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Motivation

• Efficient programming of clusters of SMP nodes
SMP nodes:
• Dual/multi core CPUs
• Multi CPU shared memory
• Multi CPU ccNUMA
• Any mixture with shared memory programming model

• Hardware range
• mini-cluster with dual-core CPUs
• …
• large constellations with large SMP nodes

• Hybrid MPI/OpenMP programming seems natural
• MPI between the nodes
• OpenMP inside of each SMP node

• Often hybrid programming slower than pure MPI
• Examples, Reasons, …

Node Interconnect

SMP nodes
CPUs
shared
memory
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Motivation

• Using the communication bandwidth of the hardware optimal usage
• Minimizing  synchronization = idle  time of the hardware

• Appropriate parallel programming models  /  Pros & Cons

Node Interconnect

SMP nodes
CPUs
shared
memory
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But results may surprise!

• Example code - HYDRA
• Domain-decomposed hydrodynamics

– (almost) independent mesh domains with ghost cells on boundaries
– ghost cells communicate boundary information ~40-50 times per cycle

• Parallelism model: single level
– MPI divides domains among compute nodes
– OpenMP further subdivides domains among processors
– domain size set for cache efficiency

• minimizes memory usage, maximizes efficiency
• scales to very large problem sizes (>107 zones, >103 domains)

• Results:
– MPI (256 proc.) ~20% faster

than MPI / OpenMP (64 nodes x 4 proc./node)
– domain-domain communication not threaded,

i.e., MPI communication is done only by main thread
• accounts for ~10% speed difference, remainder in thread overhead
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Example from SC

• Pure MPI versus 
Hybrid MPI+OpenMP (Masteronly)

• What‘s better?  
� it depends on?

Figures: Richard D. Loft, Stephen J. Thomas, 
John M. Dennis:
Terascale Spectral Element Dynamical Core for 
Atmospheric General Circulation Models.
Proceedings of SC2001, Denver, USA, Nov. 2001.
http://www.sc2001.org/papers/pap.pap189.pdf
Fig. 9 and 10.

Explicit C154N6 16 Level SEAM: 
NPACI Results with

7 or 8 processes or threads per node
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Explicit/Semi Implicit C154N6 SEAM 
vs T170 PSTSWM, 16 Level, NCAR
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Outline

• Introduction  /  Motivation

• Programming models on clusters of SMP nodes

• Mismatch Problems
• Thread-safety quality of MPI libraries
• Summary
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Shared Memory Directives  – OpenMP,  I. 

Real :: A(n,m), B(n,m)

do j = 2, m-1
do i = 2, n-1

B(i,j) = ... A(i,j) 
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do
end do

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

O
pe

nM
P
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Shared Memory Directives  – OpenMP,  II.

Master ThreadSingle Thread

Team of ThreadsParallel Region

!$OMP PARALLEL

Master ThreadSingle Thread

!$OMP END PARALLEL

Team of ThreadsParallel Region

!$OMP PARALLEL

Master ThreadSingle Thread

!$OMP END PARALLEL
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Shared Memory Directives  – OpenMP,  III.

• OpenMP
– standardized shared memory parallelism
– thread-based
– the user has to specify the work distribution explicitly with directives
– no data distribution, no communication
– mainly loops can be parallelized
– compiler translates OpenMP directives into thread-handling
– standardized since 1997

• Automatic SMP-Parallelization
– e.g., Compas (Hitachi), Autotasking (NEC)
– thread based shared memory parallelism
– with directives (similar programming model as with OpenMP)
– supports automatic parallelization of loops
– similar to automatic vectorization
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Message Passing Program Paradigm  – MPI,  I.

• Each processor in a message passing program runs a sub-program
– written in a conventional sequential language, e.g., C or Fortran,
– typically the same on each processor (SPMD)

• All work and data distribution is based on value of myrank
– returned by special library routine

• Communication via special send & receive routines (message passing)

myrank=0

data

sub-
program

myrank=1

data

sub-
program

myrank=2

data

sub-
program

myrank=
(size-1)

data

sub-
program

communication network
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Additional Halo Cells   – MPI,  II.

Halo
(Shadow,
Ghost cells)

User defined communication
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Real :: A(n,m), B(n,m)
do j = 2, m-1

do i = 2, n-1
B(i,j) = ... A(i,j) 

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Message Passing   – MPI,  III.

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)
m1 = (m+size-1)/size;   ja=1+m1*myrank;   je=max(m1*(myrank+1), m)
jax=ja-1;  jex=je+1   // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)
do j = max(2,ja), min(m-1,je)

do i = 2, n-1
B(i,j) = ... A(i,j) 

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors
Call MPI_Recv(.......) ! - receiving from the neighbors, 

!   storing into the halo cells

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition
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Summary   — MPI,  IV.

• MPI (Message Passing Interface)
– standardized distributed memory parallelism with message passing
– process-based

– the user has to specify the work distribution & data distribution
& all communication

– synchronization implicit by completion of communication
– the application processes are calling MPI library-routines
– compiler generates normal sequential code

– typically domain decomposition is used
– communication across domain boundaries

– standardized 
MPI-1:   Version 1.0 (1994), 1.1 (1995), 1.2 (1997)
MPI-2:   since 1997
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Major Programming models on hybrid systems

• Pure MPI (one MPI process on each CPU)
• Hybrid MPI+OpenMP

– shared memory OpenMP
– distributed memory MPI 

• Other: Virtual shared memory systems, HPF, …
• Often hybrid programming (MPI+OpenMP) slower than pure MPI

– why?

