
© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 1

Hybrid Programming Models
Slide 1 Höchstleistungsrechenzentrum Stuttgart

Parallel Programming Models
on Hybrid Systems

MPI + OpenMP and other models
on clusters of SMP nodes

Rolf Rabenseifner
rabenseifner@hlrs.de

University of Stuttgart
High-Performance Computing-Center Stuttgart (HLRS)

www.hlrs.de

Lecture at the University of Heidelberg, June 20, 2003

Rolf RabenseifnerHybrid Programming Models
Slide 2 / 64 Höchstleistungsrechenzentrum Stuttgart

Outline

• Motivation [slides 3–7]

• Major parallel programming models [8–14]

• Programming models on hybrid systems [15–-56]

– Overview [15]

– Technical aspects with thread-safe MPI [16–18]

– Mismatch problems with pure MPI and hybrid MPI+OpenMP [19–46]

• Topology problem [20]
• Unnecessary intra-node comm. [21]
• Inter-node bandwidth problem [22–38]

– Comparison I: Two experiments
• Sleeping threads and saturation problem [39]
• Additional OpenMP overhead [40]
• Overlapping comm. and comp. [41–47]

– Comparison II: Theory + experiment
– Pure OpenMP [48–56]

– Comparison III

• No silver bullet / optimization chances / other concepts [58–62]

• Acknowledgments & Conclusions [63–64]

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 2

Rolf RabenseifnerHybrid Programming Models
Slide 3 / 64 Höchstleistungsrechenzentrum Stuttgart

Motivation

• HPC systems
– often clusters of SMP nodes
– i.e., hybrid architectures

• Using the communication bandwidth of the hardware optimal usage
• Minimizing synchronization = idle time of the hardware

• Appropriate parallel programming models / Pros & Cons

Node Interconnect

SMP nodes

CPUs
shared
memory

Rolf RabenseifnerHybrid Programming Models
Slide 4 / 64 Höchstleistungsrechenzentrum Stuttgart

Hitachi SR 8000-F1/112 (Rank 5 in TOP 500 / June 2000)

• System:
– 168 nodes,
– 2.016 TFLOP/s peak
– 1.65 TFLOP/s Linpack
– 1.3 TB memory

• Node:
– 8 CPUs, 12 GFLOP/s
– 8 GB, SMP
– pseudo-vector
– ext. b/w: 950 MB/s

• CPU:
– 1.5 GFLOP/s, 375 MHz
– 4 GB/s memory b/w

• Installed: 1.Q 2000 at LRZ
• Extended: 1.Q. 2002

(from 112 to 168 nodes)

— skipped —

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 3

Rolf RabenseifnerHybrid Programming Models
Slide 5 / 64 Höchstleistungsrechenzentrum Stuttgart

Earth Simulator Project ESRDC / GS 40 (NEC)

• System: 640 nodes, 40 TFLOP/s
10 TB memory
optical 640x640 crossbar
50m x 20m without

peripherals
• Node: 8 CPUs, 64 GFLOP/s

16 GB, SMP
ext. b/w: 2x16 GB/s

• CPU: Vector
8 GFLOP/s, 500 MHz
Single-Chip, 0.15 µs
32 GB/s memory b/w

• Virtual Earth - simulating
– Climate change (global warming)
– El Niño, hurricanes, droughts
– Air pollution (acid rain, ozone hole)
– Diastrophism (earthquake,

volcanism)
• Installation: 2002

http://www.es.jamstec.go.jp/

single-stage
crossbar

640*640 (!)

.....

.....

Node 1

Node 640

Rolf RabenseifnerHybrid Programming Models
Slide 6 / 64 Höchstleistungsrechenzentrum Stuttgart

Major Programming models on hybrid systems

• Pure MPI (one MPI process on each CPU)
• Hybrid MPI+OpenMP

– shared memory OpenMP
– distributed memory MPI

• Other: Virtual shared memory systems, HPF, …
• Often hybrid programming (MPI+OpenMP) slower than pure MPI

– why?

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each CPU

Explicit Message Passing
by calling MPI_Send & MPI_Recv

Node Interconnect

OpenMP inside of the
SMP nodes

MPI between the nodes
via node interconnect

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 4

Rolf RabenseifnerHybrid Programming Models
Slide 7 / 64 Höchstleistungsrechenzentrum Stuttgart

Example from SC 2001

• Pure MPI versus
Hybrid MPI+OpenMP (Masteronly)

• What‘s better?
it depends on?

Figures: Richard D. Loft, Stephen J. Thomas,
John M. Dennis:
Terascale Spectral Element Dynamical Core for
Atmospheric General Circulation Models.
Proceedings of SC2001, Denver, USA, Nov. 2001.
http://www.sc2001.org/papers/pap.pap189.pdf
Fig. 9 and 10.

Explicit C154N6 16 Level SEAM:
NPACI Results with

7 or 8 processes or threads per node

0 200 400 600 800 1000
Processors

35
30
25
20
15
10
5
0

In
te

gr
at

io
n

ra
te

[Y

ea
rs

pe
r d

ay
]

Explicit/Semi Implicit C154N6 SEAM
vs T170 PSTSWM, 16 Level, NCAR

0 100 200 300 400 500 600
Processors

25

20

15

10

5

0

In
te

gr
at

io
n

ra
te

[Y

ea
rs

pe
r d

ay
]

Rolf RabenseifnerHybrid Programming Models
Slide 8 / 64 Höchstleistungsrechenzentrum Stuttgart

Major Parallel Programming Models

• OpenMP (standardized since 1997)
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)
– mainly loops can be parallelized
– compiler translates OpenMP directives into thread-handling

• MPI (Message Passing Interface) (standardized since 1994)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– by calling MPI communication library-routines
– compiler generates normal sequential code (running in each process)
– typically domain decomposition with communication across domain boundaries

All data is shared / parallel execution threads on the same memory

Each process has its private variables / Data exchange with messages

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 5

Rolf RabenseifnerHybrid Programming Models
Slide 9 / 64 Höchstleistungsrechenzentrum Stuttgart

Shared Memory Directives – OpenMP, I.

Real :: A(n,m), B(n,m)

do j = 2, m-1
do i = 2, n-1

B(i,j) = ... A(i,j)
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do
end do

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

Rolf RabenseifnerHybrid Programming Models
Slide 10 / 64 Höchstleistungsrechenzentrum Stuttgart

Shared Memory Directives – OpenMP, II.

