
Hybrid Parallel Programming
Slide 1 Höchstleistungsrechenzentrum Stuttgart

Hybrid MPI and OpenMP
Parallel Programming

MPI + OpenMP and other models
on clusters of SMP nodes

Rolf Rabenseifner
High-Performance Computing-Center Stuttgart (HLRS), University of Stuttgart,

rabenseifner@hlrs.de www.hlrs.de/people/rabenseifner

Invited Talk in the Lecture
“Cluster-Computing“

Prof. Dr. habil Thomas Ludwig, Parallel and Distributed Systems,
Institute for Computer Science, University of Heidelberg

July 20, 2007

© Rolf Rabenseifner
Slide 2 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Outline

slide number

• Introduction / Motivation 2

• Programming models on clusters of SMP nodes 7

• Mismatch Problems 21
– Topology problem 23
– Unnecessary intra-node communication 24
– Inter-node bandwidth problem 25
– Sleeping threads and saturation problem 36
– Additional OpenMP overhead 37
– Overlapping communication and computation 38
– Communication overhead with DSM 47
– No silver bullet 57

• Thread-safety quality of MPI libraries 61

• Summary 65

• Appendix 71

© Rolf Rabenseifner
Slide 3 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Motivation

• Efficient programming of clusters of SMP nodes
SMP nodes:
• Dual/multi core CPUs
• Multi CPU shared memory
• Multi CPU ccNUMA
• Any mixture with shared memory programming model

• Hardware range
• mini-cluster with dual-core CPUs
• …
• large constellations with large SMP nodes

• Hybrid MPI/OpenMP programming seems natural
• MPI between the nodes
• OpenMP inside of each SMP node

• Often hybrid programming slower than pure MPI
• Examples, Reasons, …

Node Interconnect

SMP nodes
CPUs
shared
memory

© Rolf Rabenseifner
Slide 4 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Motivation

• Using the communication bandwidth of the hardware optimal usage
• Minimizing synchronization = idle time of the hardware

• Appropriate parallel programming models / Pros & Cons

Node Interconnect

SMP nodes
CPUs
shared
memory

© Rolf Rabenseifner
Slide 5 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

But results may surprise!

• Example code - HYDRA
• Domain-decomposed hydrodynamics

– (almost) independent mesh domains with ghost cells on boundaries
– ghost cells communicate boundary information ~40-50 times per cycle

• Parallelism model: single level
– MPI divides domains among compute nodes
– OpenMP further subdivides domains among processors
– domain size set for cache efficiency

• minimizes memory usage, maximizes efficiency
• scales to very large problem sizes (>107 zones, >103 domains)

• Results:
– MPI (256 proc.) ~20% faster

than MPI / OpenMP (64 nodes x 4 proc./node)
– domain-domain communication not threaded,

i.e., MPI communication is done only by main thread
• accounts for ~10% speed difference, remainder in thread overhead

© Rolf Rabenseifner
Slide 6 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Example from SC

• Pure MPI versus
Hybrid MPI+OpenMP (Masteronly)

• What‘s better?
� it depends on?

Figures: Richard D. Loft, Stephen J. Thomas,
John M. Dennis:
Terascale Spectral Element Dynamical Core for
Atmospheric General Circulation Models.
Proceedings of SC2001, Denver, USA, Nov. 2001.
http://www.sc2001.org/papers/pap.pap189.pdf
Fig. 9 and 10.

Explicit C154N6 16 Level SEAM:
NPACI Results with

7 or 8 processes or threads per node

0 200 400 600 800 1000
Processors

35

30

25

20

15

10

5

0

In
te

gr
at

io
n

ra
te

[Y

ea
rs

pe
r

da
y

]

Explicit/Semi Implicit C154N6 SEAM
vs T170 PSTSWM, 16 Level, NCAR

0 100 200 300 400 500 600
Processors

25

20

15

10

5

0

In
te

gr
at

io
n

ra
te

[Y

ea
rs

pe
r

da
y

]

© Rolf Rabenseifner
Slide 7 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Outline

• Introduction / Motivation

• Programming models on clusters of SMP nodes

• Mismatch Problems
• Thread-safety quality of MPI libraries
• Summary

© Rolf Rabenseifner
Slide 8 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Shared Memory Directives – OpenMP, I.

Real :: A(n,m), B(n,m)

do j = 2, m-1
do i = 2, n-1

B(i,j) = ... A(i,j)
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do
end do

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

O
pe

nM
P

© Rolf Rabenseifner
Slide 9 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Shared Memory Directives – OpenMP, II.

