Published in the proceedings of the Parallel Computing 2003 Conference (ParCo2003), Sep. 2 — 5, Dresden, German. 1
www.parco.org and www.tu-dresden.de/zhr/ParCo02003/

Parallel Simulation of Cavitated Flows in High Pressure Systems

Panagiotis A. Adamidis®, Frank WronaP, Uwe Iben®, Rolf Rabenseifner® and Claus-Dieter Munz®
2High-Performance Computing-Center Stuttgart, Allmandring 30, D-70550 Stuttgart, Germany
PRobert Bosch GmbH, Dept. FV/FLM, P.O. Box 106050, D-70059 Stuttgart

Institute for Aero- and Gasdynamics (IAG), Pfaffenwaldring 21, D-70550 Stuttgart, Germany

This paper deals with the parallel numerical simulation of cavitating flows. The governing equations
are the compressible, time dependent Euler equations for a homogeneous two-phase mixture. The
equations of state for the density and internal energy are more complicated than for the ideal gas.
These equations are solved by an explicit finite volume approach. After each time step fluid properties,
namely pressure and temperature, must be obtained iteratively for each cell. The iteration process
takes much time, particularly if in the cell cavitation occurs. For this reason the algorithm has been
parallelized by domain decomposition. In case where different sizes of cavitated regions occur on the
different processes a huge load imbalance problem arises. In this paper a new dynamic load balancing
algorithm is presented, which solves this problem efficiently.

1. Introduction

Cavitation is the physical phenomenon of phase transition from liquid to vapor and occurs in a
vast field of hydrodynamic applications. The reason for fluid evaporation is that the pressure drops
beneath a certain threshold, the so called steam pressure. Once generated, the vapor fragments can
be transported through the whole fluid domain, as been depicted in Fig. 1. Finally they are often
destroyed at rigid walls which leads to damages.

Cavitation can also occur in various forms. Sometimes, they appear as large gas bubbles like in
cooling systems of power plants. The work in this paper is extended for high pressure injection
systems, where the fluid is expanded from a pressure of 1800 bar to nearly 10 bar. In such systems
cavitation occurs as small vapor pockets and clouds. Due to the structure of cavities, the assumption
that the flow field is homogenous, i.e. pressure, temperature and velocity of both phases are the same,
is justified.

The more complicated challenge is to
model the cavitation process, in a fash-
ion that it is valid for all pressure levels,
which can occur in such injection sys-
tems. Therefore the fluid properties are
described by ordinary equations of state
[1,2]. Among other things, this guaran-
tees that the most important fluid prop-
erty for modeling cavitation, e.g. the
pressure, is always positive.

As mentioned before, the complete
flow field is treated as compressible, even
Figure 1: Cavity formation behind a backward-facing step if the fluid does not evaporate. Addi-

tionally, enormous changes in the mag-
nitude of all flow properties occur, if the fluid is cavitating. Hence, the governing equations can only
be treated explicitly, but this limits the time step size strongly. Moreover, some fluid properties can
just be obtained iteratively. Wherever cavitation occurs, this iterative process takes much more time

than for the non cavitating case. This leads to very large computation times if one wish to solve larger
problems.

Due to these facts parallization of the algorithm is unavoidable. But for an efficient parallel run
the load imbalance problem, introduced by the cavitating cells, has to be solved. In the next section,
the governing equations are presented. In section 3, the numerical algorithm and in section 4, the
parallelization and the solution of the load imbalance problem are described. Finally in section 5,
results of the parallel tests are presented.

2. Governing equations

For showing the main difficulty in the parallel running case, viscous terms can be neglected. Further,
the regarded fluid is water and all necessary functions can be obtained from [3]. Therefore the
governing equations are the two dimensional Euler equations, symbolically written as

u; + f(u), + g(u), =0, (1)
with
p éov pw
pU pUve+0p pow
= f = = 2
u=| 20| o | BW={ 2)
E v(E +p) w(E + p)

Here derivatives are denoted by an index. In Eq. (2) p is the density, of the homogeneous mixture,
v and w the velocity in z-, respectively in y-direction. Further the property E is introduced, which
describes the total energy p(e + 1/2(v? + w?)) per unit volume. The density and the internal energy
e are functions of the pressure p and the temperature 7.