Master ThreadSingle Thread

Team of ThreadsParallel Region
!$OMP PARALLEL

Master ThreadSingle Thread
!$OMP END PARALLEL

Team of ThreadsParallel Region
!$OMP PARALLEL

Master ThreadSingle Thread
!$OMP END PARALLEL

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 6

Rolf RabenseifnerHybrid Programming Models
Slide 11 / 64 Höchstleistungsrechenzentrum Stuttgart

Message Passing Program Paradigm – MPI, I.

• Each processor in a message passing program runs a sub-program
– written in a conventional sequential language, e.g., C or Fortran,
– typically the same on each processor (SPMD)

• All work and data distribution is based on value of myrank
– returned by special library routine

• Communication via special send & receive routines (message passing)

myrank=0
data

sub-
program

myrank=1
data

sub-
program

myrank=2
data

sub-
program

myrank=
(size-1)

data

sub-
program

communication network

Rolf RabenseifnerHybrid Programming Models
Slide 12 / 64 Höchstleistungsrechenzentrum Stuttgart

Additional Halo Cells – MPI, II.

Halo
(Shadow,
Ghost cells)

User defined communication

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 7

Rolf RabenseifnerHybrid Programming Models
Slide 13 / 64 Höchstleistungsrechenzentrum Stuttgart

Real :: A(n,m), B(n,m)
do j = 2, m-1

do i = 2, n-1
B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Message Passing – MPI, III.

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)
m1 = (m+size-1)/size; ja=1+m1*myrank; je=max(m1*(myrank+1), m)
jax=ja-1; jex=je+1 // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)
do j = max(2,ja), min(m-1,je)

do i = 2, n-1
B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors
Call MPI_Recv(.......) ! - receiving from the neighbors,

! storing into the halo cells

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

Rolf RabenseifnerHybrid Programming Models
Slide 14 / 64 Höchstleistungsrechenzentrum Stuttgart

Limitations of the Major Programming Models

• MPI

Limitations:
• the amount of your hours available for MPI programming
• can be used on any platform, but

communication overhead on shared memory systems

– standardized distributed memory parallelism with message passing
– process-based
– the application processes are calling MPI library-routines
– compiler generates normal sequential code

– standardized shared memory parallelism
– thread-based
– compiler translates OpenMP directives into thread-handling

• OpenMP

Limitations:
• only for shared memory and ccNUMA systems
• mainly for loop parallelization via OpenMP-directives
• only for medium number of processors
• explicit domain decomposition also via rank of the threads

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 8

Rolf RabenseifnerHybrid Programming Models
Slide 15 / 64 Höchstleistungsrechenzentrum Stuttgart

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each CPU

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only

on master-thread

Multiple
more than one thread

may communicate

Funneled &
Reserved

reserved thread
for communication

Funneled
with

Full Load
Balancing

Multiple &
Reserved

reserved threads
for communication

Multiple
with

Full Load
Balancing

C
om

pa
ris

on
I.

(2
 e

xp
er

im
en

ts
)

Comparison II.
(theory + experiment)

Comparison III.

Rolf RabenseifnerHybrid Programming Models
Slide 16 / 64 Höchstleistungsrechenzentrum Stuttgart

MPI rules with OpenMP / Automatic SMP-parallelization (2)

• Special MPI-2 Init for multi-threaded MPI processes:
int MPI_Init_thread(int * argc, char *((*argv)[]), int required, int* provided)
MPI_INIT_THREAD(REQUIRED, PROVIDED, IERROR)

• REQUIRED values (increasing order):
– MPI_THREAD_SINGLE: Only one thread will execute
– THREAD_MASTERONLY: MPI processes may be multi-threaded,

(virtual value, but only master thread will make MPI-calls
not part of the standard) AND only while other threads are sleeping

– MPI_THREAD_FUNNELED: Only master thread will make MPI-calls
– MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,

but only one at a time
– MPI_THREAD_MULTIPLE: Multiple threads may call MPI,

with no restrictions

• returned PROVIDED may be less than REQUIRED by the application

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 9

Rolf RabenseifnerHybrid Programming Models
Slide 17 / 64 Höchstleistungsrechenzentrum Stuttgart

Calling MPI inside of OMP MASTER

• Inside of a parallel region, with “OMP MASTER”

• Requires MPI_THREAD_FUNNELED,
i.e., only master thread will make MPI-calls

• Caution: There isn’t any synchronization with “OMP MASTER”!
Therefore, “OMP BARRIER” normally necessary to
guarantee, that data or buffer space from/for other
threads is available before/after the MPI call!

!$OMP BARRIER #pragma omp barrier
!$OMP MASTER #pragma omp master

call MPI_Xxx(...) MPI_Xxx(...);
!$OMP END MASTER
!$OMP BARRIER #pragma omp barrier

• But this implies that all other threads are sleeping!
• The additional barrier implies also the necessary cache flush!

Rolf RabenseifnerHybrid Programming Models
Slide 18 / 64 Höchstleistungsrechenzentrum Stuttgart

… the barrier is necessary – example with MPI_Recv

!$OMP PARALLEL
!$OMP DO

do i=1,1000
a(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP MASTER

call MPI_RECV(buf,...)
!$OMP END MASTER
!$OMP BARRIER
!$OMP DO

do i=1,1000
c(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP END PARALLEL

#pragma parallel
{
#pragma for nowait

for (i=0; i<1000; i++)
a[i] = buf[i];

#pragma omp barrier
#pragma omp master

MPI_Recv(buf,...);
#pragma omp barrier

#pragma for
nowait for (i=0; i<1000;
i++) c[i] = buf[i];

}
#pragma end parallel

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 10

Rolf RabenseifnerHybrid Programming Models
Slide 19 / 64 Höchstleistungsrechenzentrum Stuttgart

Mismatch Problems

• Topology problem [with pure MPI]
• Unnecessary intra-node communication [with pure MPI]
• Inter-node bandwidth problem [with hybrid MPI+OpenMP]
• Sleeping threads and [with masteronly]

saturation problem [with pure MPI]
• Additional OpenMP overhead [with hybrid MPI+OpenMP]

– Thread fork / join
– Cache flush (data source thread – communicating thread – sync. flush)

• Overlapping communication and computation [with hybrid MPI+OpenMP]
– an application problem separation of local or halo-based code
– a programming problem thread-ranks-based vs. OpenMP work-sharing
– a load balancing problem, if only some threads communicate / compute

no silver bullet
– each parallelization scheme has its problems

Rolf RabenseifnerHybrid Programming Models
Slide 20 / 64 Höchstleistungsrechenzentrum Stuttgart

The Topology Problem with Pure MPI

Advantages
– No modifications on existing MPI codes
– MPI library need not to support multiple threads

Problems
– To fit application topology on hardware topology

Solutions for Cartesian grids:
– E.g. choosing ranks in MPI_COMM_WORLD ???