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential 
program on 
each CPU

Explicit Message Passing
by calling MPI_Send & MPI_Recv

Node Interconnect

OpenMP inside of the 
SMP nodes

MPI between the nodes
via node interconnect
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some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential 
program on 
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each CPU

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual 
shared memory

Masteronly
MPI only outside
of parallel regions
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Pure MPI

Advantages
– No modifications on existing MPI codes
– MPI library need not to support multiple threads

Major problems
– Does MPI library uses internally different protocols?

• Shared memory inside of the SMP nodes
• Network communication between the nodes

– Does application topology fit on hardware topology?
– Unnecessary MPI-communication inside of SMP nodes!

pure MPI
one MPI process

on each CPU
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Hybrid Masteronly

Advantages
– No message passing inside of the SMP nodes
– No topology problem

for (iteration ….)
{
#pragma omp parallel 

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas 
in other SMP nodes)

MPI_Recv (halo data 
from the neighbors)

} /*end for loop

Masteronly
MPI only outside 
of parallel regions

Major Problems

– MPI-lib must support at least 
MPI_THREAD_FUNNELED

– Which inter-node bandwidth? 

– All other threads are sleeping
while master thread communicates!

© Rolf Rabenseifner
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Overlapping communication and computation

if (my_thread_rank < …) {

MPI_Send/Recv…. 
i.e., communicate all halo data

} else {

Execute those parts of the application
that do not need halo data
(on non-communicating threads)

}

Execute those parts of the application
that  need halo data
(on all threads)

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

© Rolf Rabenseifner
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Pure OpenMP (on the cluster)

• Distributed shared virtual memory system needed

• Must support clusters of SMP nodes

• e.g., Intel® Cluster OpenMP

– Shared memory parallel inside of SMP nodes

– Communication of modified parts of pages
at OpenMP flush  (part of each OpenMP barrier)

OpenMP only
distributed virtual 
shared memory

i.e., the OpenMP memory and parallelization model
is prepared for clusters! 
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Outline

• Introduction  /  Motivation
• Programming models on clusters of SMP nodes

• Mismatch Problems

• Thread-safety quality of MPI libraries
• Summary
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Mismatch Problems

• Topology problem [with pure MPI]

• Unnecessary intra-node communication [with pure MPI]

• Inter-node bandwidth problem [with hybrid MPI+OpenMP]

• Sleeping threads and [with masteronly] 
saturation problem  [with pure MPI]

• Additional OpenMP overhead [with hybrid MPI+OpenMP]
– Thread startup / join
– Cache flush   (data source thread  – communicating thread  – sync. � flush)

• Overlapping communication and computation   [with hybrid MPI+OpenMP]
– an application problem � separation of local or halo-based code
– a programming problem � thread-ranks-based  vs.  OpenMP work-sharing
– a load balancing problem, if only some threads communicate / compute

• Communication overhead with DSM [with pure (Cluster) OpenMP]

� no silver bullet,   i.e.,  each parallelization scheme has its problems

© Rolf Rabenseifner
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The Topology Problem with

Problems
– To fit application topology on hardware topology

Solutions for Cartesian grids:
– E.g. choosing ranks in MPI_COMM_WORLD ???

• round robin (rank 0 on node 0, rank 1 on node 1, ... )
• Sequential (ranks 0-7 on 1st node, ranks 8-15 on 2nd …)

… in general
– load balancing in two steps:

• all cells among the SMP nodes (e.g. with ParMetis)
• inside of each node: distributing the cells among the CPUs

– or …

pure MPI
one MPI process

on each CPU

���� using hybrid programming models 

1 2 30

9 10 118

5 6 74

13 14 1512

1 2 30

9 10 118

5 6 74

13 14 1512

1 2 30

9 10 118

5 6 74

13 14 1512

Round-robin x14

Sequential x8

Optimal ? x2

Slow inter-node link

Exa.: 2 SMP nodes, 8 CPUs/node

Mismatch Problems
�Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM
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Unnecessary intra-node communication

inter-node
8*8*1MB:

9.6 ms

vertical AND horizontal messages

intra-node
8*8*1MB:

2.0 ms

...

pure MPI: Σ=11.6 ms

Timing:
Hitachi SR8000, MPI_Sendrecv
8 nodes, each node with 8 CPUs

pure MPI

Node
CPU Alternative:

• Hybrid MPI+OpenMP
• No intra-node messages
• Longer inter-node 

messages
• Really faster ???????

(… wait 2 slides)

Mismatch Problems
• Topology problem
�Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM
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Programming Models on Hybrid Platforms: 
Hybrid Masteronly

Advantages
– No message passing inside of the SMP nodes
– No topology problem

Problems
– MPI-lib must support MPI_THREAD_FUNNELED

Disadvantages
– do we get full inter-node bandwidth? … next slide

– all other threads are sleeping
while master thread communicates

�Reason for implementing 
overlapping of
communication & computation 

for (iteration ….)
{
#pragma omp parallel 

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas 
in other SMP nodes)

MPI_Recv (halo data 
from the neighbors)

} /*end for loop

Masteronly
MPI only outside 
of parallel regions

© Rolf Rabenseifner
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Experiment: 
Orthogonal parallel communication

inter-node
8*8*1MB:

9.6 ms

pure MPI:
vertical AND horizontal messages

intra-node
8*8*1MB:

2.0 ms

...

pure MPI: Σ=11.6 ms

Hitachi SR8000
• 8 nodes
• each node 

with 8 CPUs
• MPI_Sendrecv

Masteronly

pure MPI

� 1.6x slower than with pure MPI, although
• only half of the transferred bytes 
• and less latencies due to 8x longer messages

