
Some hints on the exercises for
Tutorial S10:

Introduction to PGAS (UPC and CAF) and
Hybrid for Multicore Programming

Supercomputing 2010

Reinhold Bader (Leibniz Supercomputing Centre) and Filip Blagojevic (Lawrence Berkeley
National Laboratory)

At the beginning of the talk, please update the presentation PDF on your memory stick
by downloading

http://portal.nersc.gov/svn/training/SC10/presentations/SCTutorial_PGAS.pdf
(quite a number of mistakes has been fixed - sorry)

The source code (serial/skeleton codes and solutions) for the exercises can be downloaded

from http://portal.nersc.gov/svn/training/SC10/
(for example via “svn export http://portal.nersc.gov/svn/training/SC10/”)

http://portal.nersc.gov/svn/training/SC10/presentations/SCTutorial_PGAS.pdf
http://portal.nersc.gov/svn/training/SC10/
http://portal.nersc.gov/svn/training/SC10/

Login to the Franklin system at NERSC

Using the test accounts handed to you by the tutorial staff, please log in to the system via secure
shell:

ssh –X franklin.nersc.gov –l <account name>

If you use a Windows system, enter the host name as well as the account name into the PuTTy or
windows ssh GUI.

Starting a PBS batch job

Please use the following command line to obtain dedicated cores for your tests:

this will give you all 4 cores of a node. If you specify mppwidth=8 (leaving all other numbers
unchanged), you’ll get two nodes with 4 cores for a total of 8 cores.

Using Berkeley UPC (UPC only) and running programs

Usage of Cray UPC and Cray Fortran as well as PBS job submission is described on slides 39 and
134-135 of the presentation.

Note that the standard environment should be used (PrgEnv-pgi) to make the above “module
load” work correctly.

Using the Cray compilers (UPC and CAF) and running programs

qsub -I -q special -lmppwidth=4,mppnppn=4,walltime=00:20:00 -V

 module load bupc
Go to previous working directory if in a newly started PBS shell:
 cd $PBS_O_WORKDIR

Compilation:
 upcc -O -o myprog myprog.c
Parallel Execution (requires a PBS shell):
 upcrun -n 1 -cpus-per-node 4 ./myprog
 upcrun -n 2 -cpus-per-node 4 ./myprog
 upcrun -n 4 -cpus-per-node 4 ./myprog

 module switch PrgEnv-pgi PrgEnv-cray
Go to previous working directory if in a newly started PBS shell:
 cd $PBS_O_WORKDIR

UPC Compilation:
 cc -h upc -o myprog myprog.c
or CAF compilation:
 ftn -e m -h caf -o myprog myprog.f90
Parallel Execution (requires a PBS shell):
 aprun -n 1 -N 1 ./myprog
 aprun -n 2 -N 2 ./myprog
 aprun -n 4 -N 4 ./myprog

Login and Usage of the backup system at LRZ (Munich)

This system will only be used for the exercises in case the NERSC system “Franklin” has a failure.
Otherwise, this section can be ignored.
The backup system at LRZ in Munich is an SGI Ultraviolet with 256 cores. To log in to the system,
please issue the command

ssh –X lx64ia2.lrz.de –l <account name>

(these accounts have different names from those on Franklin and will only be handed out if the
emergency case occurs) and from this front end node type

ssh –X uv1

making use of the backup account names and the password provided by the tutorial staff. The
software environment for UPC consists of a Berkeley UPC installation:

module load upc/bupc
upcc [-g –T=<number of threads>] –o myprog.exe myprog.upc
upcrun [–n <number of threads>] ./myprog.exe

If the number of threads is fixed at compilation time, a run time specification of thread number
must be consistent.
A coarray Fortran prerelease of Intel’s newest 12.0 compiler (configured for shared memory
operation) is also available on the Ultraviolet:

module load intel_caf # (please ignore any error messages appearing here)

ifort –coarray –o mycafprog.exe mycafprog.f90
export FOR_COARRAY_NUM_IMAGES=<number of images>
./mycafprog.exe

Please do not use more than a few (4-6) images for executing your programs. The modules for
coarray Fortran and Berkeley UPC should not be loaded at the same time within one shell.