Master ThreadSingle Thread

Team of ThreadsParallel Region

!$OMP PARALLEL

Master ThreadSingle Thread

!$OMP END PARALLEL

Team of ThreadsParallel Region

!$OMP PARALLEL

Master ThreadSingle Thread

!$OMP END PARALLEL

© Rolf Rabenseifner
Slide 10 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Shared Memory Directives – OpenMP, III.

• OpenMP
– standardized shared memory parallelism
– thread-based
– the user has to specify the work distribution explicitly with directives
– no data distribution, no communication
– mainly loops can be parallelized
– compiler translates OpenMP directives into thread-handling
– standardized since 1997

• Automatic SMP-Parallelization
– e.g., Compas (Hitachi), Autotasking (NEC)
– thread based shared memory parallelism
– with directives (similar programming model as with OpenMP)
– supports automatic parallelization of loops
– similar to automatic vectorization

© Rolf Rabenseifner
Slide 11 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Message Passing Program Paradigm – MPI, I.

• Each processor in a message passing program runs a sub-program
– written in a conventional sequential language, e.g., C or Fortran,
– typically the same on each processor (SPMD)

• All work and data distribution is based on value of myrank
– returned by special library routine

• Communication via special send & receive routines (message passing)

myrank=0

data

sub-
program

myrank=1

data

sub-
program

myrank=2

data

sub-
program

myrank=
(size-1)

data

sub-
program

communication network

© Rolf Rabenseifner
Slide 12 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Additional Halo Cells – MPI, II.

Halo
(Shadow,
Ghost cells)

User defined communication

© Rolf Rabenseifner
Slide 13 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Real :: A(n,m), B(n,m)
do j = 2, m-1

do i = 2, n-1
B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Message Passing – MPI, III.

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)
m1 = (m+size-1)/size; ja=1+m1*myrank; je=max(m1*(myrank+1), m)
jax=ja-1; jex=je+1 // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)
do j = max(2,ja), min(m-1,je)

do i = 2, n-1
B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors
Call MPI_Recv(.......) ! - receiving from the neighbors,

! storing into the halo cells

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

© Rolf Rabenseifner
Slide 14 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Summary — MPI, IV.

• MPI (Message Passing Interface)
– standardized distributed memory parallelism with message passing
– process-based

– the user has to specify the work distribution & data distribution
& all communication

– synchronization implicit by completion of communication
– the application processes are calling MPI library-routines
– compiler generates normal sequential code

– typically domain decomposition is used
– communication across domain boundaries

– standardized
MPI-1: Version 1.0 (1994), 1.1 (1995), 1.2 (1997)
MPI-2: since 1997

© Rolf Rabenseifner
Slide 15 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Major Programming models on hybrid systems

• Pure MPI (one MPI process on each CPU)
• Hybrid MPI+OpenMP

– shared memory OpenMP
– distributed memory MPI

• Other: Virtual shared memory systems, HPF, …
• Often hybrid programming (MPI+OpenMP) slower than pure MPI

– why?

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each CPU

Explicit Message Passing
by calling MPI_Send & MPI_Recv

Node Interconnect

OpenMP inside of the
SMP nodes

MPI between the nodes
via node interconnect

© Rolf Rabenseifner
Slide 16 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each CPU

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

© Rolf Rabenseifner
Slide 17 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Pure MPI

Advantages
– No modifications on existing MPI codes
– MPI library need not to support multiple threads

Major problems
– Does MPI library uses internally different protocols?

• Shared memory inside of the SMP nodes
• Network communication between the nodes

– Does application topology fit on hardware topology?
– Unnecessary MPI-communication inside of SMP nodes!

pure MPI
one MPI process

on each CPU

© Rolf Rabenseifner
Slide 18 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Hybrid Masteronly

Advantages
– No message passing inside of the SMP nodes
– No topology problem

for (iteration ….)
{
#pragma omp parallel

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside
of parallel regions

Major Problems

– MPI-lib must support at least
MPI_THREAD_FUNNELED

– Which inter-node bandwidth?

– All other threads are sleeping
while master thread communicates!

© Rolf Rabenseifner
Slide 19 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Overlapping communication and computation

if (my_thread_rank < …) {

MPI_Send/Recv….
i.e., communicate all halo data

} else {

Execute those parts of the application
that do not need halo data
(on non-communicating threads)

}

Execute those parts of the application
that need halo data
(on all threads)

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

© Rolf Rabenseifner
Slide 20 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Pure OpenMP (on the cluster)

• Distributed shared virtual memory system needed

• Must support clusters of SMP nodes

• e.g., Intel® Cluster OpenMP

– Shared memory parallel inside of SMP nodes

– Communication of modified parts of pages
at OpenMP flush (part of each OpenMP barrier)

OpenMP only
distributed virtual
shared memory

i.e., the OpenMP memory and parallelization model
is prepared for clusters!

