
1/31

The HPC Challenge (HPCC) Benchmark Suite
Characterizing a system with several specialized kernels

Rolf Rabenseifner
rabenseifner@hlrs.de

High Performance Computing Center Stuttgart (HLRS)
University of Stuttgart

www.hlrs.de

SPEC Benchmarking Joint US/Europe Colloquium
June 22, 2007

Technical University of Dresden, Dresden, Germany

http://www.hlrs.de/people/rabenseifner/publ/publications.html#SPEC2007

2/31

Acknowledgements
• Update and extract from SC’06 Tutorial S12:

Piotr Luszczek, David Bailey, Jack Dongarra, Jeremy Kepner, Robert Lucas,
Rolf Rabenseifner, Daisuke Takahashi:

“The HPC Challenge (HPCC) Benchmark Suite”

SC06, Tampa, Florida, Sunday, November 12, 2006

• This work was supported in part by the Defense Advanced Research Projects Agency
(DARPA), the Department of Defense, the National Science Foundation (NSF), and the
Department of Energy (DOE) through the DARPA High Productivity Computing Systems
(HPCS) program under grant FA8750-04-1-0219 and under Army Contract W15P7T-05-C-
D001

• Opinions, interpretations, conclusions, and recommendations are those of the authors
and are not necessarily endorsed by the United States Government

3/31

Outline

• Overview
• The HPCC kernels
• Database & output formats
• HPCC award
• Augmenting TOP500
• Balance Analysis
• Conclusions

4/31

Introduction

• HPC Challenge Benchmark Suite
– To examine the performance

of HPC architectures using kernels
with more challenging memory access patterns
than HPL

– To augment the TOP500 list
– To provide benchmarks that bound the performance of

many real applications as a function of memory
access characteristics � e.g., spatial and temporal
locality

• Overview
• The Kernels
• Output formats
• HPCC awards
• Augm. TOP500
• Balance Analys.
• Conclusions

5/31

TOP500 and HPCC
• TOP500

– Performance is represented by
only a single metric

– Data is available for an
extended time period
(1993-2006)

• Problem:
There can only be one “winner”

• Additional metrics and statistics
– Count (single) vendor systems

on each list
– Count total flops on each list

per vendor
– Use external metrics: price,

ownership cost, power, …
– Focus on growth trends over

time

• HPCC
– Performance is represented by

multiple single metrics
– Benchmark is new — so data is

available for a limited time
period
(2003-2007)

• Problem:
There cannot be one “winner”

• We avoid “composite” benchmarks
– Perform trend analysis

• HPCC can be used to show
complicated kernel/
architecture performance
characterizations

– Select some numbers for
comparison

– Use of kiviat charts
• Best when showing the

differences due to a single
independent “variable”

– Compute balance ratios
• Over time — also focus on growth

trends

6/31

High Productivity Computing Systems (HPCS)

Goal:
� Provide a new generation of economically viable high productivity computing

systems for the national security and industrial user community (2010)

Impact:
� Performance (time-to-solution): speedup critical national

security applications by a factor of 10X to 40X
� Programmability (idea-to-first-solution): reduce cost and

time of developing application solutions
� Portability (transparency): insulate research and

operational application software from system
� Robustness (reliability): apply all known techniques to

protect against outside attacks, hardware faults, &
programming errors

Fill the Critical Technology and Capability Gap
Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Fill the Critical Technology and Capability Gap
Today (late 80’s HPC technology)…..to…..Future (Quantum/Bio Computing)