• round robin (rank 0 on node 0, rank 1 on node 1, ...)
• Sequential (ranks 0-7 on 1st node, ranks 8-15 on 2nd …)

… in general
– load balancing in two steps:

• all cells among the SMP nodes (e.g. with ParMetis)
• inside of each node: distributing the cells among the CPUs

– or …

pure MPI
one MPI process

on each CPU

using hybrid programming models

1 2 30
9 10 118

5 6 74
13 14 1512

1 2 30
9 10 118

5 6 74
13 14 1512

1 2 30
9 10 118

5 6 74
13 14 1512

Round-robin x14

Sequential x8

Optimal ? x2

Slow inter-node link

Exa.: 2 SMP nodes, 8 CPUs/node

• Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 11

Rolf RabenseifnerHybrid Programming Models
Slide 21 / 64 Höchstleistungsrechenzentrum Stuttgart

Unnecessary intra-node communication

inter-node
8*8*1MB:

9.6 ms

vertical AND horizontal messages

intra-node
8*8*1MB:

2.0 ms

...

pure MPI: Σ=11.6 ms

Timing:
Hitachi SR8000, MPI_Sendrecv
8 nodes, each node with 8 CPUs

pure MPI

Node
CPU

Alternative:
• Hybrid MPI+OpenMP
• No intra-node messages
• Longer inter-node

messages
• Really faster ???????

(… wait 2 slides)

• Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.

Rolf RabenseifnerHybrid Programming Models
Slide 22 / 64 Höchstleistungsrechenzentrum Stuttgart

Programming Models on Hybrid Platforms:
Hybrid Masteronly

Advantages
– No message passing inside of the SMP nodes
– No topology problem

Problems
– MPI-lib must support MPI_THREAD_FUNNELED

Disadvantages
– do we get full inter-node bandwidth? … next slide

– all other threads are sleeping
while master thread communicates

Reason for implementing
overlapping of
communication & computation

for (iteration ….)
{
#pragma omp parallel

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside
of parallel regions

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 12

Rolf RabenseifnerHybrid Programming Models
Slide 23 / 64 Höchstleistungsrechenzentrum Stuttgart

Experiment:
Orthogonal parallel communication

inter-node
8*8*1MB:

9.6 ms

pure MPI:
vertical AND horizontal messages

intra-node
8*8*1MB:

2.0 ms

...

pure MPI: Σ=11.6 ms

Hitachi SR8000
• 8 nodes
• each node

with 8 CPUs
• MPI_Sendrecv

Masteronly
pure MPI

1.6x slower than with pure MPI, although
• only half of the transferred bytes
• and less latencies due to 8x longer messages

8*8MB
hybrid: 19.2 ms

MPI+OpenMP:
only vertical

message size
:= aggregated

message
size of
pure MPI

• Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.

Rolf RabenseifnerHybrid Programming Models
Slide 24 / 64 Höchstleistungsrechenzentrum Stuttgart

Results of the experiment

• pure MPI is better for
message size > 32 kB

• long messages:
Thybrid / TpureMPI > 1.6

• OpenMP master thread
cannot saturate the
inter-node network bandwidth

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

0,125 0,5 2 8 32 128 512 2048
 Message size [kB]

R
at

io

T_hybrid / T_pureMPI (inter+intra node)

0,01

0,1

1

10

100

0,125 0,5 2 8 32 128 512 2048
Message size [kB]

Tr
an

sf
er

 ti
m

e
[m

s]

T_hybrid (size*8)

T_pure MPI: inter+intra

T_pure MPI: inter-node

T_pure MPI: intra-node

128 512 2k 8k 32k 128k 512k 2M (pureMPI)
1k 4k 16k 64k 256k 1M 4M 16M (hybrid)

pure MPI
is

faster

MPI+OpenMP
(masteronly)

is faster

Masteronly
pure MPI

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 13

Rolf RabenseifnerHybrid Programming Models
Slide 25 / 64 Höchstleistungsrechenzentrum Stuttgart

Ratio on several platforms

Ratio T_hybrid_masteronly / T_pure_MPI

0

0,5

1

1,5

2

2,5

3

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Message size (used with pure MPI on each CPU or
MSP)

ra
tio

 T
_h

yb
ri

d_
m

as
te

ro
nl

y
/ T

_p
ur

e_
M

PI
 _

IBM SP 8x16 CPUs,
1 CPU Masteronly
SGI O3000 16x4 CPUs,
1 CPU Masteronly
Hitachi SR8000 8x8 CPUs,
1 CPU Masteronly
Pure MPI,
horizontal + vertical
Cray X1 8x4 MSPs,
1 MSP Masteronly
NEC SX6 glmem 4x8 CPUs,
1 CPU Masteronly

Pure MPI
is faster

Hybrid
is faster

Cray X1 and NEC SX are well
prepared for hybrid
masteronly programming

Cray X1 and SGI results are preliminary

IBM SP and SR 8000
Masteronly:
MPI cannot saturate
inter-node bandwidth

Rolf RabenseifnerHybrid Programming Models
Slide 26 / 64 Höchstleistungsrechenzentrum Stuttgart

Pure MPI versus Hybrid-masteronly

• Data transfer
– Pure MPI:

• Typically in message passing epochs
• inter-node network saturated by a few processes per node
• Best case: only one additional cutting plane in each dimension (e.g., 8-way SMP)

compared to hybrid MPI+OpenMP
• only doubling the total amount of transferred bytes

– Hybrid-masteronly:
• other threads are sleeping

while master thread calls MPI routines
• node-to-node communication time therefore

weighted by number of processors/node !!!
• node-to-node bandwidth = 1 GB/s

is reduced to 125 MB/s (on 8 CPUs/node)
• latency = 20 µs explodes to 160 µs

Masteronly
pure MPI

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 14

Rolf RabenseifnerHybrid Programming Models
Slide 27 / 64 Höchstleistungsrechenzentrum Stuttgart

Possible Reasons

• Hardware:
– is one CPU able to saturate the inter-node network?

• Software:
– internal MPI buffering may cause additional memory traffic

memory bandwidth may be the real restricting factor?