Hints for Exercise 1 (Presentation slide 40)

This exercise consists of two parts.
The first part of the exercise is concerned with

 successfully compiling and running the most simple possible CAF / UPC program with
more than one image / thread

 printing information about image / thread identity from inside the program.
The solution for this first part of the exercise is available in the presentation on slide 136.
The second part of the exercise asks you to add

 an additional declaration of a coarray / UPC shared object

 some additional code to initialize the object on one image, and write out the value of the
initialized object on another image

and run the resulting executable with at least two images / threads. Due to missing
synchronization statements, inconsistent results might (or might not) be obtained – the program
is not conforming.

Part 1 of Exercise 1

Please make use of the THIS_IMAGE() as well as NUM_IMAGES() intrinsic functions in the
case of CAF, and the THREADS and MYTHREAD function macros in case of UPC. The meaning of
these functions is as follows:

Coarray Fortran UPC explanation
NUM_IMAGES() THREADS default integer function / int function macro which

returns the number of images / threads with which the
program is executed

THIS_IMAGE() MYTHREAD default integer function / int function macro returning a
unique value

 between 1 and NUM_IMAGES() in Fortran

 between 0 and THREADS – 1 in UPC
depending on which image / thread executes the
statement.

The solution can also be found in hello/solutions/hello_part1.upc or
hello/solutions/hello_part1.f90

Part 2 of Exercise 1

Declarations of coarrays in Fortran must (like other declarations) happen before the first
executable statement. A scalar coarray declared as
 integer :: x[*]

can then be defined locally via an executable statement like
 x = this_image()

resulting in an image dependent value being stored, and the value stored on image 1 might later
be referenced from a remote image using a statement like
 if (this_image() > 1) write(*,*) „x from 1 is: „,x[1]

The number in angular brackets is called the coindex; mapping between image index (i.e. the
result of THIS_IMAGE()) and coindex is trivial here, but may be more complicated in general.

Declarations of shared entities in UPC must often be performed outside function bodies,
especially if a dynamic THREADS environment is provided. The reason for this is that many kinds
of shared entities are not allowed to be automatic. A declaration essentially equivalent to the
above coarray declaration with respect to how data are distributed among tasks may for example
be
 shared [1] int x[THREADS];

and inside the main() function a local definition equivalent to the coarray case given above might
be
 x[MYTHREAD] = MYTHREAD + 1;

and the subsequent reference to remote data then is
if (MYTHREAD > 0) printf(“x from 0 is: %i\n”,x[0]);

Note that, in contrast to CAF, array notation is used and the normal array index is mapped to the
thread index. This mapping may be more complicated in general than in this simple example.

Running the executable will occasionally result in inconsistent values printed from different
threads. The reason for this is that your code is not valid since a synchronization statement is
required between definition by one task and reference by another one. Corrected solutions may
be found in hello/solutions/hello_part2_CORRECTED.upc and
hello/solutions/hello_part2_CORRECTED.f90.

Hints for Exercise 2 (Triangular matrix, presentation slides 75-76)

Reading in the problem parameters from standard input

This should be done only on image 1 (CAF) or thread 0 (UPC). As a consequence, some method
must be implemented to propagate the value to all other images, involving synchronization
statements. In UPC, providing shared entities as arguments to library functions (in this exercise,
scanf()) requires suitable casting.

Type definitions and allocations

In order to achieve balanced usage of memory, a cyclic data distribution is recommended: For
example, in the case of four tasks the mapping between row index and tasks is given by

Thread (UPC) 0 1 2 3

Image (CAF) 1 2 3 4

Row index 1,5,9,13,17,... 2,6,10,14,18,... 3,7,11,15,19,... 4,8,12,16,20,...