The density and the internal energy are expressed as mixture properties
LRI Y
p PG AL
Here the properties with the subscript G are the one of the gaseous phase and with the subscript L
of the liquid phase. The gaseous phase is treated as ideal gas and, the functions of the liquid phase
are obtained from the IAPWS97 [3]. The mass fraction is defined by

ma
mg +mr,’

and e = peg + (1 — per. (3)

(4)

and describes the fractional mass portion of the gaseous phase to the total mass in a cell. Finally to
close the system the mass fraction must also be expressed as a function of pressure and temperature.
With the assumption that the mixture of liquid and gas, also called steam, is always in thermodynam-
ical equilibrium and that the fluid evaporates at constant entropy, the mass fraction can be expressed
as

'LL:

h(pa T) — h/(p)
)W) ®)

The enthalpies h,h” and h’ can also be obtained from the IAPWS97 [3]. If the actual enthalpy h
is less than the enthalpy h’ at the boiling line, u is set to zero, because the fluid is outside of the
two-phase regime and consists of pure liquid. This happens, when the pressure is greater than the
steam pressure pPsteam, Which depends only on the temperature. Similar to the mass fraction a void
fraction can be defined, and can be calculated from Eq. (3); it can be used to detect cavitating cells:

wp, T) =

Va p
e=——— and e=pu—. 6
Ve+1 MPG ©)

3. Numerical solution

For solving the conservation of mass, momentum and energy numerically, a transient finite volume
approach is used, which calculates the system of conservative variables at each time step explicitly.

The underlying mesh is unstructured and consists of triangles and rectangles. Therefore Eq. (1) is
discretized as

u'tt = +— S L(ul,up)f(ur, ul)i;, (7)
JEN(z

where N (i) are the set of the neighbor cells of the ith cell and §; its volume. L£(uj,u}) denotes an

operator for different time integration methods. The numerical flux f depends on the conservative
variables in the ith cell and its neighbors. This fluxes are calculated by approximate Riemann solvers,
namely the HLLC-Solver [4]. Note that Eq. (7) is a strongly simplified presentation of the whole
method. For more information refer [5].

After the flux calculation and the update of the conservative variables from u} to u?“, the primitive
variables must be computed for each cell. For some properties this is very easy, because they can be
obtained analytically (the subscripts ¢ and superscripts n + 1 are dropped for convenience)

u9 us Uy 1 2 2
p=ui, v i w 5 and e 5 2(1} + w?). (8)
Now the pressure and the temperature for every cell is needed. But as mentioned before they can
only be computed iteratively. This can be done by an iteration for the formulas in Eq. (3), because
the internal energy and the density are already known
hi(p,T) = op 1op_ 0 and ho(p,T)=e—peg — (1 — p)er, = 0. (9)

p PG PL

At the beginning h; is iterated with fixed pressure for the new temperature by a bisection method.
Afterward, with the new value for the temperature, hsy is iterated for the new pressure also by a
bisection. These two steps are repeated until both values converge. Unfortunately these two values
converge slower if cavitation arises in the cell.

4. Parallel Algorithm

The iterative method described above has been proven
to be the most CPU time consuming part of the whole ‘ Initial Me%hpaﬁioning with METIS ‘
simulation. Especially, the time needed for cells in which

. . . Determine G]Obdl Timestep
cavitation occurs is much more than the one needed by 4’. MPL_ Aureduce l
the others, because there are more iterations executed
in order to determine pressure and temperature. This Calculate N“merical Fluxes
leads to enormous computation times for large realistic .
problems, which are in the range of several days or weeks.

To solve such problems, parallelization of the algo-
rithm is unavoidable, thus taking advantage of more pro-
cessors and memory space of a parallel computing envi- I
ronment. As mentioned before, the numerical method is
an explicit scheme. The natural approach to parallelize
such an algorithm is domain decomposition. The whole P ar|ld SRR
computational domain is decomposed into several subdo- I Collecting the migrated Cavities I
mains equal to the number of available processors. This |
initial partitioning is done using the tool METIS [9]. [Calculaing pr;mmve variables |

The whole algorithm consists of several parts, as can i :
be seen in Fig.gQ. The calculation of the fluxes is car- Updaeofhe o <o
ried out by each processor on the subdomain which has B communicating with MPI
been assigned to it. For calculations on cells lying on the
artificial boundary of each subdomain, data from their Figure 2: Flow chart of parallel algorithm
neighboring cells are needed. Because these neighbors
belong to adjacent subdomains, the subdomains are expanded. The new additional layer, the so
called halo layer, contains the aforementioned neighboring cells. The data for the halo cells is being
communicated using MPI [8].

Time integration

Calculate the new conservative
variables

I
Detecting and Redistribution
of Cavities

Iterative Calculation of

However, the appearance of cavitation affects the iterative calculation of pressure and temperature
in the time integration part in two ways. On one hand, the cavitating cells are not distributed
homogeneously over the whole computational domain, which means that subdomains having more
such cells need much more CPU time to finish their calculations, so that subdomains with less cells
have to wait for them. This causes a very significant load imbalance. On the other hand, the locations
of the cavities move across subdomains.