Let’s look at parallel bandwidth results

Rolf RabenseifnerHybrid Programming Models
Slide 28 / 64 Höchstleistungsrechenzentrum Stuttgart

2nd Experiment: Multiple inter-node communication paths

inter-node
8*8*1MB

hybrid: 3*8*8/3MB

MPI+OpenMP:
only vertical

pure MPI:
vertical AND horizontal messages

intra-node
8*8*1MB

...

pure MPI: intra- + inter-node
(= vert. + horizontal)

Multiple vertical
communication paths, e.g.,

• 3 of 8 CPUs in each node

• stride 2

stride

Following benchmark
results: with one MPI
process on each CPU

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 15

Rolf RabenseifnerHybrid Programming Models
Slide 29 / 64 Höchstleistungsrechenzentrum Stuttgart

Multiple inter-node communication paths: Hitachi SR8000

Inter-node bandwidth per SMP node, accumulated over its CPUs,
on Hitachi SR8K

0

100

200

300

400

500

600

700

800

900

1000

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Message size (used with pure MPI on each CPU)

Ac
cu

m
ul

at
ed

 b
an

dw
id

th
 p

er
 S

M
P

no
de

[M
B/

s]

 8x8 CPUs, Hybrid Multiple,
8/8 CPUs Stride 1
 8x8 CPUs, Hybrid Multiple,
6/8 CPUs Stride 1
 8x8 CPUs, Hybrid Multiple,
4/8 CPUs Stride 1
 8x8 CPUs, Hybrid Multiple,
3/8 CPUs Stride 1
 8x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 1
 8x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 4
 8x8 CPUs, Pure MPI,
horizontal + vertical
 8x8 CPUs, Hybrid
Masteronly, MPI: 1 of 8 CPUs

To spend more than
3 CPUs/node
for communication
makes no sense

*) Bandwidth per node: totally transferred bytes on the inter-node network
/ wall clock time / number of nodes

Intra-node
messages do
not count for
bandwidth

*)

Rolf RabenseifnerHybrid Programming Models
Slide 30 / 64 Höchstleistungsrechenzentrum Stuttgart

Multiple inter-node communication paths: Hitachi SR 8000

Hybrid communication time / pure MPI communication time
on Hitachi SR 8000

0,00

0,20

0,40

0,60

0,80

1,00

1,20

1,40

1,60

1,80

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Message size (used with pure MPI on each CPU)

Ra
tio

 T
_c

om
m

. o
f .

..
/ T

_c
om

m
. o

f p
ur

e
M

P

 8x8 CPUs, Hybrid
Masteronly, MPI: 1 of 8 CPUs
 8x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 1
 8x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 4
 8x8 CPUs, Hybrid Multiple,
3/8 CPUs Stride 1
 8x8 CPUs, Hybrid Multiple,
4/8 CPUs Stride 1
 8x8 CPUs, Hybrid Multiple,
6/8 CPUs Stride 1
 8x8 CPUs, Hybrid Multiple,
8/8 CPUs Stride 1
 8x8 CPUs, Pure MPI,
horizontal + vertical

Pure M
PI is faster

H
ybrid is faster

Hybrid is faster than pure MPI
if ≥ 2 CPUs/node are used
for intra-node communication
in hybrid programming model

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 16

Rolf RabenseifnerHybrid Programming Models
Slide 31 / 64 Höchstleistungsrechenzentrum Stuttgart

Multiple inter-node communication paths: IBM SP

Inter-node bandwidth per SMP node, accumulated over its CPUs,
on IBM at NERSC (16 Power3+ CPUs/node)

0

100

200

300

400

500

600

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Message size (used with pure MPI on each CPU)

A
cc

um
ul

at
ed

 b
an

dw
id

th
 p

er
 S

M
P

no
de

[M
B

/s
]

 8x16 CPUs, Hybrid
Multiple,12/16 CPUs Stride 1
 8x16 CPUs, Hybrid Multiple,
6/16 CPUs Stride 1
 8x16 CPUs, Hybrid Multiple,
4/16 CPUs Stride 1
 8x16 CPUs, Hybrid Multiple,
3/16 CPUs Stride 1
 8x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 1
 8x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 4
 8x16 CPUs, Pure MPI,
horizontal + vertical
 8x16 CPUs, Hybrid
Masteronly, MPI: 1 of 16CPUs

The second CPU doubles the
accumulated bandwidth

More than 4 CPUs
per node needed
to achieve full
inter-node
bandwidth

*) Bandwidth per node: totally transferred bytes on the
inter-node network / wall clock time / number of nodes

*)

With 3 CPUs
similar to
pure MPI

Measurements: Thanks to
Gerhard Wellein, RRZE,

and Horst Simon, NERSC.

Rolf RabenseifnerHybrid Programming Models
Slide 32 / 64 Höchstleistungsrechenzentrum Stuttgart

Inter-node bandwidth per SMP node, accumulated over its CPUs,
on NEC SX6 (with MPI_Alloc_mem)

0

1000

2000

3000

4000

5000

6000

7000

8000

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Message size (used with pure MPI on each CPU)

A
cc

um
ul

at
ed

 b
an

dw
id

th
 p

er
 S

M
P

no
de

[M
B

]

 4x8 CPUs, Hybrid Multiple,
8/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
6/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
4/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
3/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 4
 4x8 CPUs, Hybrid
Masteronly, MPI: 1 of 8 CPUs
 4x8 CPUs, Pure MPI,
horizontal + vertical

Intra-node
messages do
not count for
bandwidth

Multiple inter-node communication paths:
NEC SX-6 (using global memory)

Inverse:
More CPUs
= less bandwidth

*)

*) Bandwidth per node: totally transferred bytes on the
inter-node network / wall clock time / number of nodes

Measurements:
Thanks to Holger Berger, NEC.

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 17

Rolf RabenseifnerHybrid Programming Models
Slide 33 / 64 Höchstleistungsrechenzentrum Stuttgart

Inter-node bandwidth per SMP node, accumulated over its CPUs,
on Cray X1, 4 MSPs / node (1 MSP = 4 CPUs)

0

1000

2000

3000

4000

5000

6000

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Message size (used with pure MPI on each MSP)

A
cc

um
ul

at
ed

 b
an

dw
id

th
 p

er
 S

M
P

no
de

[M
B

/s
] *

)

 8x4 MSPs, Hybrid Multiple,
4/4 MSPs Stride 1

 8x4 MSPs, Hybrid Multiple,
3/4 MSPs Stride 1

 8x4 MSPs, Hybrid Multiple,
2/4 MSPs Stride 1

 8x4 MSPs, Hybrid Multiple,
2/4 MSPs Stride 2

 8x4 MSPs, Pure MPI,
horizontal + vertical

 8x4 MSPs, Hybrid
Masteronly, MPI: 1 of 4 MSPs

Multiple inter-node communication paths:
Cray X1, used with 4 MSPs/node (preliminary results)

1 MSP achieves
already 80% of
full inter-node
bandwidth

Intra-node
messages do
not count for
bandwidth

*)

*) Bandwidth per node: totally transferred bytes on the
inter-node network / wall clock time / number of nodes

Measurements:
Thanks to Monika Wierse and Wilfried Oed, CRAY.