For the case of UPC threads (THREADS==4), the reverse mapping is also indicated graphically:

 Matrix row

Since the number of rows is determined at run time, it will be necessary to declare a dynamic
entity:

CAF UPC

type(tri_matrix), allocatable :: a(:)[:] shared [] Tri_matrix * shared[1] A[THREADS];

For this example, it would not be necessary to use shared data, but this would change if further
matrix operations (e.g., matrix multiplication) must be implemented which require cross-task
data access. Each task will contain the same number of rows. Allocation then is done via

CAF UPC

allocate(a(rows_per_proc)[*]) A[MYTHREAD] = (shared [] Tri_matrix *)
 upc_alloc(rows_per_thread * sizeof(Tri_matrix));

Here we use the non-collective call upc_alloc() to assign each pointer array element its own
i.e., thread-individual shared area with affinity to the executing thread. This is in contrast to
using upc_all_alloc() which is collective and returns the same shared entity to each

pointer, or upc_global_alloc(), which is also non-collective, but returns a distributed
shared pointer.
In UPC, it will be necessary to change the type definition as follows to avoid the spurious
situation of generating shared pointers to local entities:

typedef struct {

 shared [] float *row;

1
2
3
4
5
6
7
8

0
1
2
3
0
1
2
3

Thread number

 size_t row_size;

} Tri_matrix;

The block size of zero implies that the pointer will point to a piece of memory which is shared,
but with affinity to only one thread. The allocation must hence be performed using
upc_alloc().

Loop structure for cyclic processing

This is provided on slide 52 of the presentation. Slide 137 gives part of the coarray Fortran
solution as well as the location of the complete solution program sources (both CAF and UPC).

Comments on the alternative exercise

The first step for this exercise is to understand the solution program provided in
[|upc]. triangular_matrix/solutions/triangular. f90

Then, you need to make the following changes:

 an additional synchronization statement is needed since printing from all tasks involves
cross-image / cross-thread references

 when removing the IF statement, one must take care that access to the local data in the
WRITE/printf statement must be converted to an access to shared data.

o In CAF be aware that a(…) is a local reference and must be substituted by a(…)[…]
o In UPC the local reference via MYTHREAD must be appropriately changed

 In the case of CAF, unfortunately the program will not work when using the Cray or Intel
compilers (there appear to be compiler bugs with respect to referencing of type
components).

Hints for Exercise 3 (Reduction, presentation slide 109)

This example is targeted at Fortran programmers (since UPC provides collectives out of the box).
Skeleton code to start off with is contained in reduction_heat/mod_reduction.f90,
and a simple test program is in reduction_heat/test_reduction.f90. It is
recommended to

 declare a global coarray in the module’s specification part for intermediate results

 use a critical region for implementing the reduction

 make use of the information on the updated slide 78 for the prefix reduction
Solutions and pointers to solution source code can be found on slides 138 and 139.

Note: The Cray compiler unfortunately has a bug which causes wrong results and/or crashes for
procedure invocations with coindexed actual arguments. To work around this, please replace a
line like

call foo(x[5])

by

y = x[5]

call foo(y)

x[5] = y ! if dummy is modified

Hints for Exercise 4 (Presentation slide 110)

Coarray Fortran version

The idea here is to perform a one-dimensional block decomposition with halo data exchange as
sketched on slide 98 of the presentation. A serial version of the code is provided as

reduction_heat/heat_serial.f90

To keep things easy, the image-local block size kmax_loc is chosen to be the same on each
image such that the product kmax_loc * num_images() is as close as possible to kmax. To

be flexible, it is recommended to give the coarray field the ALLOCATABLE attribute.
The iteration process is controlled by the global difference of the temperature fields between
iterations (variable dphimax); it is therefore necessary to perform a reduction here, for which
you should use the module mod_reduction.f90 developed in exercise 3. A simple example
of how to use it in this context is provided as

reduction_heat/test_reduction.f90

For small problem sizes (imax == 20, kmax == 11), a printout of the temperature field is

generated before the first iteration step is performed, and after convergence has been reached.
Please run the serial version of program with test output to see what the results should look like.
Note that due to the slight changes in discretization length along the parallelized dimension the
numbers may be slightly different depending on the number of images used, but at the end of
the iteration process all numbers within a column should be the same. For the parallel version, it
is for the purpose of this exercise considered sufficient to perform a partial printout from one
(arbitrarily selected) image.