© Rolf Rabenseifner
Slide 21 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes

• Mismatch Problems

• Thread-safety quality of MPI libraries
• Summary

© Rolf Rabenseifner
Slide 22 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Mismatch Problems

• Topology problem [with pure MPI]

• Unnecessary intra-node communication [with pure MPI]

• Inter-node bandwidth problem [with hybrid MPI+OpenMP]

• Sleeping threads and [with masteronly]
saturation problem [with pure MPI]

• Additional OpenMP overhead [with hybrid MPI+OpenMP]
– Thread startup / join
– Cache flush (data source thread – communicating thread – sync. � flush)

• Overlapping communication and computation [with hybrid MPI+OpenMP]
– an application problem � separation of local or halo-based code
– a programming problem � thread-ranks-based vs. OpenMP work-sharing
– a load balancing problem, if only some threads communicate / compute

• Communication overhead with DSM [with pure (Cluster) OpenMP]

� no silver bullet, i.e., each parallelization scheme has its problems

© Rolf Rabenseifner
Slide 23 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

The Topology Problem with

Problems
– To fit application topology on hardware topology

Solutions for Cartesian grids:
– E.g. choosing ranks in MPI_COMM_WORLD ???

• round robin (rank 0 on node 0, rank 1 on node 1, ...)
• Sequential (ranks 0-7 on 1st node, ranks 8-15 on 2nd …)

… in general
– load balancing in two steps:

• all cells among the SMP nodes (e.g. with ParMetis)
• inside of each node: distributing the cells among the CPUs

– or …

pure MPI
one MPI process

on each CPU

���� using hybrid programming models

1 2 30

9 10 118

5 6 74

13 14 1512

1 2 30

9 10 118

5 6 74

13 14 1512

1 2 30

9 10 118

5 6 74

13 14 1512

Round-robin x14

Sequential x8

Optimal ? x2

Slow inter-node link

Exa.: 2 SMP nodes, 8 CPUs/node

Mismatch Problems
�Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM

© Rolf Rabenseifner
Slide 24 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Unnecessary intra-node communication

inter-node
8*8*1MB:

9.6 ms

vertical AND horizontal messages

intra-node
8*8*1MB:

2.0 ms

...

pure MPI: Σ=11.6 ms

Timing:
Hitachi SR8000, MPI_Sendrecv
8 nodes, each node with 8 CPUs

pure MPI

Node
CPU Alternative:

• Hybrid MPI+OpenMP
• No intra-node messages
• Longer inter-node

messages
• Really faster ???????

(… wait 2 slides)

Mismatch Problems
• Topology problem
�Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM

© Rolf Rabenseifner
Slide 25 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Programming Models on Hybrid Platforms:
Hybrid Masteronly

Advantages
– No message passing inside of the SMP nodes
– No topology problem

Problems
– MPI-lib must support MPI_THREAD_FUNNELED

Disadvantages
– do we get full inter-node bandwidth? … next slide

– all other threads are sleeping
while master thread communicates

�Reason for implementing
overlapping of
communication & computation

for (iteration ….)
{
#pragma omp parallel

numerical code
/*end omp parallel */

/* on master thread only */
MPI_Send (original data
to halo areas
in other SMP nodes)

MPI_Recv (halo data
from the neighbors)

} /*end for loop

Masteronly
MPI only outside
of parallel regions

© Rolf Rabenseifner
Slide 26 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Experiment:
Orthogonal parallel communication

inter-node
8*8*1MB:

9.6 ms

pure MPI:
vertical AND horizontal messages

intra-node
8*8*1MB:

2.0 ms

...

pure MPI: Σ=11.6 ms

Hitachi SR8000
• 8 nodes
• each node

with 8 CPUs
• MPI_Sendrecv

Masteronly

pure MPI

� 1.6x slower than with pure MPI, although
• only half of the transferred bytes
• and less latencies due to 8x longer messages

8*8MB
hybrid: 19.2 ms

MPI+OpenMP:
only vertical

message size
:= aggregated

message
size of
pure MPI

Mismatch Problems
• Topology problem
• Unnecessary intra-node comm.
� Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM

© Rolf Rabenseifner
Slide 27 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Results of the experiment