Rolf RabenseifnerHybrid Programming Models
Slide 34 / 64 Höchstleistungsrechenzentrum Stuttgart

Inter-node bandwidth per SMP node, accumulated over its CPUs,
on Cray X1, 4 MSPs / node (1 MSP = 4 CPUs), shmem put

0

2000

4000

6000

8000

10000

12000

14000

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7
Message size (used with pure MPI on each MSP)

Ac
cu

m
ul

at
ed

 b
an

dw
id

th
 p

er
 S

M
P

no
de

[M
B/

s]
 *

)

 8x4 MSPs, put, Hybrid Multiple,
4/4 MSPs Stride 1

 8x4 MSPs, put, Hybrid Multiple,
3/4 MSPs Stride 1

 8x4 MSPs, put, Hybrid Multiple,
2/4 MSPs Stride 1

 8x4 MSPs, put, Hybrid Multiple,
2/4 MSPs Stride 2

 8x4 MSPs, put, Pure MPI,
horizontal + vertical

 8x4 MSPs, put, Hybrid
Masteronly, MPI: 1 of 4 MSPs

Multiple inter-node communication paths:
Cray X1, used with 4 MSPs/node, shmem put (instead MPI)

1 MSP achieves
already 75% of
full inter-node
bandwidth

Intra-node
messages do
not count for
bandwidth

*)

*) Bandwidth per node: totally transferred bytes on the
inter-node network / wall clock time / number of nodes

Measurements:
Thanks to Monika Wierse and Wilfried Oed, CRAY.

Highest parallel
bandwidth: 12.0 GF/s

— skipped —

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 18

Rolf RabenseifnerHybrid Programming Models
Slide 35 / 64 Höchstleistungsrechenzentrum Stuttgart

Inter-node bandwidth per SMP node, accumulated over its CPUs

0

2000

4000

6000

8000

10000

12000

0 2 4 6 8 10 12 14 16

communicating CPUs per SMP node

ac
cu

m
ul

at
ed

 b
an

dw
id

th
 [M

B
/s

]
Cray X1 MSP shmem_put / 1920*4 kB
Cray X1 MSP shmem_put / 240*4 kB
Cray X1 MSP shmem_put / 30*4 kB
Cray X1 MSP / 1920*4 kB
Cray X1 MSP / 240*4 kB
Cray X1 MSP / 30*4 kB
NEC SX6 glmem / 1920*8 kB
NEC SX6 glmem / 240*8 kB
NEC SX6 glmem / 30*8 kB
Hitachi SR8000 / 1920*8 kB
Hitachi SR8000 / 240*8 kB
Hitachi SR8000 / 30*8 kB
IBM SP/Power3+ / 1920*16 kB
IBM SP/Power3+ / 240*16 kB
IBM SP/Power3+ / 30*16 kB

accumulated message
size from node to node

100

1000

10000

100000

0 2 4 6 8 10lo
ga

rit
hm

ic
 [M

B
/s

]

Comparison

*)

Cray X1 results are preliminary

*) Bandwidth per node: totally transferred bytes on the
inter-node network / wall clock time / number of nodes

IBM, 16 CPUs/node

X1, MPI

Hitachi, 8 CPUs/node

NEC SX-6, MPI with global
memory, 8 CPUs/node

Cray X1, smem_put
4 MSPs/node

Rolf RabenseifnerHybrid Programming Models
Slide 36 / 64 Höchstleistungsrechenzentrum Stuttgart

Inter-node bandwidth per SMP node, accumulated over its CPUs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0,0% 12,5% 25,0% 37,5% 50,0% 62,5% 75,0% 87,5% 100,0%

communicating CPUs per SMP node
as percentage

of the total number of CPUs per SMP node

ac
cu

m
ul

at
ed

 b
an

dw
id

th
 a

s
pe

rc
en

ta
ge

of
 th

e
pe

ak
 b

an
dw

id
th

Cray X1 MSP shmem_put / 7680 kB

Cray X1 MSP / 7680 kB

NEC SX6 glmem / 7680 kB

Hitachi SR8000 / 7680 kB

IBM SP/Power3+ / 7680 kB

accumulated message
size from node to node

Comparison (as percentage of maximal bandwidth and #CPUs)

Cray X1 results are preliminary

Nearly full bandwidth
• with 1 MSP on Cray
• with 1 CPU on NEC

50 % and less
on the other platforms

Nearly all platforms:
>80% bandwidth with

25% of CPUs/node

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 19

Rolf RabenseifnerHybrid Programming Models
Slide 37 / 64 Höchstleistungsrechenzentrum Stuttgart

Inter-node bandwidth per SMP node, accumulated over its CPUs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0,0% 12,5% 25,0% 37,5% 50,0% 62,5% 75,0% 87,5% 100,0%

communicating CPUs per SMP node
as percentage

of the total number of CPUs per SMP node

ac
cu

m
ul

at
ed

 b
an

dw
id

th
 a

s
pe

rc
en

ta
ge

of
 th

e
pe

ak
 b

an
dw

id
th

Cray X1 MSP shmem_put / 960 kB

Cray X1 MSP / 960 kB

NEC SX6 glmem / 960 kB

Hitachi SR8000 / 960 kB

IBM SP/Power3+ / 960 kB

accumulated message
size from node to node

Comparison (only 960 kB aggregated message size)

Similar behavior on
Cray X1 and NEC SX-6

Cray X1 results are preliminary

— skipped —

Rolf RabenseifnerHybrid Programming Models
Slide 38 / 64 Höchstleistungsrechenzentrum Stuttgart

Comparing inter-node bandwidth with
peak CPU performance

18 %

33 %

28 %

49 %

91 %

100 %

82 %

75 %

Master-
only bw
/ max.
intra-
node bw

8 * 4 MSPs0.24151.213633.012.349.27Cray X1,shmem_put
preliminary results

4 *24 CPUs1.680.850.15SUN-fire (prelimi.)