Some variants of solutions are available as

reduction_heat/solutions/heat_halo.f90

reduction_heat/solutions/heat_halo_push.f90

reduction_heat/solutions/heat_nohalo.f90 (does not use coarrays for full fields)

Note on performance: On x86 based systems, no speedup (but rather a slowdown) is observed
for problem size 100 x 100. Much bigger problem sizes may be better (but take a long time to
complete). Coarray implementations are not mature enough yet to properly optimize tightly
coupled codes such as this one.

UPC version

Note on Cray compilers: We detected certain memory allocation problems with this example
when Cray UPC is used; to avoid possible problems, we suggest compiling the code with a fixed
thread number using the –X option e.g.:

cc –h upc –X 4 –o ./heat.exe heat.upc

The idea here is to use a one-dimensional block decomposition and memory block transfer
functions as sketched on slide 100 of the updated presentation. A serial version of the code is
provided as

reduction_heat/heat_serial.c

To keep things easy, the thread-local block size imax_loc is chosen to be the same on each
image such that the product imax_loc * THREADS is as close as possible to imax. Suitable
shared arrays for the block transfer can be declared as

The iteration process is controlled by the global difference of the temperature fields between
iterations (variable dphimax); it is therefore necessary to perform a reduction here, for which
you should use the reduction function upc_all_reduceD() which is described on slide 95 of
the presentation; UPC_MAX must be used for the operation argument. A simple example of how
to use it in this context is provided as

reduction_heat/solutions/reduction.upc

For small problem sizes (imax == 20, kmax == 11), a printout of the temperature field is
generated before the first iteration step is performed, and after convergence has been reached.
Please run the serial version of program with test output to see what the results should look like.
Note that due to the slight changes in discretization length along the parallelized dimension the
numbers may be slightly different depending on the number of images used, but at the end of
the iteration process all numbers within a column should be the same. For the parallel version, it
is for the purpose of this exercise considered sufficient to perform a partial printout from one
(arbitrarily selected) thread.

Some variants of solutions are available as

reduction_heat/solutions/heat_nohalo.upc

reduction_heat/solutions/heat_halo.upc

Note on performance: On x86 based systems, reasonably good scaling up to 4 threads, but
relatively bad base line (1 thread) performance (when compared to the gcc-compiled serial
version) is observed for problem size 100 x 100. For tightly coupled applications such as this one
UPC implementations still have room for improvement.

shared [KMAX] double phi_top[THREADS][KMAX];
shared [KMAX] double phi_bot[THREADS][KMAX];

Distributed structure example (Presentation slides 106-108)

Illustrative code for this example is available as the following files:
distributed_structures/data.c

distributed_structures/data.h

distributed_structures/test_tree.upc (main program)
distributed_structures/tree.h (prototypes)
distributed_structures/tree.upc (tree manipulations)
for you to inspect and run. Note that a destructor has not been implemented. This example
requires the use of Berkeley UPC (the executable produced by the Cray compiler crashes).

MPI-UPC Hybrid Example

PGAS languages provide shared global address space that may include memory from a large number
of distinct physical nodes. Large amount of memory (not necessarily physically contiguous) allow
PGAS applications to work with extremely large datasets. To exploit the benefits of the PGAS
programming models, programmers are often required to rewrite existing MPI parallel code, using
some of the PGAS languages. Hybrid MPI-UPC programming model emerges as an alternative to the
arduous application-rewriting task. The hybrid model increases the amount of memory available to a
single MPI task, but also increases the scalability of certain UPC applications. James Dinan et al. (*)
observed significant performance benefit when a random access benchmark and the Barnes-Hut
cosmological simulations are parallelized using the MPI-UPC hybrid programming model.