8*8MB
hybrid: 19.2 ms

MPI+OpenMP:
only vertical

message size
:= aggregated

message
size of
pure MPI

Mismatch Problems
• Topology problem
• Unnecessary intra-node comm.
� Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM
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Results of the experiment

• pure MPI is better for
message size > 32 kB

• long messages: 
Thybrid / TpureMPI > 1.6

• OpenMP master thread
cannot saturate the 
inter-node network bandwidth
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pure MPI
is 

faster

MPI+OpenMP
(masteronly)

is faster

Masteronly

pure MPI

© Rolf Rabenseifner
Slide 28 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Ratio on several platforms

Ratio   T_hybrid_masteronly / T_pure_MPI
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MSP)

ra
ti

o 
T_

hy
br

id
_m

as
te

ro
nl

y 
/ T

_p
ur

e_
M

P
I  

_

IBM SP   8x16 CPUs,            
1 CPU Masteronly

SGI O3000 16x4 CPUs,        
1 CPU Masteronly

Hitachi SR8000  8x8 CPUs,  
1 CPU Masteronly

Pure MPI,                              
horizontal + vertical

Cray X1  8x4 MSPs,             
1 MSP Masteronly

NEC SX6 glmem 4x8 CPUs,  
1 CPU Masteronly

Pure MPI
is faster

Hybrid
is faster

Cray X1 and NEC SX are well 
prepared for hybrid 
masteronly programming

Cray X1 and SGI results are preliminary

IBM SP and SR 8000
Masteronly: 
MPI cannot saturate 
inter-node bandwidth

Masteronly

pure MPI
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Possible Reasons

• Hardware:
– is one CPU able to saturate the inter-node network?

• Software:
– internal MPI buffering may cause additional memory traffic 

� memory bandwidth may be the real restricting factor?

���� Let’s look at parallel bandwidth results

Masteronly

pure MPI
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Multiple inter-node communication paths 

inter-node
8*8*1MB

hybrid: 3*8*8/3MB

MPI+OpenMP:
only vertical

pure MPI:
vertical AND horizontal messages

intra-node
8*8*1MB

...

pure MPI: intra- + inter-node
(= vert. + horizontal)

Multiple vertical
communication paths, e.g.,

• 3 of 8 CPUs in each node

• stride 2

stride

Following benchmark 
results with one MPI 
process on each CPU

Masteronly

pure MPI
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Inter-node bandwidth per SMP node, accumulated over its CPUs,  
on IBM at Juelich (32 Power4+ CPUs/node, 
FederationSwitch with 4 adapters per node)
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16x16 CPUs, Hybrid Multiple,
4/16 CPUs Stride 1

16x16 CPUs, Hybrid Multiple,
3/16 CPUs Stride 1

16x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 1

16x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 4

16x16 CPUs, Pure MPI,
horizontal + vertical    

16x16 CPUs, Hybrid
Masteronly, MPI: 1 of 16CPUs

Multiple inter-node communication paths: IBM SP

More than 4 CPUs 
per node needed 
to achieve full 
inter-node 
bandwidth

*) Bandwidth per node: totally transferred bytes on the 
inter-node network / wall clock time / number of nodes 

*)

With 3-4 CPUs
similar to
pure MPI
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But only if second process is 
located on CPU connected 
with 2nd adapter!

The second CPU doubles the 
accumulated bandwidth

Masteronly

pure MPI
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Inter-node bandwidth per SMP node, accumulated over its CPUs,  
on NEC SX6  (with MPI_Alloc_mem)
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 4x8 CPUs, Hybrid Multiple,
8/8 CPUs Stride 1 
 4x8 CPUs, Hybrid Multiple,
6/8 CPUs Stride 1 
 4x8 CPUs, Hybrid Multiple,
4/8 CPUs Stride 1 
 4x8 CPUs, Hybrid Multiple,
3/8 CPUs Stride 1 
 4x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 1 
 4x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 4 
 4x8 CPUs, Hybrid
Masteronly, MPI: 1 of 8 CPUs
 4x8 CPUs, Pure MPI,
horizontal + vertical    

Intra-node 
messages do 
not count for 
bandwidth

Multiple inter-node communication paths: 
NEC SX-6 (using global memory)

Inverse:
More CPUs
= less bandwidth

*)

*) Bandwidth per node: totally transferred bytes on the 
inter-node network / wall clock time / number of nodes 

Measurements: 
Thanks to Holger Berger, NEC.

Masteronly

pure MPI
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Inter-node bandwidth per SMP node, accumulated over its CPUs
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accumulated message 
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Comparison (as percentage of maximal bandwidth and #CPUs)

Cray X1 results are preliminary

Nearly full bandwidth
• with 1 MSP on Cray
• with 1 CPU on NEC

50 % and less
on the other platforms

Nearly all platforms:
>80% bandwidth with

25% of CPUs/node 

Masteronly

pure MPI

© Rolf Rabenseifner
Slide 34 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Inter-node bandwidth per SMP node, accumulated over its CPUs,  
on HELICS,  2 CPUs / node, Myrinet
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128x2 CPUs, Hybrid Masteronly,
MPI: 1 of 2 CPUs
128x2 CPUs, Pure MPI,
horizontal + vertical    

Myrinet Cluster

• 1 CPU can achieve
full inter-node bandwidth

• Myrinet-cluster is well
prepared for hybrid 
masteronly programming

Masteronly

pure MPI
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Inter-node bandwidth problem  –
Summary and Work-around 
With (typically) more than 4 threads / MPI process

inter-node communication network 
cannot be saturated

Mismatch Problems
• Topology problem
• Unnecessary intra-node comm.
� Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM

� On constellation type systems 
(more than 4 CPUs per SMP node)
– With (typically) more than 4 threads / MPI process

inter-node communication network cannot be saturated
– Work-around:

Several multi-threaded MPI process on each SMP node
– Other problems come back:

• Topology problem:
– those processes should work on neighboring domains
– to minimize inter-node traffic  

• Unnecessary intra-node communication between these processes
– instead of operating on common shared memory
– but less intra-node communication than with pure MPI
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The sleeping-threads and 
the saturation problem

• Masteronly:
– all other threads are sleeping while master thread calls MPI

� wasting CPU time
��� wasting plenty of CPU time 

if master thread cannot saturate the inter-node network

• Pure MPI:
– all threads communicate, 

but already 1-3 threads could saturate the network
� wasting CPU time

���� Overlapping communication and computation

Mismatch Problems
• Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
�Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM
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Additional OpenMP Overhead

• Thread fork / join

• Cache flush  
– synchronization between data source thread and  

communicating thread implies  � a cache flush

• Amdahl’s law for each level of parallelism

Mismatch Problems
• Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
�Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM
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Mismatch Problems

• Topology problem [with pure MPI]

• Unnecessary intra-node communication [with pure MPI]

• Inter-node bandwidth problem [with hybrid MPI+OpenMP]

• Sleeping threads and [with masteronly] 
saturation problem  [with pure MPI]

• Additional OpenMP overhead [with hybrid MPI+OpenMP]
– Thread fork / join
– Cache flush   (data source thread  – communicating thread  – sync. � flush)

• Overlapping communication and computation   [with hybrid MPI+OpenMP]
– an application problem � separation of local or halo-based code
– a programming problem � thread-ranks-based  vs.  OpenMP work-sharing
– a load balancing problem, if only some threads communicate / compute

• Communication overhead with DSM [with pure (Cluster) OpenMP]

� no silver bullet, i.e.,  each parallelization scheme has its problems
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Overlapping communication and computation

• the application problem:
– one must separate application into: 

• code that can run before the halo data is received
• code that needs halo data

�very hard to do !!!

• the thread-rank problem:
– comm. / comp. via

thread-rank
– cannot use

work-sharing directives

�loss of major
OpenMP support

• the load balancing problem

if (my_thread_rank < 1) {
MPI_Send/Recv….

} else {
my_range = (high-low-1) / (num_threads-1) + 1;
my_low = low + (my_thread_rank+1)*my_range;
my_high=high+ (my_thread_rank+1+1)*my_range;
my_high = max(high, my_high)
for (i=my_low; i<my_high; i++) {

….
}

}

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

© Rolf Rabenseifner
Slide 40 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Overlapping communication and computation

Subteams
• Important proposal 

for OpenMP 3.x 
or  OpenMP 4.x

#pragma omp parallel
{
#pragma omp single onthreads( 0 )

{
MPI_Send/Recv….

}
#pragma omp for onthreads( 1 : omp_get_numthreads()-1 )

for (……..)
{ /* work without halo information */
}  /* barrier at the end is only inside of the subteam */
…

#pragma omp barrier
#pragma omp for

for (……..)
{ /* work based on halo information */
}

} /*end omp parallel */

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Barbara Chapman et al.:
Toward Enhancing OpenMP’s
Work-Sharing Directives.
In proceedings, W.E. Nagel et 
al. (Eds.): Euro-Par 2006, 
LNCS 4128, pp. 645-654, 
2006.
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some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential 
program on 
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each CPU

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual 
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only 

on master-thread

Multiple
more than one thread 

may communicate

Funneled & 
Reserved

reserved thread 
for communication

Funneled 
with 

Full Load 
Balancing

Multiple & 
Reserved

reserved threads
for communication

Multiple
with 

Full Load 
Balancing

C
om

pa
ri

so
n 

I.
(2

 e
xp

er
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ts

)

Comparison II.
(theory + experiment)

Comparison III.

Different strategies
to simplify the
load balancing
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Overlapping communication and computation (cont’d)

• the load balancing problem:
– some threads communicate, others not
– balance work on both types of threads
– strategies:

– reservation of one a fixed amount of 
threads (or portion of a thread) for 
communication

– see example last slide: 1 thread was 
reserved for communication

� a good chance !!! … see next slide

� very hard to do !!!

Funneled 
with 

Full Load 
Balancing

Funneled & 
Reserved

reserved thread 
for communi.

Multiple & 
Reserved

reserved threads
for communic.

Multiple 
with 

Full Load 
Balancing
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Overlapping computation & communication (cont’d)

Funneled & reserved   or   Multiple & reserved: 
• reserved tasks on threads: 

– master thread or some threads: communication
– all other threads ……………... : computation

• cons:
– bad load balance, if 

Tcommunication ncommunication_threads  
≠

Tcomputation ncomputation_threads
• pros:

– more easy programming scheme than with full load balancing
– chance for good performance!  

funneled &
reserved

—
skipped —
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Performance ratio  (theory)

• ε = ( )–1Thybrid, funneled&reserved
Thybrid, masteronly

funneled &
reserved

Masteronly

εεεε > 1
funneled&
reserved
is faster

εεεε < 1
masteronly

is faster

fcomm [%]

pe
rf

or
m

an
ce

ra
tio

 (ε
)

fcomm [%]

Good chance of funneled & reserved:
εmax = 1+m(1– 1/n)

