Load Balanced Parallel Simulated Annealing on a Cluster of SMP Nodes

Agnieszka Debudaj-Grabysz¹ and Rolf Rabenseifner²

¹Silesian University of Technology, Gliwice, Poland; ²High-Performance Computing Center (HLRS), Stuttgart, Germany

OUTLINE

- 1. The algorithm of simulated annealing
- 2. Hybrid communication method (HC) nesting OpenMP in MPI
 - The reference method
 - The method with a single data exchange
- 4. Outer level load balancing
- 5. Inner level load balancing
- 6. Vehicle routing problem with time windows (VRPTW) an example of a bi-criterion optimization problem
- 7. Experimental results

THE GOAL AND ALGORITHM OF SIMULATED ANNEALING

Finding the state of minimal (maximal) value of the cost function

THE HYBRID COMMUNICATION METHOD – Nesting OpenMP in MPI

EuroPar, Dresden, August 30, 2006

THE REFERENCE HYBRID COMMUNICATION METHOD

Outer parallelization for communication between nodes

EuroPar, Dresden, August 30, 2006

THE REFERENCE HYBRID COMMUNICATION METHOD

Inner parallelization for communication within nodes

EuroPar, Dresden, August 30, 2006

THE METHOD WITH A SINGLE DATA EXCHANGE

The idea

Incorporating one data exchange after elapsing a percent of the specified time limit (e.g. 50%, 70%)

During the exchange of the data the best solution is selected and mandated for all processes

The idea gives the possibility of:

Heavy exploration of the search space during the first phase,
i.e., a few (but only a few) paths can reach the area of the global minimum.

Many small groups of astronauts are looking independently for the deepest crater and hopefully, at least one group (=SMP node) is finding it

 Improvement of the best path during the second phase by all working processes (instead of only a few)

> A short time before returning to earth, all groups are concentrated to the deepest crater found up to now.

The last minutes, they **all** try to find the deepest location in that crater!

OUTER LEVEL LOAD BALANCING

The times for generating 8 sub-chains based on an example run

The First Optimization Step

- Each single trial needs extremely different compute time
- Therefore with always 5 trials per thread:
- Better load balancing

The Second Optimization Step

- Redefinition of a trial:
 - Finding a new valid solution S' in the neighborhood of S
 - the most time consuming function
 - Allowing a trial to abort this loop without result
 - causes better load balancing
 - Average trial time
 - more dominated by minimal trial size
 - Absolute maximal trial time
 - significantly reduced

INNER LEVEL LOAD BALANCING – The Third Optimization Step

EuroPar, Dresden, August 30, 2006

*System: NEC TX7 16x1.5Ghz Intel ItaniumII CPUs, 6MB L3 Cache

EXPERIMENTAL RESULTS* – THE FIRST OPTIMIZATION GOAL**

The number of final solutions with the minimal number of route legs (i.e., "good" solutions), generated within 100 runs

Presented values are the averages over the values obtained for 4 data files from Solomon's benchmark set: R108, R111, RC105, RC108.

Constraints: Execution time x number of CPUs = constant

* Experiments carried out on NEC Xeon EM64T Cluster

** The previous work

*** Emulated usage of 4 OMP threads, based on results of tests of OMP parallelization carried out on NEC TX-7 system

EXPERIMENTAL RESULTS – THE SECOND OPTIMIZATION GOAL

The relative distance from the value obtained by a sequential algorithm

benchmark set: R108, R111, RC105, RC108.

Constraints: Execution time x number of CPUs = constant

EXPERIMENTAL RESULTS – THE SECOND OPTIMIZATION GOAL

Acknowledgements

- This project was supported by HPC-Europa.
- The research stay at HLRS Jan. Feb. 2005 was granted by HPC-Europa.