The MPI-UPC hybrid programming concepts are still in the prototyping phase, and here we provide
only a short introduction. More detailed information about the MPI-UPC hybrid programming models
can be found on the websites:

http://barista.cse.ohio-state.edu/wiki/index.php/Hybrid_MPI%2BUPC
http://upc.lbl.gov/docs/user/interoperability.shtml#mpi

and in the paper:

(*) J. Dinan, P. Balaji, E. Lusk, P. Sadayappan, and R. Thakur, “Hybrid Parallel Programming with MPI
and Unified Parallel C,” 7th ACM International Conference on Computing Frontiers, ACM, Bertinoro,
Italy, 2010.

Three basic MPI-UPC programming models can be recognized:

1) Flat – All processes participate in both MPI and UPC communication
2) Nested-Funneled – Multiple groups of UPC processes exist, and only a single process from

each group performs MPI communication. UPC processes can communicate only within the
group. Note that each UPC group can span multiple nodes.

 3) Nested-Multiple – Multiple groups of UPC processes exist, and MPI spans all processes (all
processes can participate in MPI communication). UPC processes can communicate only
within the group, and a UPC group can span multiple nodes

 Flat Model Nested-Funneled Model Nested-Multiple Model

Running the MPI-UPC hybrid code:

http://barista.cse.ohio-state.edu/wiki/index.php/Hybrid_MPI%2BUPC
http://upc.lbl.gov/docs/user/interoperability.shtml#mpi

-Flat model requires the Berkeley UPC runtime to be configured with CC, MPI_CC and CXX set to
MPI C and C++ compilers. Also, when compiling the application passing --uses-mpi to upcc is
required (see http://upc.lbl.gov/docs/user/interoperability.shtml#mpi). With ”--uses-mpi”, the
Berkeley UPC runtime will call MPI_Init() and MPI_Finalize() functions, and therefore these
functions need to be removed from the application.

-For nested models, the Berkeley UPC Runtime needs to be configured with the SSH spawner and
the --disable-mpi option. For example, on an InfiniBand platform the following options must be
passed to the configure script: --with-ibv-spawner=ssh --with-vapi-spawner=ssh --disable-mpi

- Running commands – while the flat model can be spawned with upcrun, the nested models
require the process manager with MPMD support (for example the Hydra process manager
which is available with mpich2 installation):

o Flat: upcrun -n N ./app (app is previously compiled using “--uses-mpi”)
o Nested-Funneled, MPMD launching support is required:

mpiexec.hydra -f <HOSTFILE>
-env GASNET_SSH_SERVERS=<HOSTS> upcrun -n N ./app :
-env GASNET_SSH_SERVERS=<HOSTS> upcrun -n N ./app

o Nested-Multiple:
mpiexec.hydra -ranks-per-proc=N -f <HOSTFILE>
-env GASNET_SSH_SERVERS=<HOSTS> upcrun -n N ./app :
-env GASNET_SSH_SERVERS=<HOSTS> upcrun -n N ./app

The control of the UPC process distribution needs to be done through GASNET_SSH_SERVERS
environment variable, since the SSH spawner is used.

Recommendation: start with the Flat (simplest) model!

While in the flat and nested-multiple models all processes are involved in the MPI communication, in
the nested-funneled model, only one process is allowed to call MPI functions.

Nested-Funneled model example:

#include <stdio.h>
#include <upc.h>
#include <mpi.h>

#define DSOLOCAL
int main (int argc, char *argv[])
{
 int rank, size;

 if (MYTHREAD==0){
 MPI_Init (&argc, &argv); /* starts MPI */
 MPI_Comm_rank (MPI_COMM_WORLD, &rank); /* get current process id */
 MPI_Comm_size (MPI_COMM_WORLD, &size); /* get number of processes */
 printf("Hello world from UPC process: %d of %d, MPI process %d of %d\n", MYTHREAD,

THREADS, rank, size);
 MPI_Finalize();
 } else {
 printf("Hello world from upc process %d of %d\n", MYTHREAD, THREADS);
 }
 return 0;
}

http://upc.lbl.gov/docs/user/interoperability.shtml#mpi