The approach followed in this work keeps the same initial partitioning, and reassigns only the work
done in the iterative process of determining pressure and temperature from partitions with more load
to partitions with less load, see shaded boxes in Fig. 2. Thereby, only the information needed to
determine pressure and temperature of a cell is moved to another process and the result is recollected
to the original location of the cell, because the cell itself is not moved to the other process. In
particular, first we store the iteration time ¢; needed by each cell i. Next, the iteration time tpjs
spend for each original partition j is determined by adding up the iteration time of its cells

ncell;
b= 3t (10)
i=1
where ncellj is the number of cells in partition j. The optimal CPU time distribution would now be
1
topt = [11
opt nprocs ; Pj ()

where nprocs stands for the number of processes. With the assumption that in the next time step
the cell times are slightly different we determine the time difference

nprocs

tdiff,j = tpj - ZL/opta (12)

for each process.

Depending on whether t45f; is greater than, less than or equal zero, the ith process is going to
migrate part of the calculations done on its cells, or will be a receiver of such a workload, or will not
reassign any work. In this way processes are classified as ”senders” and ”receivers”. Sending processes,
are sending workload to the receiving processes until all processes have approximately reached the
optimum CPU time ¢,y In each time step, the above described decision-making is based upon the
CPU times measured in the previous time step. With this migration, only a small part of the cell-
information must be sent. All other cell-information remains at the original owner of the cell. Halo
data is not needed, because the time-consuming iterative calculation of pressure and temperature is
done locally on each cell.

Each process calculates its own tp; value. This values are communicated by an all-gather operation
to the other processes. Thus, each process determines the number, the indices of the cells and the
receiving processes to which it will send the necessary information in order to have pressure and
temperature calculated. After this calculation the results are sent back to the owners of the cells, and
the remaining of the calculations is executed on the initial partitioning of the mesh. The computation
time needed for a cavitating cell is about 1 ms and only about the fourth part is needed for a non
cavitating cell, on an Intel Xeon 2GHz processor. Each sending process must send 32 Bytes (4 doubles)
of data per cell to the receiving processes, and must receive 16 Bytes (2 doubles) of results. This
means that 48 Bytes per cell must be communicated. Due to the small number of bytes for each
cell, the approach of transferring workload implies only a very small communication overhead. On a
100 Mbit/s Ethernet a communication time of about 4.3 us is needed.

Whereas, treating the introduced load imbalance by repartitioning the whole mesh, or by diffusion
schemes, as it is done by state of the art strategies [6,7] means that cells would have to be migrated
to other partitions, and the amount of data which would have to be communicated, is 1536 Bytes
(32 integers and 176 doubles) per cell. This means a communication time of about 140 ps on a
100 Mbit/s Ethernet, which is 32 times more than with our approach. Considering the fact that this
redestribution would have to be carried out in each time step, due to the steadily chainging number of
cavitating cells, it is obvious that the overhead introduced by the entire redistribution of cells is much
more than the overhead of our strategy, which temporarily redistributes partial cell information. In
this way, we also avoid expanding the halo layer.

5. Results

To

Po > Psteams V0

Cavity
P1 < Psteam; V1 ™ Do > Psteam; Vo

As benchmark, a shock tube problem is de-
fined. The tube has a length of one meter.
The mesh is a Cartesian grid with ten cells in

Figure 3: Schematic illustration of the benchmark

y-direction and 1000 in z-direction. The com-
putational domain is initialized as illustrated
in Fig. 3. It consists of a cavity, which is em-

bedded in pure liquid. This can be managed by setting the whole flow field with the same temperature
and the same pressure, except in the cavitated region the pressure is chosen that it is below the steam
pressure. The cavity has a thickness of 0.1m and its beginning is positioned at 0.2m after the tube
entry. Further the flow field is set up with a velocity vo in the right direction and in the cavitated
region with v1 = vgpo/p1. If the velocity is set up near to the speed of sound, the cavity must be
transported in the right direction. Therefore it is an excellent benchmark for checking the load balance
algorithm, because the position of the cavity moves from subdomain to subdomain. Results and the
domain decomposition for a parallel run with eight processors are shown in Fig. 4.

