

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems.

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems.

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems.

Comparing inter-node bandwidth with CPU performance					*) Bandwidth per node: totally transferred bytes on the network / number of nodes / wall clock time			
All values: aggregated over one SMP nodes. *) mess. size: 16 MB *) 2 MB	Master -only, inter- node [GB/s]	pure MPI, inter- node [GB/s]	Master- only bw / max. intra- node bw	pure MPI, intra- node [GB/s]	memo- ry band- width [GB/s]	Peak & Linpack perfor- mance Gflop/s	max.inter -node bw / peak & <i>Linpack</i> perf. B/Flop	nodes*CPUs
Cray X1,shmem_put preliminary results	9.27	12.34	75 %	33.0	136	51.2 45.03	0.241 0.274	8 * 4 MSPs
Cray X1, MPI preliminary results	4.52	5.52	82 %	19.5	136	51.2 45.03	0.108 0.123	8 * 4 MSPs
NEC SX-6 global memory	7.56	4.98	100 %	78.7 93.7 ⁺)	256	64 61.83	0.118 0.122	4 * 8 CPUs
NEC SX-5Be local memory	2.27	2.50 a)	91 %	35.1	512	64 60.50	0.039 0.041	2 *16 CPUs a) only with 8
Hitachi SR8000	0.45	0.91	49 %	5.0	32 store 32 load	8 6.82	0.114 0.133	8 * 8 CPUs
IBM SP Power3+	0.16	0.57*)	28 %	2.0	16	24 14.27	0.023 0.040	8 *16 CPUs
SGI O3000, 600MHz	0.43*)	1.74*)	25 %	1.73+)		4.8 3.64	0.363 0.478	16 *4 CPUs
SUN-fire (prelimi.)	0.15	0.85	18 %	1.68				4 *24 CPUs
HELICS Dual-PC cluster with Myrinet	0.118 *)	0.119 ⁺)	100 %	0.104 *)		2.80 1.61	0.043 0.074	128 *2 CPUs

© Rolf Rabenseifner: **Parallel Programming Models on Hybrid Systems**. HLRS Result and Review Workshop, Oct. 6–7, 2003, HLRS, Stuttgart, Germany. Page 21