Applications:
� Intelligence/surveillance, reconnaissance, cryptanalysis, weapons analysis, airborne contaminant

modeling and biotechnology

HPCS Program Focus Areas

Analysis &

Analysis &

Assessment

Assessment

Performance
Characterization

& Prediction

System
Architecture

Software
Technology

Hardware
Technology

Programming
Models

Industry R&D

Industry R&D

7/31

Motivation of the HPCC Design

HPC Challenge
Benchmarks

Select Applications

0.00

0.20

0.40

0.60

0.80

1.00

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.00

Spatial Locality

T
em

po
ra

l l
o

ca
lit

y

HPL

Test3D

CG

OverflowGamess

RandomAccess

AVUS

OOCore

RFCTH2

STREAM

HYCOM

Generated by
PMaC @ SDSC

High Temporal Locality
Good Performance on
Cache-based systems
Spatial Locality occurs

in registers

No Temporal or Spatial Locality
Poor Performance on
Cache-based systems

High Spatial Locality
Moderate Performance on

Cache-based systems

FFT

High Spatial Locality
Sufficient Temporal Locality
Satisfactory Performance on

Cache-based systems

Further information:
„Performance Modeling and Characterization“

@ San Diego Supercomputer Center
http://www.sdsc.edu/PMaC/

Spatial and temporal data locality here is for one
node/processor — i.e., locally or “in the small”
Spatial and temporal data locality here is for one
node/processor — i.e., locally or “in the small”

8/31

HPCS Performance Targets

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

HPC Challenge
Benchmark

Corresponding
Memory Hierarchy

HPCS Targets
(improvement)

• Top500: solves a system
Ax = b

• STREAM: vector operations
A = B + s x C

• FFT: 1D Fast Fourier
Transform

Z = FFT(X)
• RandomAccess: random
updates

T(i) = XOR(T(i), r)

bandwidth

latency

2 Petaflops
(8x)

6.5 Petabyte/s
(40x)

0.5 Petaflops
(200x)

64,000 GUPS
(2000x)

• HPCS program has developed a new suite of benchmarks (HPC
Challenge)

• Each benchmark focuses on a different part of the memory hierarchy
• HPCS program performance targets will flatten the memory hierarchy,

improve real application performance, and make programming easier

• HPCS program has developed a new suite of benchmarks (HPC
Challenge)

• Each benchmark focuses on a different part of the memory hierarchy
• HPCS program performance targets will flatten the memory hierarchy,

improve real application performance, and make programming easier

Compared to
BlueGene/L,

Nov. 2006

9/31

HPCC as a Framework (1/2)
• Many of the component benchmarks were widely used before

– HPCC is more than a packaging effort
– E.g., provides consistent verification and reporting

• Important:
Running these benchmarks on a single machine —
with a single configuration and options
– The benchmark components are still useful separately for the

HPC community, meanwhile
– The unified HPC Challenge framework creates an unprecedented

view of performance characterization of a system
• A comprehensive view

with data captured under the same conditions
allows for a variety of analyses
depending on end user needs

10/31

HPCC as a Framework (2/2)

• A single executable is built to run all of the components
– Easy interaction with batch queues
– All codes are run under the same OS conditions – just as an application

would
• No special mode (page size, etc.) for just one test (say Linpack

benchmark)
• Each test may still have its own set of compiler flags

– Changing compiler flags in the same executable may inhibit inter-
procedural optimization

• Scalable framework — Unified Benchmark Framework
– By design, the HPC Challenge Benchmarks are scalable with the size of

data sets being a function of the largest HPL matrix for the tested system

11/31

HPCC Tests at a Glance

1. HPL
– High Performance Linpack
– Solving Ax = b A∈Rn×n x,b∈R

2. DGEMM
– Double-precision General

Matrix-matrix Multiply
– Computing

C ← αAB + βC A,B,C∈Rn×n α,β∈R
– Temporal/spatial locality:

similar to HPL

3. STREAM
– measures sustainable memory

bandwidth with vector operations
– COPY: c=a SCALE: b=αααα c

ADD: c=a+b TRIAD: a=b+αααα c

4. PTRANS
– Parallel matrix TRANSpose
– Computing A=AT+B
– Temporal/spatial locality:

similar to EP-STREAM,
but includes global communication

• Overview
• The Kernels
• Output formats
• HPCC awards
• Augm. TOP500
• Balance Analys.
• Conclusions5. RandomAccess