16 *4 CPUs0.0634.83.20.39+)0.30+)0.10SGI Origin 3000
preliminary results

8 *16 CPUs0.02324162.00.57+)0.16IBM SP Power3+

8 * 8 CPUs0.114832 store
32 load5.00.910.45Hitachi SR8000

2 *16 CPUs
a) only with 8

0.0396451235.12.50
a)

2.27NEC SX-5Be
local memory

4 * 8 CPUs0.1186425678.7
93.7+)

4.987.56NEC SX-6
global memory

8 * 4 MSPs0.10851.213619.55.524.52Cray X1, MPI
preliminary results

nodes*CPUsmax.
inter-
node bw
/ peak
perf.

B/Flop

Peak
perfor-
mance

Gflop/s

memo
-ry
band-
width
[GB/s]

pure
MPI,
intra-
node
[GB/s]

pure
MPI,
inter-
node
[GB/s]

Master
-only,
inter-
node
[GB/s]

All values:
aggregated over
one SMP nodes. *)
mess. size: 16 MB

+) 2 MB

*) Bandwidth per node: totally transferred bytes on the network
/ wall clock time / number of nodes

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 20

Rolf RabenseifnerHybrid Programming Models
Slide 39 / 64 Höchstleistungsrechenzentrum Stuttgart

The sleeping-threads and
the saturation problem

• Masteronly:
– all other threads are sleeping while master thread calls MPI

wasting CPU time
wasting plenty of CPU time
if master thread cannot saturate the inter-node network

• Pure MPI:
– all threads communicate,

but already 1-3 threads could saturate the network
wasting CPU time

Overlapping communication and computation

• Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.

Rolf RabenseifnerHybrid Programming Models
Slide 40 / 64 Höchstleistungsrechenzentrum Stuttgart

Additional OpenMP Overhead

• Thread fork / join

• Cache flush
– synchronization between data source thread and

communicating thread implies a cache flush

• Amdahl’s law for each level of parallelism

• Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 21

Rolf RabenseifnerHybrid Programming Models
Slide 41 / 64 Höchstleistungsrechenzentrum Stuttgart

Mismatch Problems

• Topology problem [with pure MPI]
• Unnecessary intra-node communication [with pure MPI]
• Inter-node bandwidth problem [with hybrid MPI+OpenMP]
• Sleeping threads and [with masteronly]

saturation problem [with pure MPI]
• Additional OpenMP overhead [with hybrid MPI+OpenMP]

– Thread fork / join
– Cache flush (data source thread – communicating thread – sync. flush)

• Overlapping communication and computation [with hybrid MPI+OpenMP]
– an application problem separation of local or halo-based code
– a programming problem thread-ranks-based vs. OpenMP work-sharing
– a load balancing problem, if only some threads communicate / compute

no silver bullet
– each parallelization scheme has its problems

Rolf RabenseifnerHybrid Programming Models
Slide 42 / 64 Höchstleistungsrechenzentrum Stuttgart

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each CPU

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only

on master-thread

Multiple
more than one thread

may communicate

Funneled &
Reserved

reserved thread
for communication

Funneled
with

Full Load
Balancing

Multiple &
Reserved

reserved threads
for communication

Multiple
with

Full Load
Balancing

C
om

pa
ris

on
 I.

(2
 e

xp
er

im
en

ts
)

Comparison II.
(theory + experiment)

Comparison III.

Different strategies
to simplify the
load balancing

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 22

Rolf RabenseifnerHybrid Programming Models
Slide 43 / 64 Höchstleistungsrechenzentrum Stuttgart

Overlapping
communication and computation

• the load balancing problem:
– some threads communicate, others not
– balance work on both types of threads
– strategies:

– reservation of one a fixed amount of
threads (or portion of a thread) for
communication

– see example last slide: 1 thread was
reserved for communication

a good chance !!! … see next slide

very hard to do !!!

Funneled
with

Full Load
Balancing

Funneled &
Reserved

reserved thread
for communi.

Multiple &
Reserved

reserved threads
for communic.

Multiple
with

Full Load
Balancing

• Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.

Rolf RabenseifnerHybrid Programming Models
Slide 44 / 64 Höchstleistungsrechenzentrum Stuttgart

Overlapping computation & communication (cont’d)

Funneled & reserved or Multiple & reserved:
• reserved tasks on threads:

– master thread or some threads: communication
– all other threads ……………... : computation

• cons:
– bad load balance, if

Tcommunication ncommunication_threads
≠

Tcomputation ncomputation_threads
• pros:

– more easy programming scheme than with full load balancing
– chance for good performance!

funneled &
reserved

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 23

Rolf RabenseifnerHybrid Programming Models
Slide 45 / 64 Höchstleistungsrechenzentrum Stuttgart

Performance ratio (theory)

• ε = ()–1Thybrid, funneled&reserved
Thybrid, masteronly

funneled &
reserved

Masteronly

ε > 1
funneled&
reserved
is faster

ε < 1
masteronly

is faster

fcomm [%]

pe
rf

or
m

an
ce

 ra
tio

 (ε
)

fcomm [%]

Good chance of funneled & reserved:
εmax = 1+m(1– 1/n)

Small risk of funneled & reserved:
εmin = 1–m/n

Thybrid, masteronly = (fcomm + fcomp, non-overlap + fcomp, overlap) Thybrid, masteronly
n = # threads per SMP node, m = # reserved threads for MPI communication

Rolf RabenseifnerHybrid Programming Models
Slide 46 / 64 Höchstleistungsrechenzentrum Stuttgart

Experiment: Matrix-vector-multiply (MVM)

• Jacobi-Davidson-Solver
• Hitachi SR8000

• 8 CPUs / SMP node
• JDS (Jagged Diagonal

Storage)
• vectorizing
• nproc = # SMP nodes
• DMat =

512*512*(nk
loc*nproc)

• Varying nk
loc

⇒ Varying 1/fcomm
• fcomp,non-overlap =

1
fcomp,overlap 6

funneled &
reserved

Masteronly

pe
rf

or
m

an
ce

ra
tio

 (
ε)

(Theory)

Experiments

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models.
EWOMP 2002, Rome, Italy, Sep. 18–20, 2002

fu
nn

el
ed

&
 re

se
rv

ed
is

 fa
st

er
m

as
te

ro
nl

y
is

 fa
st

er

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 24

Rolf RabenseifnerHybrid Programming Models
Slide 47 / 64 Höchstleistungsrechenzentrum Stuttgart

Experiment: Matrix-vector-multiply (MVM)