Initializing

After 1500 Timesteps

After 3000 Timesteps

Figure 4. Void fraction (bright spots) and domain decomposition of the benchmark

Table 1

CPU Time in seconds and Speedup

| # Prozesse” 1 |

2

| 4 | 6 | 8 | 12 | 16

not load- |CPU Time [[9622.34|5685.98(3620.49(2748.64|2180.57|1682.86|1356.80
balanced Speedup 1 1.692 | 2.658 | 3.501 | 4.413 | 5.718 | 7.092
load balanced | CPU Time - 5112.81(2816.00{1920.45(1455.54{1022.48|793.907
void fraction | Speedup - 1.882 | 3.417 | 5.010 | 6.611 | 9.411 | 12.120
load balanced | CPU Time - 4990.32|2574.45|1760.46(1341.62| 935.26 | 735.52
CPU time | Speedup - 1.928 | 3.738 | 5.466 | 7.172 | 10.288 | 13.082

Figure 5: Efficiency

100~

90

80

Efficiency [%]
8 &8 8 38 3
T T T T T

N
S
T

=)
T

0

—@- not balanced
-W void fraction [

-4 CPUtime

L
0 2

1 1 1 1
4 6 8 10 12 14 16
Number of Processes

The computing platform is a cluster consisting
of dual-CPU PCs, with Intel Xeon 2 GHz proces-
sors. The results are summarized in Tab. 1 and
Fig. 5 for several parallel runs. Further, they are
compared with the load balancing approach, we
used in [10] where the decision-making was based
on the void fraction. From these results it is ob-
vious that the gain in efficiency, achieved by the
algorithm of this work is greater than the previ-
ous one. Without the scpecific load balancing to
handle cavitating cells, only a poor efficiency (58%
to 44% for 6 to 16 processors) could be reached.
With the new approach the efficiency is over 91%
up to 6 processors and remains over 81% up to 16

processors. Whereas, using the void fraction approach the efficiency drops below 84% when using 6
processors and below 76% at 16 processors.

6. Conclusion

In many industrial applications cavitation occurs and cannot be calculated detailed in a proper
response time on a single processor computer. In order to reduce this time the use of parallel comput-
ing architectures is necessary. Nevertheless, the parallel algorithm has to deal with load imbalance
introduced by the cavities. The most time consuming part of the algorithm is the iterative calculation
of pressure and temperature. In this work a new load balancing algorithm has been developed, in
which not cells, but the work done on the cells during determination of pressure and temperature,
is redistributed across processors. The initial partitioning of the mesh is not changed. The decision-
making for migrating workload is based upon the CPU time needed by a process to calculate pressure
and temperature. The results of this algorithm show that there is a significant gain in efficiency.
With the new approach it is possible to treat industrial problems, in the area of simulating the flow
in injection systems, in a reasonable response time.

REFERENCES

[1] U.Iben, F. Wrona, C.-D. Munz, M. Beck, Cavitation in Hydraulic Tools Based on Thermodynamic
Properties of Liquid and Gas, Journal of Fluids Engineering, 2002, Vol. 124, No. 4, pages 1011-
1017.

[2] R. Saurel, J.P. Cocchi, P.B. Butler, Numerical Study of Cavitation in the Wake of a Hypervelocity
Underwater Projectile, J. Prop. Pow., 1999, Vol. 15, No 4.

[3] W. Wagner et. al., The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties
of Water and Steam, J. Eng. Gas Turbines and Power, 2000, Vol. 12.

[4] P. Batten, N. Clarke, C. Lambert, D.M. Causon, On the choice of wavespeeds for the HLLC
Riemann solver, SIAM J. Sci. Comp., 1997, Vol. 18, No. 6, pp. 1553-1570.

[6] E.F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics, Springer New York
Berlin Heidelberg, 1997.

[6] C. Walshaw, M. Cross, M. G. Everett, Parallel Dynamic Graph Partitioning for Adaptive Un-
structured Meshes, Journal Parallel Distrib. Comput, pp. 102-108, Vol.47, No. 2, 1997.

[7] Kirk Schloegel, George Karypis, Vipin Kumar, Multilevel Diffusion Schemes for Repartitioning of
Adaptive Meshes, Journal of Parallel and Distributed Computing, Vol. 47, pp. 109-124, 1997.

[8] M. Snir, S. Otto, S. Huss—Ledermann, D. Walker, J. Dongarra MPI The Complete Reference, The
MIT Press, 1996.

[9] G. Karypis, V. Kumar, METIS A Software Package for Partitioning Unstructured Graphs, Parti-
tioning Meshes, and Computing Fill-Reducing Orderings of Sparse Matrices, University of Min-
nesota, Department of Computer Science / Army HPC Research Center, 1998.

[10] Frank Wrona, Panagiotis A. Adamidis, Uwe Iben, Rolf Rabenseifner, Dynamic Load Balancing
for the Parallel Simulation of Cavitating Flows, In Recent Advances in Parallel Virtual Machine
and Message Passing Interface, Jack Dongarra, D. Laforenza, and S. Orlando (Eds.), Proceedings
of the 10th European PVM/MPI Users’ Group Meeting, EuroPVM/MPI 2003, Sep. 29 - Oct. 2,
Venice, Italy.