– calculates a series of integer updates to
random locations in memory

– Ran = 1;
for (i=0; i<4*N; ++i) {
Ran= (Ran<<1) ^

(((int64_t)Ran < 0) ? 7:0);
Table[Ran & (N-1)] ^= Ran;
}

– Use at least 64-bit integers
– About half of memory used for ‘Table’
– Parallel look-ahead limited to 1024

6. FFT
– Fast Fourier Transform
– Computing zk=Σxj exp(-2π√-1 jk/n) x,z∈Cn

7. b_eff
– Patterns: • ping-pong,

• natural ring, and
• random ring patterns

– Bandwidth (w 2,000,000 bytes messages)
– Latency (with 8 bytes messages)

12/31

Random Ring Bandwidth

• Reflects communication patterns in unstructured grids
• And 2nd & 3rd dimension of a Cartesian domain

decomposition
• On clusters of SMP nodes:

– Some connections are inside of the nodes
– Most connections are inter-node

• Global benchmark ���� all processes participate
• Reported: bandwidth per process
• Accumulated bandwidth

:= bandwidth per process x #processes

similar to
bi-section
bandwidth

13/31

HPCC Testing Scenarios

1. Local
1.Only single process

computes

2. Embarrassingly parallel
1.All processes compute

and do not
communicate (explicitly)

3. Global
1.All processes compute

and communicate

4. Network only

MM

PPPP
MM

PPPP
MM

PPPP
MM

PPPP

NetworkNetwork

MM

PPPP
MM

PPPP
MM

PPPP
MM

PPPP

NetworkNetwork

MM

PPPP
MM

PPPP
MM

PPPP
MM

PPPP

NetworkNetwork

14/31

Base vs. Optimized Submission

• G-RandomAccess

G-HPL G-PTRANS
G-Random

Access G-FFTE
G-STREAM

Triad

EP
STREAM

Triad
EP

DGEMM

Random
Ring

Bandwidth

Random
Ring

Latency
System - Processor Speed Count TFlop/s GB/s Gup/s GFlop/s GB/s GB/s GFlop/s GB/s usec
Cray mfeg8 X1E 1.13GHz 248 opt 3.3889 66.01 1.85475 -1 3280.9 13.229 13.564 0.29886 14.58

Cray X1E X1E MSP 1.13GHz 252 base 3.1941 85.204 0.014868 15.54 2440 9.682 14.185 0.36024 14.93

System Information Run
Type

• Base code: Latency based execution
• Optimization I: UPC based code – only a few lines

– Optimization inside of UPC compiler / library
– ~125x improvement

• Optimization II: Butterfly (MPI-based) algorithm
– Bandwidth based (packet size ~ 4 kB)
– On BlueGene/L with special communication library:

537 x faster than “base”

15/31

Results

• HPCC Database
����upload of HPCC results
�Output through several interfaces

• Web-output
– Table with several subsets of kernels
– Base / optimized / base+optimized

• As Excel or XML (all results)
• Comparing up to 6 platforms with a Kiviat diagram

Can be
sorted by

any column

• Overview
• The Kernels
• Output formats
• HPCC awards
• Augm. TOP500
• Balance Analys.
• Conclusions

16/31

Kiviat Charts: Comparing Interconnects
• Comparing per-process values
• 8 fixed benchmark kernels
• Up to 6 systems
• Normalized:

– 1 = best system at each kernel

• Example:
– AMD Opteron clusters

• 2.2 GHz
• 64-processor cluster

– Interconnects
1. GigE
2. Commodity
3. Vendor

– Cannot be differentiated based on:
• HPL
• Matrix-matrix multiply

• Available on HPCC website

Kiviat chart (radar plot)

17/31

HPCC Awards Overview

• Goals
– Increase awareness of HPCC benchmarks
– Increase awareness of HPCS program and its goals
– Increase number of HPCC submissions

• Expanded view of largest supercomputing installations

• Means
– HPCwire sponsorships and press coverage
– HPCS mission partners’ contribution
– HPCS vendors’ contribution

• Awards are presented at the SCxx HPC Challenge BOF

• Overview
• The Kernels
• Output formats
• HPCC awards
• Augm. TOP500
• Balance Analys.
• Conclusions

