cray User Group Conference, SUMMIT 2000, Noordwijk, The Netherlands,
May 22-26, 2000, www.cug.org.

9. Tarek El-Ghazawi, and Sébastien Chauvin, UPC Benchmarking Issues, proceed-
ings of the International Conference on Parallel Processing, 2001, pp 365-372,
http://projects.seas.gwu.edu/~hpcl/upcdev/UPC_bench.pdf.

10. W. Gropp and E. Lusk and N. Doss and A. Skjellum, A high-performance, portable
implementation of the MPI message passing interface standard, in Parallel Com-
puting 22 6, Sep. 1996, pp 789 828.

12

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

WOMPEI 2002, May 15, Kansai, Japan

Jonathan Harris, Eztending OpenMP for NUMA Architectures, in proceed-
ings of the Second European Workshop on OpenMP, EWOMP 2000,
www.epcc.ed.ac.uk/ewomp2000/.

D. S. Henty, Performance of hybrid message-passing and shared-memory paral-
lelism for discrete element modeling, in Proc. Supercomputing’00, Dallas, TX,
2000. http://citeseer.nj.nec.com/henty0Operformance.html

Alice E. Koniges, Rolf Rabenseifner, Karl Solchenbach, Benchmark Design for
Characterization of Balanced High-Performance Architectures, in proceedings, 15th
International Parallel and Distributed Processing Symposium (IPDPS’01), Work-
shop on Massively Parallel Processing, April 23-27, 2001, San Francisco, USA.
Richard D. Loft, Stephen J. Thomas, and John M. Dennis, Terascale spectral el-
ement dynamical core for atmospheric general circulation models, in proceedings,
SC 2001, Nov. 2001, Denver, USA.

John Merlin, Distributed OpenMP: Eztensions to OpenMP for SMP Clusters,
in proceedings of the Second European Workshop on OpenMP, EWOMP 2000,
www.epcc.ed.ac.uk/ewomp2000/.

Message Passing Interface Forum. MPI: A Message-Passing Interface Standard,
Rel. 1.1, June 1995, www.mpi-forum.org.

Message Passing Interface Forum. MPI-2: Extensions to the Message-Passing In-
terface, July 1997, www.mpi-forum.org.

Matthias M. Miiller, Compiler-Generated Vector-based Prefetching on Architec-
tures with Distributed Memory, in High Performance Computing in Science and
Engineering '01, W. Jger and E. Krause (eds), Springer, 2001.

The NANOS Project, Jesus Labarta, et al,
http://research.ac.upc.es/hpc/nanos/.

R. W. Numrich, and J. K. Reid, Co-Array Fortran for Parallel Programming,
ACM Fortran Forum, volume 17, no 2, 1998, pp 1 31, www.co-array.org and
ftp://matisa.cc.rl.ac.uk/pub/reports/nrRAL98060.ps.gz.

OpenMP Group, www.openmp.org.

Rolf Rabenseifner and Alice E. Koniges, Effective Communication and File-1/0
Bandwidth Benchmarks, in Recent Advances in Parallel Virtual Machine and Mes-
sage Passing Interface, proceedings of the 8th European PVM/MPI Users’ Group
Meeting, Santorini/Thera, Greece, LNCS 2131, Y. Cotronis, J. Dongarra (Eds.),
Springer, 2001, pp 24 35.

Rolf Rabenseifner, Effective Bandwidth (b_eff) and I/O Bandwidth (b_eff-io)
Benchmark, www.hlrs.de/mpi/b_eff/ and www.hlrs.de/mpi/b_eff _io/.
Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano and Yoshio Tanaka, Design
of OpenMP Compiler for an SMP Cluster, in proceedings of the 1st Euro-
pean Workshop on OpenMP (EWOMP’99), Lund, Sweden, Sep. 1999, pp 32 39.
http://citeseer.nj.nec.com/sato99design.html

Alex Scherer, Honghui Lu, Thomas Gross, Willy Zwaenepoel, Transparent Adaptive
Parallelism on NOWs using OpenMP, in proceedings of the Seventh Conference
on Principles and Practice of Parallel Programming (PPoPP ’99), May 1999, pp
96-106.

Weisong Shi, Weiwu Hu, and Zhimin Tang, Shared Virtual Memory: A Sur-
vey, Technical report No. 980005, Center for High Performance Comput-
ing, Institute of Computing Technology, Chinese Academy of Sciences, 1998,
www.ict.ac.cn/chpc/dsm/tr980005. ps.

Lorna Smith and Mark Bull, Development of Mized Mode MPI / OpenMP Applica-
tions, in proceedings of Workshop on OpenMP Applications and Tools (WOMPAT
2000), San Diego, July 2000.