• pure MPI is better for
message size > 32 kB

• long messages:
Thybrid / TpureMPI > 1.6

• OpenMP master thread
cannot saturate the
inter-node network bandwidth

0
0,2
0,4
0,6
0,8

1
1,2
1,4
1,6
1,8

2

0,125 0,5 2 8 32 128 512 2048
 Message size [kB]

R
at

io

T_hybrid / T_pureMPI (inter+intra node)

0,01

0,1

1

10

100

0,125 0,5 2 8 32 128 512 2048
Message size [kB]

T
ra

ns
fe

r t
im

e
[m

s]

T_hybrid (size*8)

T_pure MPI: inter+intra

T_pure MPI: inter-node

T_pure MPI: intra-node

128 512 2k 8k 32k 128k 512k 2M (pureMPI)
1k 4k 16k 64k 256k 1M 4M 16M (hybrid)

pure MPI
is

faster

MPI+OpenMP
(masteronly)

is faster

Masteronly

pure MPI

© Rolf Rabenseifner
Slide 28 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Ratio on several platforms

Ratio T_hybrid_masteronly / T_pure_MPI

0

0,5

1

1,5

2

2,5

3

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Message size (used with pure MPI on each CPU or
MSP)

ra
ti

o
T_

hy
br

id
_m

as
te

ro
nl

y
/ T

_p
ur

e_
M

P
I

_

IBM SP 8x16 CPUs,
1 CPU Masteronly

SGI O3000 16x4 CPUs,
1 CPU Masteronly

Hitachi SR8000 8x8 CPUs,
1 CPU Masteronly

Pure MPI,
horizontal + vertical

Cray X1 8x4 MSPs,
1 MSP Masteronly

NEC SX6 glmem 4x8 CPUs,
1 CPU Masteronly

Pure MPI
is faster

Hybrid
is faster

Cray X1 and NEC SX are well
prepared for hybrid
masteronly programming

Cray X1 and SGI results are preliminary

IBM SP and SR 8000
Masteronly:
MPI cannot saturate
inter-node bandwidth

Masteronly

pure MPI

© Rolf Rabenseifner
Slide 29 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Possible Reasons

• Hardware:
– is one CPU able to saturate the inter-node network?

• Software:
– internal MPI buffering may cause additional memory traffic

� memory bandwidth may be the real restricting factor?

���� Let’s look at parallel bandwidth results

Masteronly

pure MPI

© Rolf Rabenseifner
Slide 30 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Multiple inter-node communication paths

inter-node
8*8*1MB

hybrid: 3*8*8/3MB

MPI+OpenMP:
only vertical

pure MPI:
vertical AND horizontal messages

intra-node
8*8*1MB

...

pure MPI: intra- + inter-node
(= vert. + horizontal)

Multiple vertical
communication paths, e.g.,

• 3 of 8 CPUs in each node

• stride 2

stride

Following benchmark
results with one MPI
process on each CPU

Masteronly

pure MPI

© Rolf Rabenseifner
Slide 31 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Inter-node bandwidth per SMP node, accumulated over its CPUs,
on IBM at Juelich (32 Power4+ CPUs/node,
FederationSwitch with 4 adapters per node)

0

200

400

600

800

1000

1200

1400

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Message size (used with pure MPI on each CPU)

A
cc

um
ul

at
ed

 b
an

dw
id

th
 p

er
 S

M
P

 n
od

e
[M

B
]

16x16 CPUs, Hybrid
Multiple,12/16 CPUs Stride 1

16x16 CPUs, Hybrid Multiple,
6/16 CPUs Stride 1

16x16 CPUs, Hybrid Multiple,
4/16 CPUs Stride 1

16x16 CPUs, Hybrid Multiple,
3/16 CPUs Stride 1

16x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 1

16x16 CPUs, Hybrid Multiple,
2/16 CPUs Stride 4

16x16 CPUs, Pure MPI,
horizontal + vertical

16x16 CPUs, Hybrid
Masteronly, MPI: 1 of 16CPUs

Multiple inter-node communication paths: IBM SP

More than 4 CPUs
per node needed
to achieve full
inter-node
bandwidth

*) Bandwidth per node: totally transferred bytes on the
inter-node network / wall clock time / number of nodes

*)

With 3-4 CPUs
similar to
pure MPI

M
ea

su
re

m
en

ts
: T

ha
nk

s
to

B
er

n
M

oh
r,

 Z
A

M
, F

Z
Lü

lic
h

But only if second process is
located on CPU connected
with 2nd adapter!