18/31

HPCC Awards Rules
• Class 1: Best Performance

– Figure of merit:
raw system performance

– Submission must be valid
HPCC database entry

• Side effect: populate HPCC
database

– 4 categories: HPCC
components

• HPL
• STREAM-system
• RandomAccess
• FFT

– Award certificates
• 4x $500 from HPCwire

• Class 2: Most Productivity
– Figure of merit:

performance (50%) and
elegance (50%)

• Highly subjective
• Based on committee vote

– Submission must implement
at least 3 out of 4 Class 1
tests

• The more tests the better
– Performance numbers are a

plus
– The submission process:

• Source code
• “Marketing brochure”
• SC06 BOF presentation

– Award certificate
• $1500 from HPCwire

19/31

SC|06 HPCC Award – Class 1
G-HPL Achieved System Affiliation Submitter
1st place 259 Tflop/s IBM BG/L DOE/NNSA/LLNL Tom Spelce
1st runner up 67 Tflop/s IBM BG/L IBM T.J. Watson John Gunnels
2nd runner up 57 Tflop/s IBM p5-575 LLNL Charles Grassl
HPCS goal: 2000 Tflop/s = current 1st place x 8

EP-STREAM-Triad Achieved System Affiliation Submitter
1st place 160 TB/s IBM BG/L DOE/NNSA/LLNL Tom Spelce
1st runner up 55 TB/s IBM p5-575 LLNL Charles Grassl
2nd runner up 43 TB/s Cray XT3 SNL Courtenay Vaughan
HPCS goal: 6500 TB/s = current 1st place x 40

G-FFT Achieved System Affiliation Submitter
1st place 2.311 Tflop/s IBM BG/L DOE/NNSA/LLNL Tom Spelce
1st runner up 1.122 Tflop/s Cray XT3 Dual ORNL Jeff Larkin
2nd runner up 1.118 Tflop/s Cray XT3 SNL Courtenay Vaughan
HPCS goal: 500.0 Tflop/s = current 1st place x 200

G-RandomAccess Achieved System Affiliation Submitter
1st place 35 GUPS IBM BG/L DOE/NNSA/LLNL Tom Spelce
1st runner up 17 GUPS IBM BG/L IBM T.J. Watson John Gunnels
2nd runner up 10 GUPS Cray XT3 Dual ORNL Jeff Larkin
HPCS goal: 65000 Tflop/s = current 1st place x 2000

20/31

SC|06 HPCC Awards Class 2

√√√√

PTRANS

√√√√

√√√√

√√√√

√√√√

√√√√

√√√√

FFT

√√√√√√√√Parallel
Matlab

√√√√√√√√x|UPC

√√√√√√√√√√√√√√√√Cilk

√√√√√√√√X10

√√√√√√√√Chapel

√√√√√√√√MC#

DGEMMSTREAMRandom
AccessHPLLanguage

Best Overall
Productivity

Honorable
Mention

Best Productivity
in Performance

Best Productivity
and Elegance

Best Student Paper

21/31

Augmenting TOP500’s 26th Edition _

1.270.7855299442021Jaguar10

27Stella9

28MareNostrum8

36Earth
Simulator7

1.281.011184418133336Red Storm6

38Thunderbird5

1.440.223021914752Columbia (**)4

3.250.2967445765863ASC Purple3

0.2521.61235501728491BGW (**)2

0.2635.52311160374259281BlueGene/L1

B/WLatencyGUPSFFTSTREAMPTRANSHPLRmaxComputer

Nov. 2005

• …
• Augm. TOP500
• Balance Analys.
• Conclusions

22/31

Augmenting TOP500’s 28th Edition with HPCC
PingPong
Bandwidth

GB/s

PingPong
Latency

µs

G-
Random
Access

GUPS

G-
FFT

GFlop/s

EP-
STREAM
Triad TB/s

G-
PTRANS

GB/s

G-
HPL

TFlop/s

Rmax
TFlop/s

Computer

1.156.69 µs
10.67
0.82

1127
1107

27
2039
778

43.4043.48Jaguar10

47.38TSUBAME9

0.8964.23 µs0.25 **229 **20 **91.31 **47 **51.87Columbia
(** 2024���� 10160)