Small risk of funneled & reserved:
εmin = 1–m/n

Thybrid, masteronly = (fcomm + fcomp, non-overlap + fcomp, overlap ) Thybrid, masteronly

n = # threads per SMP node,    m = # reserved threads for MPI communication
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Experiment: Matrix-vector-multiply (MVM)

• Jacobi-Davidson-Solver

• Hitachi SR8000

• 8 CPUs / SMP node

• JDS (Jagged Diagonal 
Storage)

• vectorizing

• nproc = # SMP nodes

• DMat =

512*512*(nk
loc*nproc)

• Varying nk
loc

� Varying 1/fcomm
• fcomp,non-overlap  =

1

fcomp,overlap 6

funneled &
reserved

Masteronly

pe
rf

or
m

an
ce

ra
tio

  (
ε)

(Theory)

Experiments

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models.
EWOMP 2002, Rome, Italy, Sep. 18–20, 2002 
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Experiment: Matrix-vector-multiply (MVM)

• Same experiment
on IBM SP Power3 nodes
with 16 CPUs per node

• funneled&reserved is 
always faster in this 
experiments

• Reason: 
Memory bandwidth 
is already saturated 
by 15 CPUs, see inset

• Inset: 
Speedup on 1 SMP node 
using different 
number of threads

funneled &
reserved

Masteronly

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures.
International Journal of High Performance Computing Applications, Vol. 17, No. 1, 2003, Sage Science Press .

fu
nn

el
ed

 &
 r

es
er

ve
d

is
 fa

st
er

m
as

te
ro

nl
y

is
 fa

st
er

pe
rf

or
m

an
ce

 r
at

io
  (

ε)

© Rolf Rabenseifner
Slide 47 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential 
program on 
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each CPU

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual 
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only 

on master-thread

Multiple
more than one thread 

may communicate

Funneled & 
Reserved

reserved thread 
for communication

Funneled 
with 

Full Load 
Balancing

Multiple & 
Reserved

reserved threads
for communication

Multiple
with 

Full Load 
Balancing

C
om

pa
ri

so
n 

I.
(2

 e
xp

er
im

en
ts

)

Comparison II.
(theory + experiment)

Comparison III.
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Compilation and Optimization

• Library based communication (e.g., MPI)
– clearly separated optimization of

(1) communication � MPI library
(2) computation � Compiler

• Compiler based parallelization (including the communication):
– similar strategy OpenMP Source (Fortran / C)

with optimization directives 

(1) OMNI Compiler

C-Code + Library calls
Communication-
& Thread-Library (2) optimizing native compiler

Executable

– preservation of original …
• … language?
• … optimization directives?

• Optimization of the computation  more important than
optimization of the communication

essential for
success of MPI

hybrid MPI+OpenMP OpenMP only
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OpenMP/DSM

• Distributed shared memory (DSM)   //
• Distributed virtual shared memory (DVSM)  //
• Shared virtual memory (SVM)

• Principles
– emulates a shared memory
– on distributed memory hardware

• Implementations
– e.g., Intel® Cluster OpenMP

OpenMP only
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Intel® Compilers with Cluster OpenMP

Goals

• To run OpenMP parallel applications on clusters

• Ease of OpenMP parallelization on cheap clusters

• Instead of 
– expensive MPI parallelization, or
– expensive shared memory / ccNUMA hardware

© Rolf Rabenseifner
Slide 51 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Intel® Compilers with Cluster OpenMP   –
Consistency Protocol

Basic idea:
• Between OpenMP barriers, data exchange is not necessary, i.e., 

visibility of data modifications to other threads only after synchronization.
• When a page of sharable memory is not up-to-date,

it becomes protected.
• Any access then faults (SIGSEGV) into Cluster OpenMP runtime library,

which requests info from remote nodes and updates the page.
• Protection is removed from page.
• Instruction causing the fault is re-started, 

this time successfully accessing the data.

OpenMP only

Courtesy of J. Cownie, Intel 
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Consistency Protocol Detail of Intel® Cluster OpenMP

Node 0

A
B
C

Write A[1]
Write C[1]

OMP Barrier
notices received and pro-
pagaded by master thread
WriteNotice(0A,2A,2B,0C)

WriteNotice(0A,1B,0C)

Calculate Diffs(A,TwinA)

Node 1

A
B
C

Write B[2]

OMP Barrier
WriteNotice(1B)

node   page

Read A[1]
Page Fault

Diff Request(A)

Re-Read A[1]

Node 2

A
B
C

Write A[2]
Write B[1]

OMP Barrier
WriteNotice(2A,2B)

Calculate Diffs(A,TwinA)

by additional
service thread

Courtesy of J. Cownie, Intel 

Pages:

by additional
service thread

page A starts 
read-only

Page Fault
allocate (TwinA)

memcpy
(TwinA := A)
Re-Write A[2]
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Comparison:  MPI based parallelization   � �� �� �� � DSM 

• MPI based:
– Potential of boundary exchange between two domains in one large message

� Dominated by bandwidth of the network

• DSM based (e.g. Intel® Cluster OpenMP):
– Additional latency based overhead in each barrier

� May be marginal

– Communication of updated data of pages
� Not all of this data may be needed 

� i.e., too much data is transferred

� Packages may be to small

� Significant latency

– Communication not oriented on boundaries 
of a domain decomposition

� probably more data must be transferred than 
necessary

hybrid MPI+OpenMP OpenMP only

by rule of thumb:

Communication 
may be

10 times slower
than with MPI
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Comparing results with heat example