• Same experiment
on IBM SP Power3 nodes
with 16 CPUs per node

• funneled&reserved is
always faster in this
experiments

• Reason:
Memory bandwidth
is already saturated
by 15 CPUs, see inset

• Inset:
Speedup on 1 SMP node
using different
number of threads

funneled &
reserved

Masteronly

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures.
International Journal of High Performance Computing Applications, Vol. 17, No. 1, 2003, Sage Science Press .

fu
nn

el
ed

 &
 re

se
rv

ed
is

 fa
st

er
m

as
te

ro
nl

y
is

 fa
st

er

pe
rf

or
m

an
ce

 ra
tio

 (
ε)

Rolf RabenseifnerHybrid Programming Models
Slide 48 / 64 Höchstleistungsrechenzentrum Stuttgart

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each CPU

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only

on master-thread

Multiple
more than one thread

may communicate

Funneled &
Reserved

reserved thread
for communication

Funneled
with

Full Load
Balancing

Multiple &
Reserved

reserved threads
for communication

Multiple
with

Full Load
Balancing

C
om

pa
ris

on
 I.

(2
 e

xp
er

im
en

ts
)

Comparison II.
(theory + experiment)

Comparison III.

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 25

Rolf RabenseifnerHybrid Programming Models
Slide 49 / 64 Höchstleistungsrechenzentrum Stuttgart

Compilation and Optimization

• Library based communication (e.g., MPI)
– clearly separated optimization of

(1) communication MPI library
(2) computation Compiler

• Compiler based parallelization (including the communication):
– similar strategy OpenMP Source (Fortran / C)

with optimization directives

(1) OMNI Compiler

C-Code + Library calls
Communication-
& Thread-Library (2) optimizing native compiler

Executable

– preservation of original …
• … language?
• … optimization directives?

• Optimization of the computation more important than
optimization of the communication

essential for
success of MPI

hybrid MPI+OpenMP OpenMP only

Rolf RabenseifnerHybrid Programming Models
Slide 50 / 64 Höchstleistungsrechenzentrum Stuttgart

OpenMP/DSM

• Distributed shared memory (DSM) //
• Distributed virtual shared memory (DVSM) //
• Shared virtual memory (SVM)

• Principles
– emulates a shared memory
– on distributed memory hardware

• Implementations
– e.g., TreadMarks

pure MPI OpenMP only

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 26

Rolf RabenseifnerHybrid Programming Models
Slide 51 / 64 Höchstleistungsrechenzentrum Stuttgart

Case Studies

• NAS Parallel Benchmarks EP, FT, and CG:
– Message passing and sequential version

• Automatically generate OpenMP directives for sequential code using CAPO
(www.nas.nasa.gov/Groups/Tools/CAPO)

• Omni Compiler
• Compare speedup of:

– Message passing vs. OpenMP/DSM
– OpenMP/DSM vs. OpenMP/SMP

• Hardware platforms:
– DSM Test Environment

• Use only one CPU per node

– SMP 16-way NEC AzusA
• Case study was conducted with Gabrielle Jost from NASA/Ames and

Matthias Hess, Matthias Mueller from HLRS

pure MPI OpenMP only

Slides courtesy of Gabriele Jost, NASA/AMES, and Matthias Müller, HLRS

Rolf RabenseifnerHybrid Programming Models
Slide 52 / 64 Höchstleistungsrechenzentrum Stuttgart

The EP Benchmark

• Embarrassing Parallel:
– Generation of random numbers
– Loop iterations parallel
– Global sum reduction at the end

• Automatic Parallelization without
user interaction

• MPI implementation:
– Global sum built via

MPI_ALLREDUCE
– Low communication overhead

(< 1%)
• OpenMP/DSM:

– OMP PARALLEL
– OMP DO REDUCTION

EP Class A

0

1

2

3

4

5

6

7

8

9

1 2 3 4 5 6 7 8

Number of Processes

Sp
ee

d-
Up

EP Class A DSM
Speed-up
EP Class A MPI
Speed-up

Linear speedup for MPI and OpenMP/DSM.
No surprises.

pure MPI OpenMP only

Slides courtesy of Gabriele Jost, NASA/AMES, and Matthias Müller, HLRS

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 27

Rolf RabenseifnerHybrid Programming Models
Slide 53 / 64 Höchstleistungsrechenzentrum Stuttgart

CG Benchmark Results (1)

• Conjugate Gradient method to solve an
eigenvalue problem
– Stresses irregular data access
– Major loops:

• Sparse Matrix-Vector-Multiply
• Dot-Product
• AXPY Operations

– Same major loops in MPI and
OpenMP implementation

– Automatic parallelization without user
interaction

• Class A:
– Problem size: na=14000, nz=11
– OpenMP/DSM efficiency about 75%

of that of MPI
• Class S:

– Problem size: na=1400, nz=7
– MPI about 20% communication.
– No speedup for OpenMP/DSM due to:

• Large Communication to
Computation Ratio

• Inefficiencies in the Omni Compiler

CG Class A

0

1

2

3

4

5

6

7

8

1 2 4 8

Number of Processes

Sp
ee

du
p OpenMP/DSM

OpenMP/SMP

MPI

CG Class S

0

1

2

3

4

5

6

7

8

1 2 4 8

Number of processes

Sp
ee

du
p OpenMP/DSM

OpenMP/SMP

MPI

pure MPI OpenMP only

Slides courtesy of Gabriele Jost, NASA/AMES, and Matthias Müller, HLRS

Rolf RabenseifnerHybrid Programming Models
Slide 54 / 64 Höchstleistungsrechenzentrum Stuttgart

CG Benchmark Results (2)

CG Class S

0

0.5

1

1.5

2

2.5

3

3.5

1 2 4 8

Number of Processes

S
pe

ed
up Omni

Intel
Guide

pure MPI OpenMP only

Slides courtesy of Gabriele Jost, NASA/AMES, and Matthias Müller, HLRS

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 28

Rolf RabenseifnerHybrid Programming Models
Slide 55 / 64 Höchstleistungsrechenzentrum Stuttgart

FT Benchmark Results (1)