8

52.84Tera-107

53.00Thunderbird6

62.63MareNostrum5

3.1845.10 µs1.02(*)

0.202**1004**66 **659 **69 **75.8ASC Purple
(** 10240���� 12208)

4

0.1594.95 µs
21.61**

0.348**
1235**

1391**
50 **

37 **
171.55 **

109 **
83.9 **

39 **
91BGW

(** 32768���� 40960)
3

2.0247.16 µs
29.81
1.74

1554552357.091.0101.4Red Storm2

0.158
0.157

5.92 µs

7.07 µs

35.47
0.066

2311
2178

160
57

4665.9
339.3

259.2
80.7

280.6BlueGene/L1

Nov. 2006

Upper values = optimized
Bottom values = base
(*) = not published in HPCC database
(**) = extrapolated: #CPUs HPCC � #CPUs Linpack

BlueGene/L
IBM/Watson

IBM
p5

SGI Altix
Infiniband

Cray XT3
Opteron

dual-core

Cray XT3
Opteron

dual-core

23/31

Augmenting TOP500’s 28th Edition with HPCC

27

20 **

66 **

171.55
109 **

55

160
57

STREAM
Triad TB/s

Ping
Pong

Random
Ring

Ping
Pong
GB/s

per proc.
GB/s

global
TB/s

HPL
TFlop/s

Rmax
TFlop/s

Computer

6.6914.321.150.0690.72243.4043.48Jaguar10

47.38TSUBAME9

4.236.980.8960.1221.247 **47 **51.87Columbia
(** 2024���� 10160)

8

52.84Tera-107

53.00Thunderbird6

62.63MareNostrum5

5.10118.593.1540.1101.345 **69 **75.8ASC Purple
(** 10240���� 12208)

4

4.959.510.1590.0120.490 **83.9
39 **

91BGW
(** 32768���� 40960)

3

7.1616.292.0240.0591.53291.0101.4Red Storm2

5.92
7.07

7.78
8.84

0.158
0.157

0.011
0.011

0.727
0.710

259.2
80.7

280.6BlueGene/L1

Nov. 2006

Upper values = optimized
Bottom values = base

Random Ring BW

Latency µs

Global values
(i.e., accumulated

per system)

(*) = not published in HPCC DB
(**) = extrapolated

B/W
ratio

PingPing / Random

7 - 34

Latency
Random / PingPong
ratio: 1.3 – 2.3;

23 (Purple)

BlueGene/L
IBM/Watson

IBM p5
HPS

SGI Altix
Infiniband

Cray XT3
Opteron

dual-core

Cray XT3
Opteron

dual-core

24/31

HPCC and Computational Resources _

Computational
resources
Computational
resources

CPU
computational

speed

Memory
bandwidth

Node
Interconnect

bandwidth

HPL
(Jack Dongarra)

STREAM
(John McCalpin)

Random & Natural
Ring
Bandwidth & Latency
(my part of the
HPCC Benchmark Suite)

• Overview
• The Kernels
• Output formats
• HPCC awards
• Augm. TOP500
• Balance

Analysis
• Conclusions

25/31

Balance Analysis with HPCC Data

• Balance can be expressed as a set of ratios
– e.g., accumulated memory bandwidth / accumulated

Tflop/s rate
• Basis

– Linpack (HPL) � Computational Speed
– Random Ring Bandwidth � Inter-node communication
– Parallel STREAM Copy or Triad � Memory bandwidth

• Be careful:
– Balance calculation always with

accumulated data on the total system (Global or EP)
– Random Ring B/W:

per process value must be multiplied by #processes

26/31

Balance: Random Ring B/W and HPL

• Ratio measures balance between
inter-node communication and
computational speed (Linpack).

• It varies between systems by a
factor of ~20.