• Normal OpenMP on shared memory (ccNUMA) NEC TX-7

heat_x.c / heatc2_x.c with OpenMP on NEC TX-7
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1000x1000

250x250

80x80

20x20

ideal speedup

Super-linear speedup
on 1000x1000 grid
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Heat example:  Cluster OpenMP Efficiency

• Cluster OpenMP on a Dual-Xeon cluster

heats2_x.c with Cluster OpenMP on NEC dual Xeon EM64T cluster

0

1

2

3

4

5

6

7

se
ria

l
1/

2 1 2 3 4 5 6 7 8

nodes

S
pe

ed
up

6000x6000 static(default) 1 threads/node

6000x6000 static(default) 2 threads/node
6000x6000 static(1:1) 1 threads/node

6000x6000 static(1:2) 1 threads/node
6000x6000 static(1:10) 1 threads/node

6000x6000 static(1:50) 1 threads/node
3000x3000 static(default) 1 threads/node

3000x3000 static(default) 2 threads/node

1000x1000 static(default) 1 threads/node
1000x1000 static(default) 2 threads/node

250x250 static(default) 1 threads/node
250x250 static(default) 2 threads/node

No speedup on 1000x1000 grid

Second CPU only usable in small cases

Up to 3 CPUs 
on 3000x3000 grid

Efficiency only with small 
communication foot-print

Terrible with non-default schedule
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Cluster OpenMP – a summary

• Intel® Cluster OpenMP can be used for programs with 
small communication foot-print!

• Source code modification needed: shared variables must be allocated in 
sharable memory

• It works!

• But efficiency strongly depends on type of application!

For the appropriate application a suitable tool!
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Mismatch Problems

• Topology problem [with pure MPI]

• Unnecessary intra-node communication [with pure MPI]

• Inter-node bandwidth problem [with hybrid MPI+OpenMP]

• Sleeping threads and [with masteronly] 
saturation problem  [with pure MPI]

• Additional OpenMP overhead [with hybrid MPI+OpenMP]
– Thread startup / join
– Cache flush   (data source thread  – communicating thread  – sync. � flush)

• Overlapping communication and computation   [with hybrid MPI+OpenMP]
– an application problem � separation of local or halo-based code
– a programming problem � thread-ranks-based  vs.  OpenMP work-sharing
– a load balancing problem, if only some threads communicate / compute

• Communication overhead with DSM [with pure (Cluster) OpenMP]

� no silver bullet,   i.e.,  each parallelization scheme has its problems
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No silver bullet

• The analyzed programming models do not fit on hybrid architectures

– whether drawbacks are minor or major

� depends on applications’ needs

– problems …

� to utilize the CPUs the whole time

� to achieve the full inter-node network bandwidth

� to minimize inter-node messages

� to prohibit intra-node 
– message transfer,   
– synchronization and
– balancing (idle-time) overhead 

� with the programming effort
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Chances for optimization

– with hybrid masteronly (MPI only outside of parallel OpenMP regions), e.g.,

� Minimize work of MPI routines, e.g.,
� application can copy non-contiguous data into contiguous scratch arrays  

(instead of using derived datatypes)

� MPI communication parallelized with multiple threads 
to saturate the inter-node network
� by internal parallel regions inside of the MPI library

� by the user application

� Use only hardware that can saturate inter-node network with 1 thread

� Optimal throughput:
� reuse of idling CPUs by other applications

– On constellations:

� Hybrid Masteronly
with several MPI multi-threaded processes on each SMP node
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Summary of mismatch problems

OpenMP work sharing only 
partially usable 

Load balancing problem due to 
hybrid programming model

Separation of (a) halo data and 
(b) inner data based calculations

Additional OpenMP overhead

(  )Sleeping CPUs while MPI 
communication

Do we achieve full inter-node 
bandwidth on constellations?

Additional MPI communication 
inside of SMP nodes

Application topology problem
(neighbor domains inside of SMP node)

Pure 
OpenMP:
e.g., Intel 
Cluster 
OpenMP

Over-
lapping
several  
processes
per node

Over-
lapping
1 process
per node

Master-
only
several  
processes
per node

Master-
only
1 process
per node

Pure 
MPI

Performance and Programming 
Problems with ...



© Rolf Rabenseifner
Slide 61 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Outline

• Introduction  /  Motivation
• Programming models on clusters of SMP nodes
• Mismatch Problems

• Thread-safety quality of MPI libraries

• Summary

skip
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MPI rules with OpenMP / Automatic SMP-parallelization

• Special MPI-2 Init for multi-threaded MPI processes:

• REQUIRED values (increasing order):
– MPI_THREAD_SINGLE: Only one thread will execute
– THREAD_MASTERONLY: MPI processes may be multi-threaded, 

(virtual value, but  only master thread will make MPI-calls
not part of the standard) AND only while other threads are sleeping

– MPI_THREAD_FUNNELED: Only master thread will make MPI-calls
– MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,

but only one at a time
– MPI_THREAD_MULTIPLE: Multiple threads may call MPI, 

with no restrictions
• returned provided may be less than REQUIRED by the application

int MPI_Init_thread( int * argc, char ** argv[],
int thread_level_required,
int * thead_level_provided);

int MPI_Query_thread( int *thread_level_provided);
int MPI_Is_main_thread(int * flag);
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Calling MPI inside of OMP MASTER

• Inside of a parallel region, with “OMP MASTER”

• Requires MPI_THREAD_FUNNELED,
i.e., only master thread will make MPI-calls

• Caution: There isn’t any synchronization with “OMP MASTER”!
Therefore, “OMP BARRIER” normally necessary to
guarantee, that data or buffer space from/for other 
threads is available before/after the MPI call!