• Kernel of spectral method based on
3D Fast Fourier Transform (FFT)
– 3D FFT achieved by a 1D FFT in

x, y, and z direction

• MPI Parallelization:
– Transpose of data for FFT in z-

dimension
– 15% in communication

• OpenMP Parallelization:
– OpenMP parallelization required

some user interaction
– Privatization of certain arrays via

the CAPO user interface
– OMP DO PARALLEL
– Order of loops changes for z-

dimension

FT Class A

0

1

2

3

4

5

6

7

8

1 2 4 8

Number of processes

Sp
ee

du
p OpenMP/DSM

OpenMP/SMP
MPI

pure MPI OpenMP only

• OpenMP/DSM efficiency about 70% of MPI
– Extra communication introduced by

DSM system (false page sharing?)
– Remote data access required for FFT in

z-dimension

Slides courtesy of Gabriele Jost, NASA/AMES, and Matthias Müller, HLRS

— skipped —

Rolf RabenseifnerHybrid Programming Models
Slide 56 / 64 Höchstleistungsrechenzentrum Stuttgart

OpenMP/DSM: Conclusions:

• Rapid development of parallel code running across a cluster of PCs
was possible

• OpenMP/DSM delivered acceptable speedup if the
communication/computation ratio is not too high:
– OpenMP/DSM showed between 70% and 100% efficiency

compared to MPI for benchmarks of Class A
• Problems encountered:

– High memory requirements for management of virtual shared
memory (> 2GB)

– Potential scalability problems
• Need for profiling tools

pure MPI OpenMP only

Slides courtesy of Gabriele Jost, NASA/AMES, and Matthias Müller, HLRS

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 29

Rolf RabenseifnerHybrid Programming Models
Slide 57 / 64 Höchstleistungsrechenzentrum Stuttgart

Outline

• Motivation [slides 3–7]

• Major parallel programming models [8–14]

• Programming models on hybrid systems [15–-56]

– Overview [15]

– Technical aspects with thread-safe MPI [16–18]

– Mismatch problems with pure MPI and hybrid MPI+OpenMP [19–46]

• Topology problem [20]
• Unnecessary intra-node comm. [21]
• Inter-node bandwidth problem [22–38]

– Comparison I: Two experiments
• Sleeping threads and saturation problem [39]
• Additional OpenMP overhead [40]
• Overlapping comm. and comp. [41–47]

– Comparison II: Theory + experiment
– Pure OpenMP [48–56]

– Comparison III

• No silver bullet / optimization chances / other concepts [58–62]

• Acknowledgments & Conclusions [63–64]

Rolf RabenseifnerHybrid Programming Models
Slide 58 / 64 Höchstleistungsrechenzentrum Stuttgart

No silver bullet

• The analyzed programming models do not fit on hybrid architectures

– whether drawbacks are minor or major
depends on applications’ needs

– problems …
to utilize the CPUs the whole time

to achieve the full inter-node network bandwidth

to minimize inter-node messages

to prohibit intra-node
– message transfer,
– synchronization and
– balancing (idle-time) overhead

with the programming effort

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 30

Rolf RabenseifnerHybrid Programming Models
Slide 59 / 64 Höchstleistungsrechenzentrum Stuttgart

Chances for optimization

– with hybrid masteronly (MPI only outside of parallel OpenMP regions), e.g.,
Minimize work of MPI routines, e.g.,

application can copy non-contiguous data into contiguous scratch arrays
(instead of using derived datatypes)

MPI communication parallelized with multiple threads
to saturate the inter-node network

by internal parallel regions inside of the MPI library

by the user application

Use only hardware that can saturate inter-node network with 1 thread

Optimal throughput:
reuse of idling CPUs by other applications

Rolf RabenseifnerHybrid Programming Models
Slide 60 / 64 Höchstleistungsrechenzentrum Stuttgart

Other Concepts

• Distributed memory programming (DMP) language extensions
– Co-array Fortran
– UPC (Unified Parallel C)

Idea: direct access to remote data via additional [rank] index

• Multi level parallelism (MLP)
– combining OpenMP (inside of the processes)
– with Sys V shared memory (data access between processes)
– only on ccNUMA

No standards!
Only on a few platforms!

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 31

Rolf RabenseifnerHybrid Programming Models
Slide 61 / 64 Höchstleistungsrechenzentrum Stuttgart

DMP Language Extensions

• Programmable access to the memory of the other processes
• Language bindings:

– Co-array Fortran
– UPC (Unified Parallel C)

• Special additional array index to explicitly address the process
• Examples (Co-array Fortran):

integer a[*], b[*] ! Replicate a and b on all processes
a[1] = b[6] ! a on process 1 := b on process 6

dimension (n,n) :: u[3,*] ! Allocates the nxn array u
! on each of the 3x* processes

p = THIS_IMAGE(u,1) ! first co-subscript of local process
q = THIS_IMAGE(u,1) ! second co-subscript of local process
u(1:n,1)[p+1,q] = u(1:n,n)[p,q] ! Copy right boundary u(1,) on process [p,]

! to right neighbor [p+1,] into left boundary u(n,)

— skipped —

Rolf RabenseifnerHybrid Programming Models
Slide 62 / 64 Höchstleistungsrechenzentrum Stuttgart

Multi Level Parallelism (MLP)
• program
• processes
• multiple threads inside

of each process
(OpenMP)

• data associated with
each process

• but shared (ccNUMA)
access to other
processes’ dataCheap load balancing

– by changing the number of threads per process
– before starting a new parallel region

© Rolf Rabenseifner: Parallel Programming Models on Hybrid Systems: MPI + OpenMP and other models on clusters
of SMP nodes. Invited guest-lecture at “Cluster-Computing lecture”, University of Heidelberg, June 20, 2003. Page 32

Rolf RabenseifnerHybrid Programming Models
Slide 63 / 64 Höchstleistungsrechenzentrum Stuttgart

Acknowledgements

• I want to thank
– Gerhard Wellein, RRZE
– Monika Wierse, Wilfried Oed, and Tom Goozen, CRAY
– Holger Berger, NEC
– Gabriele Jost, NASA
– Dieter an Mey, RZ Aachen
– Horst Simon, NERSC
– my colleges at HLRS

and
– Thomas Ludwig, University of Heidelberg

Rolf RabenseifnerHybrid Programming Models
Slide 64 / 64 Höchstleistungsrechenzentrum Stuttgart

Conclusions

• Only a few platforms (e.g. Cray X1 in MSP mode, or NEC SX-6)
– are well designed hybrid MPI+OpenMP masteronly scheme

• Other platforms
– masteronly style cannot saturate inter-node bandwidth
– optimization chances should be used

• Pure MPI and hybrid masteronly:
– idling CPUs (while one or some are communicating)

• DSM systems (pure OpenMP):
– may help for some applications

• Optimal performance:
– overlapping of communication & computation

extreme programming effort
– optimal throughput

reuse of idling CPUs by other applications

See also www.hlrs.de/people/rabenseifner list of publications