Status Sep. 14, 2006

27/31

Balance: Memory and CPU Speed
High memory bandwidth ratio
on vector-type systems
(NEC SX-8, Cray X1 & X1E),
but also on Cray XT3.

• Balance: Variation between
systems only about 10.

28/31

Balance: FFT and CPU

• Ratio ~20.

29/31

Balance: PTRANS and CPU

• Balance: Variation between
systems larger than 20.

30/31

Acknowledgments

• Thanks to
– all persons and institutions that have uploaded HPCC results.
– Jack Dongarra and Piotr Luszczek

for inviting me into the HPCC development team.
– Matthias Müller, Sunil Tiyyagura and Holger Berger

for benchmarking on the SX-8 and SX-6 and discussions on HPCC.
– Nathan Wichmann from Cray for additional Cray XT3 and X1E data.

• References
– Piotr Luszczek, David Bailey, Jack Dongarra, Jeremy Kepner, Robert Lucas,

Rolf Rabenseifner, Daisuke Takahashi:
The HPC Challenge (HPCC) Benchmark Suite. Tutorial at SC|06.

– S. Saini, R. Ciotti,B. Gunney, Th. Spelce, A. Koniges, D. Dossa, P. Adamidis,
R. Rabenseifner, S. Tiyyagura, M, Müller, and R. Fatoohi:
Performance Evaluation of Supercomputers using HPCC and IMB Benchmarks.
In the proceedings of the IPDPS 2006 Conference.

– R. Rabenseifner, S. Tiyyagurra, M. Müller: Network Bandwidth Measurements
and Ratio Analysis with the HPC Challenge Benchmark Suite (HPCC).
Proceedings of the 12th European PVM/MPI Users' Group Meeting,
EuroPVM/MPI 2005

– http://icl.cs.utk.edu/hpcc/

31/31

Conclusions

• HPCC is an interesting basis for
• benchmarking computational resources
• Augmenting TOP500
• analyzing the balance of a system
• scaling with the number of processors
• with respect to applications’ needs

(e.g., locality characteristics)

• HPCC helps to show the strength and weakness of super-
computers

• Future super computing should not focus only on Pflop/s
in the TOP500

• Memory and network bandwidth are as same as important
to predict real application performance

Copy of the slides:
http://www.hlrs.de/people/rabenseifner/publ/publications.html#SPEC2007

• Overview
• The Kernels
• Output formats
• HPCC awards
• Augm. TOP500
• Balance Analys.
• Conclusions

32/31

Appendix

33/31

HPCC Tests - HPL

• HPL = High Performance Linpack
• Objective: solve system of linear equations

Ax=b A∈Rn×n x,b∈R
• Method: LU factorization with partial row pivoting
• Performance: (2/3n3 + 3/2n2) / t
• Verification: scaled residuals must be small

|| Ax-b || / (� ||A|| ||x|| n)
• Restrictions:

– No complexity reducing matrix-multiply
• (Strassen, Winograd, etc.)

– 64-bit precision arithmetic through-out
• (no mixed precision with iterative refinement)

34/31

HPCC HPL: Further Details

• Linear system solver (requires all-to-all communication)
• Stresses local matrix multiply performance
• DARPA HPCS goal: 2 Pflop/s (8x over current best)

• Linear system solver (requires all-to-all communication)
• Stresses local matrix multiply performance
• DARPA HPCS goal: 2 Pflop/s (8x over current best)

• High Performance Linpack (HPL) solves a system Ax = b
• Core operation is a LU factorization of a large MxM matrix
• Results are reported in floating point operations per second (flop/s)

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

LU
Factorization

A

L

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

P0 P2

P1 P3

U

2D block cyclic distribution
is used for load balancing

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

35/31

HPCC Tests - DGEMM

• DGEMM = Double-precision General Matrix-matrix
Multiply

• Objective: compute matrix
C ← αAB + βC A,B,C∈Rn×n α,β∈R

• Method: standard multiply (maybe optimized)
• Performance: 2n3/t
• Verification: Scaled residual has to be small

|| x – y || / (� n || y ||)
where x and y are vectors resulting from multiplication by
a random vector of left and right hand size of the
objective expression