!$OMP BARRIER #pragma omp barrier
!$OMP MASTER #pragma omp master

call MPI_Xxx(...) MPI_Xxx(...);  
!$OMP END MASTER
!$OMP BARRIER #pragma omp barrier

• But this implies that all other threads are sleeping!
• The additional barrier implies also the necessary cache flush!
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… the barrier is necessary  – example with MPI_Recv

!$OMP PARALLEL
!$OMP DO

do i=1,1000
a(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP MASTER

call MPI_RECV(buf,...)
!$OMP END MASTER
!$OMP BARRIER
!$OMP DO

do i=1,1000
c(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP END PARALLEL

#pragma omp parallel
{
#pragma omp for nowait

for (i=0; i<1000; i++)
a[i] = buf[i];

#pragma omp barrier
#pragma omp master

MPI_Recv(buf,...);
#pragma omp barrier

#pragma omp for nowait
for (i=0; i<1000; i++)

c[i] = buf[i];

}
/* omp end parallel */
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Outline

• Introduction  /  Motivation
• Programming models on clusters of SMP nodes
• Mismatch Problems
• Thread-safety quality of MPI libraries

• Summary
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OpenMP work sharing only partially 
usable 

Load balancing problem due to 
hybrid programming model

Separation of (a) halo data and 
(b) inner data based calculations

Additional OpenMP overhead

(      ) (   ) Sleeping CPUs while MPI 
communication

Do we achieve full inter-node 
bandwidth on constellations?

Additional MPI communication inside 
of SMP nodes

Application topology problem
(neighbor domains inside of SMP node)

Pure 
OpenMP:
e.g., Intel 
Cluster 
OpenMP

Over-
lapping
several  
processes
per node

Over-
lapping
1 process
per node

Master-
only
several  
processes
per node

Master-
only
1 process
per node

Pure 
MPI

Performance and Programming 
Problems with ...

On clusters 
with small nodes (≤≤≤≤ 4 CPUs)

Good candidates
with limited programming expense

Row should  
not be 

relevant 
due to 

nodes with 
≤≤≤≤ 4 CPUs
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OpenMP work sharing only partially 
usable 

Load balancing problem due to 
hybrid programming model

Separation of (a) halo data and 
(b) inner data based calculations

Additional OpenMP overhead

(   ) Sleeping CPUs while MPI 
communication

Do we achieve full inter-node 
bandwidth on constellations?

Additional MPI communication inside 
of SMP nodes

Application topology problem
(neighbor domains inside of SMP node)

Pure 
OpenMP:
e.g., Intel 
Cluster 
OpenMP

Over-
lapping
several  
processes
per node

Over-
lapping
1 process
per node

Master-
only
several 
processes
per node

Master-
only
1 process
per node

Pure 
MPI

Performance and Programming 
Problems with ...

Good candidates
with limited programming expense

On constellations (> 4 CPUs per node)

For extreme HPC,
probably best chance
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OpenMP work sharing only partially 
usable 

Load balancing problem due to 
hybrid programming model

Separation of (a) halo data and 
(b) inner data based calculations

Additional OpenMP overhead

(   ) Sleeping CPUs while MPI 
communication

Do we achieve full inter-node 
bandwidth on constellations?

Additional MPI communication inside 
of SMP nodes

Application topology problem
(neighbor domains inside of SMP node)

Pure 
OpenMP:
e.g., Intel 
Cluster 
OpenMP

Over-
lapping
several  
processes
per node

Over-
lapping
1 process
per node

Master-
only
several  
processes
per node

Master-
only
1 process
per node

Pure 
MPI

Performance and Programming 
Problems with ...

Maybe a candidate
with limited programming expense

Non-MPI applications 
with extremely small communication foot-print

therefore
irrelevant
aspects
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Conclusions

• Constellations (>4 CPUs per SMP node):
– Only a few platforms 

• e.g., Cray X1 in MSP mode,  NEC SX-6
• are well designed hybrid MPI+OpenMP masteronly scheme

– Other platforms
• masteronly style cannot saturate inter-node bandwidth
• Several multi-threaded MPI processes per SMP node may help

• Clusters with small SMP nodes:
• Simple masteronly style is a good candidate
• although some CPU idle  (while one is communicating)

• DSM systems (pure OpenMP, e.g Intel Cluster OpenMP):
• may help for some (but only some) applications

• Optimal performance:
• overlapping of communication & computation  � extreme programming effort

• Pure MPI:
• often the cheapest and (nearly) best solution

See also  www.hlrs.de/people/rabenseifner � list of publications  � Teaching in Germany
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• Author
• References (with direct relation to the content of this tutorial)
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Abstract

Abstract. Most HPC systems are clusters of shared memory nodes. Such systems can be PC 
clusters with dual or quad boards, but also "constellation" type systems with large SMP nodes. 
Parallel programming must combine the distributed memory parallelization on the node inter-
connect with the shared memory parallelization inside of each node. 

This lecture analyzes the strength and weakness of several parallel programming models on 
clusters of SMP nodes. Various hybrid MPI+OpenMP programming models are compared with 
pure MPI. Benchmark results of several platforms are presented. A hybrid-masteronly
programming model can be used more efficiently on some vector-type systems, but also on 
clusters of dual-CPUs. On other systems, one CPU is not able to saturate the inter-node network 
and the commonly used masteronly programming model suffers from insufficient inter-node 
bandwidth. The thread-safety quality of MPI libraries is also discussed. 