• Restrictions:
– No complexity reducing matrix-multiply

• (Strassen, Winograd, etc.)
– Use only 64-bit precision arithmetic

• Temporal/spatial Locality: similar to HPL

36/31

HPCC Tests - STREAM

• STREAM is a test that measures sustainable memory
bandwidth (in Gbyte/s) and the corresponding
computation rate for four simple vector kernels

• Objective: set a vector to a combination of other vectors
COPY: c = a
SCALE: b = αααα c
ADD: c = a + b
TRIAD: a = b + αααα c

• Method: simple loop that preserves the above order of
operations

• Performance: 2n/t or 3n/t
• Verification: scalre residual of computed and reference

vector needs to be small
|| x – y || / (� n || y ||)

• Restrictions:
– Use only 64-bit precision arithmetic

37/31

HPCC STREAM: Further Details

• Basic operations on large vectors (requires no
communication)

• Stresses local processor to memory bandwidth
• DARPA HPCS goal: 6.5 Pbyte/s (40x over current best)

• Basic operations on large vectors (requires no
communication)

• Stresses local processor to memory bandwidth
• DARPA HPCS goal: 6.5 Pbyte/s (40x over current best)

• Performs scalar multiply and add
• Results are reported in bytes/second

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

A
=
B
+

s x C

Np-1...10

Np-1...10

Np-1...10

38/31

HPCC Tests - PTRANS

• PTRANS = Parallel TRANSpose
• Objective: update matrix with sum of its transpose and

another matrix
A=AT+B A,B∈Rn×n

• Method: standard distributed memory algorithm
• Performance: n2/t
• Verification: scaled residual between computed and

reference matrix needs to be small
|| A0 – A || / (� n || A0 ||)

• Restrictions:
– Use only 64-bit precision arithmetic
– The same data distribution method as HPL

• Temporal/spatial Locality: similar to EP-STREAM,
but includes global communication

39/31

HPCC Tests - RandomAccess

• RandomAccess calculates a series of integer updates to
random locations in memory

• Objective: perform computation on Table
Ran = 1;
for (i=0; i<4*N; ++i) {
Ran= (Ran<<1) ^ (((int64_t)Ran < 0) ? 7:0);
Table[Ran & (N-1)] ^= Ran;

}
• Method: loop iterations may be independent
• Performance: 4N/t
• Verification: up to 1% of updates can be incorrect
• Restrictions:

– Use at least 64-bit integers
– About half of memory used for ‘Table’
– Parallel look-ahead limited to 1024 (limit locality)

40/31

HPCC RandomAccess: Further Details

• Randomly updates memory (requires all-to-all
communication)

• Stresses interprocessor communication of small
messages

• DARPA HPCS goal: 64,000 GUPS (2000x over current best)

• Randomly updates memory (requires all-to-all
communication)

• Stresses interprocessor communication of small
messages

• DARPA HPCS goal: 64,000 GUPS (2000x over current best)

• Randomly updates N element table of unsigned integers
• Each processor generates indices, sends to all other processors,

performs XOR
• Results are reported in Giga Updates Per Second (GUPS)

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

Generate random indices

0
Table

Send,
XOR,

Update

1 Np-1

0 1 NP-1

. .

. .

41/31

HPCC Tests - FFT

• FFT = Fast Fourier Transform
• Objective: compute discrete Fourier Transform

zk=Σxj exp(-2π√-1 jk/n) x,z∈Cn

• Method: any standard framework (maybe optimized)
• Performance: 5nlog2n/t
• Verification: scaled residual for inverse transform of

computed vector needs to be small
|| x – x(0) || / (� log2 n)

• Restrictions:
– Use only 64-bit precision arithmetic
– Result needs to be in-order (not bit-reversed)

42/31

HPCC FFT: Further Details

• FFT a large complex vector (requires all-to-all
communication)

• Stresses interprocessor communication of large
messages

• DARPA HPCS goal: 0.5 Pflop/s (200x over current best)

• FFT a large complex vector (requires all-to-all
communication)

• Stresses interprocessor communication of large
messages

• DARPA HPCS goal: 0.5 Pflop/s (200x over current best)

• 1D Fast Fourier Transforms an N element complex vector
• Typically done as a parallel 2D FFT
• Results are reported in floating point operations per second (flop/s)

Registers

Cache

Local Memory

Disk

Instr. Operands

Blocks

Pages

Remote Memory

Messages

Parallel Algorithm

0

0

1

:

Np-1

FFT rows
FFT columns

corner
turn

1 Np-1. .

43/31

HPCC Tests – b_eff

• b_eff measures effective bandwidth and latency of the
interconnect

• Objective: exchange 8 (for latency) and 2000000 (for
bandwidth) messages in
– ping-pong,
– natural ring, and
– random ring patterns

• Method: use standard MPI point-to-point routines
• Performance: n/t (for bandwidth)
• Verification: simple checksum on received bits
• Restrictions:

– The messaging routines have to conform to the MPI
standard

44/31

HPCC b_eff: Further Details

• Parallel communication pattern on all MPI processes:

– Natural ring

– Random ring

• Bandwidth per process
– Accumulated message size / wall-clock time / number of processes
– On each connection messages in both directions
– With 2xMPI_Sendrecv and MPI non-blocking ���� best result is used
– Message size = 2,000,000 bytes

• Latency
– Same patterns, message size = 8 bytes
– Wall-clock time / (number of sendrecv per process)

45/31

Naming Conventions

HPL
STREAM

FFT
…

RandomAccess

S

EP

G

system

CPU

thread

Examples:
1. G-HPL
2. S-STREAM-system

Measured
on a single

process

Per system,
i.e., extrapolated to

the total system

46/31

Base vs. Optimized Run
• HPC Challenge encourages users to develop optimized benchmark codes that use

architecture specific optimizations to demonstrate the best system performance
• Meanwhile, we are interested in both

– The base run with the provided reference implementation
– An optimized run

• The base run represents behavior of legacy code because
– It is conservatively written using only widely available programming languages

and libraries
– It reflects a commonly used approach to parallel processing sometimes referred

to as hierarchical parallelism that combines
• Message Passing Interface (MPI)
• OpenMP Threading

– We recognize the limitations of the base run and hence we encourage optimized
runs

• Optimizations may include alternative implementations in different programming
languages using parallel environments available specifically on the tested system

• We require that the information about the changes made to the original code be
submitted together with the benchmark results

– We understand that full disclosure of optimization techniques may sometimes be
impossible

– We request at a minimum some guidance for the users that would like to use
similar optimizations in their applications

47/31

SC|05 HPCC Awards Class 2

√√√√√√√√HPF

√√√√√√√√StarP

√√√√√√√√OpenMP, C++

√√√√√√√√MPT C

√√√√√√√√√√√√√√√√Parallel Matlab

√√√√√√√√√√√√√√√√Cilk

√√√√√√√√√√√√UPCx3

√√√√√√√√Cray MTA C

√√√√√√√√√√√√√√√√pMatlab

√√√√√√√√Python+MPI

FFTSTREAMRandomAccessHPLLanguage Sample
submission

from
committee
members

Winners

Finalists

48/31

Augmenting TOP500’s 27th Edition with HPCC
June 2006

B/WLatencyGUPSFFTSTREAMPTRANSHPLRmaxComputer

35.86Earth
Simulator10

1.1497.971.02111843.581813.0632.9936.19Red Storm9

37.33BlueGene
eServer8

38.18Fire x46007

38.27Thunderbird6

42.9Tera-105

0.8964.230.252292091.3146.7851.87Columbia (**)4

3.1845.11.038425555357.975.8ASC Purple3

0.1594.7021.61123550171.5583.991BGW (**)2

0.1595.9235.4723111604665.9259.2280.6BlueGene/L1

49/31

Balance: Random Ring B/W and CPU Speed

Same as on previous slide,
but linear ...