Another option is the use of distributed virtual shared-memory technologies which enable the 
utilization of "near-standard" OpenMP on distributed memory architectures. The performance 
issues of this approach and its impact on applications are discussed. This lecture analyzes 
strategies to overcome typical drawbacks of easily usable programming schemes on clusters of 
SMP nodes.
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Intel® Compilers with Cluster OpenMP –
Real consistency protocol is more complicated
• Diffs are done only when requested
• Several diffs are locally stored and transferred later

if a thread first reads a page after several barriers.
• Each write is internally handled as a read followed by a write.
• If too many diffs are stored, a node can force a "reposession" operation, 

i.e.,  the page is marked as invalid and fully re-send if needed.
• Another key point:

– After a page has been made read/write in a process,
no more protocol traffic is generated by the process for that page until 
after the next synchronization (and similarly if only reads are done 
once the page is present for read). 

– This is key because it’s how the large cost of the protocol is averaged 
over many accesses.

– I.e., protocol overhead only “once” per barrier
• Examples in the Appendix

Courtesy of J. Cownie, Intel 
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Intel® Compilers with Cluster OpenMP   –
Consistency Protocol   – Examples 

Notation

• ..=A[i] Start/End Start/end a read on element i on page A

• A[i]=.. Start/End Start/end a write on element i on page A, 
trap to library

• Twin(A) Create a twin copy of page A 

• WriteNotice(A) Send write notice for page A to other processors

• DiffReq_A_n(s:f) Request diffs for page A from node n between s and f

• Diff_A_n(s:f) Generate a diff for page A in writer n between s and
where s and f are barrier times.
This also frees the twin for page A.

Courtesy of J. Cownie, Intel 
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Exa. 1

Node 0 Node 1
Barrier 0 Barrier 0
A[1]=.. Start
Twin(A)
A[2]=.. End

A[5]=.. Start
Twin(A)
A[5]=.. End

Barrier 1 Barrier 1
WriteNotice(A) Writenotice(A)
A[5]=.. Start
Diffreq_A_1(0:1)->

<-Diff_A_1(0:1)
Apply diffs
A[5]=.. End
Barrier 2
WriteNotice(A)

Barrier 2

Courtesy of J. Cownie, Intel 
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Exa. 2
Node 0 Node 1 Node 2
Barrier 0 Barrier 0 Barrier 0
A[1]=.. Start
Twin(A)
A[1]=.. End
Barrier 1
WriteNotice(A)
A[2]=.. (no trap to library)
Barrier 2
(No WriteNotice(A) required)
A[3]=.. (no trap to lib)

..=A[1] Start
<-Diffreq_A_0(0:2)

Diff_A_0(0:2)->
Apply diffs
..=A[1] End

Barrier 3
(no WriteNotice(A) required because diffs 
were sent after the A[3]=..)
A[1]=.. Start
Twin(A)
Barrier 4
WriteNotice(A)

..=A[1] Start
<- Diffreq_A_0(0:4)

Create Diff_A_0(2:4) send Diff_A_O(0:4)->
Apply diffs
..=A[1] End

Barrier 1 Barrier 1

Barrier 2 Barrier 2

Barrier 3 Barrier 3

Barrier 4 Barrier 4

Courtesy of J. Cownie, Intel 
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Exa.  3
(start)

Node 0 Node 1 Node 2 Node 3
Barrier 0 Barrier 0 Barrier 0 Barrier 0
A[1]=.. Start A[5]=.. Start
Twin(A) Twin(A)
A[1]=.. End A[5]=.. End
Barrier 1 Barrier 1
WriteNotice(A) WriteNotice(A)
A[2]=.. Start A[1]=.. Start
Diffreq_A_1(0:1)-> <-Diffreq_A_0(0:1)
Diff_A_0(0:1)-> <-Diff_A_1_(0:1)
Apply diff Apply diff
Twin(A) Twin(A)
A[2]=.. End A[1]=.. End
Barrier 2 Barrier 2
WriteNotice(A) WriteNotice(A)
A[3]..= Start A[6]..= Start
Diffreq_A_1(1:2)-> <-Diffreq_A_A(1:2)
Diffs_A_0(1:2)-> <-Diffs_A_1(1:2)
Apply diffs Apply diffs
Twin(A) Twin(A)
A[3]=.. End A[6]=.. End

..=A[1] Start
<-Diffreq_A_0(0:2)
<-Diffreq_A_1(0:2)

Create Diff_A_0(1:2) Create Diff_A_1(1:2)
Send Diff_A_0(0:2)-> Send Diff_A_1(0:2)->

Apply all diffs
..=A[1] End

Barrier 1

Barrier 2 Barrier 2

Barrier 1

Courtesy of J. Cownie, Intel 
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Exa.  3
(end)

These examples may give an impression of the overhead 
induced by the Cluster OpenMP consistency protocol.

Node 0 Node 1 Node 2 Node 3
Barrier 3 Barrier 3
Writenotice(A) Writenotice(A)
A[1]=.. Start
Diffreq_A_1(2:3)->

<-Diffs_A_1_(2:3)
Apply diffs
Twin(A)
A[1]..= End
Barrier 4
Writenotice(A)

..=A[1] Start
<-Diffreq_A_0(0:4)
<-Diffreq_A_1(0:4)

Create Diff_A_0(3:4) Create Diff_A_1(2:4)
Send Diff_A_0(0:4)-> Send Diff_A_1(0:4)->

Apply diffs
..=A[1] End

Barrier 3 Barrier 3

Barrier 4 Barrier 4 Barrier 4

Courtesy of J. Cownie, Intel 
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