The second CPU doubles the
accumulated bandwidth

Masteronly

pure MPI

© Rolf Rabenseifner
Slide 32 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Inter-node bandwidth per SMP node, accumulated over its CPUs,
on NEC SX6 (with MPI_Alloc_mem)

0

1000

2000

3000

4000

5000

6000

7000

8000

1E+2 1E+3 1E+4 1E+5 1E+6 1E+7

Message size (used with pure MPI on each CPU)

A
cc

u
m

u
la

te
d

 b
an

dw
id

th
 p

er
 S

M
P

 n
o

de
[M

B
]

 4x8 CPUs, Hybrid Multiple,
8/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
6/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
4/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
3/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 1
 4x8 CPUs, Hybrid Multiple,
2/8 CPUs Stride 4
 4x8 CPUs, Hybrid
Masteronly, MPI: 1 of 8 CPUs
 4x8 CPUs, Pure MPI,
horizontal + vertical

Intra-node
messages do
not count for
bandwidth

Multiple inter-node communication paths:
NEC SX-6 (using global memory)

Inverse:
More CPUs
= less bandwidth

*)

*) Bandwidth per node: totally transferred bytes on the
inter-node network / wall clock time / number of nodes

Measurements:
Thanks to Holger Berger, NEC.

Masteronly

pure MPI

© Rolf Rabenseifner
Slide 33 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Inter-node bandwidth per SMP node, accumulated over its CPUs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0,0% 12,5% 25,0% 37,5% 50,0% 62,5% 75,0% 87,5% 100,0%

communicating CPUs per SMP node
as percentage

of the total number of CPUs per SMP node

ac
cu

m
ul

at
ed

 b
an

dw
id

th
 a

s
pe

rc
en

ta
ge

of

 th
e

pe
ak

 b
an

dw
id

th

Cray X1 MSP shmem_put / 7680 kB

Cray X1 MSP / 7680 kB

NEC SX6 glmem / 7680 kB

Hitachi SR8000 / 7680 kB

IBM SP/Power3+ / 7680 kB

accumulated message
size from node to node

Comparison (as percentage of maximal bandwidth and #CPUs)

Cray X1 results are preliminary

Nearly full bandwidth
• with 1 MSP on Cray
• with 1 CPU on NEC

50 % and less
on the other platforms

Nearly all platforms:
>80% bandwidth with

25% of CPUs/node

Masteronly

pure MPI

© Rolf Rabenseifner
Slide 34 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Inter-node bandwidth per SMP node, accumulated over its CPUs,
on HELICS, 2 CPUs / node, Myrinet

0

20

40

60

80

100

120

140

1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Message size (used with pure MPI on each CPU)

A
cc

um
ul

at
ed

 b
an

dw
id

th
 p

er
 S

M
P

no

de

 [M
B

/s
]

128x2 CPUs, Hybrid Multiple,
2/2 CPUs Stride 1
128x2 CPUs, Hybrid Masteronly,
MPI: 1 of 2 CPUs
128x2 CPUs, Pure MPI,
horizontal + vertical

Myrinet Cluster

• 1 CPU can achieve
full inter-node bandwidth

• Myrinet-cluster is well
prepared for hybrid
masteronly programming

Masteronly

pure MPI

© Rolf Rabenseifner
Slide 35 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Inter-node bandwidth problem –
Summary and Work-around
With (typically) more than 4 threads / MPI process

inter-node communication network
cannot be saturated

Mismatch Problems
• Topology problem
• Unnecessary intra-node comm.
� Inter-node bandwidth problem
• Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM

� On constellation type systems
(more than 4 CPUs per SMP node)
– With (typically) more than 4 threads / MPI process

inter-node communication network cannot be saturated
– Work-around:

Several multi-threaded MPI process on each SMP node
– Other problems come back:

• Topology problem:
– those processes should work on neighboring domains
– to minimize inter-node traffic

• Unnecessary intra-node communication between these processes
– instead of operating on common shared memory
– but less intra-node communication than with pure MPI

© Rolf Rabenseifner
Slide 36 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

The sleeping-threads and
the saturation problem

• Masteronly:
– all other threads are sleeping while master thread calls MPI

� wasting CPU time
��� wasting plenty of CPU time

if master thread cannot saturate the inter-node network

• Pure MPI:
– all threads communicate,

but already 1-3 threads could saturate the network
� wasting CPU time

���� Overlapping communication and computation

Mismatch Problems
• Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
�Sleeping threads and

saturation problem
• Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM

© Rolf Rabenseifner
Slide 37 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Additional OpenMP Overhead

• Thread fork / join

• Cache flush
– synchronization between data source thread and

communicating thread implies � a cache flush

• Amdahl’s law for each level of parallelism

Mismatch Problems
• Topology problem
• Unnecessary intra-node comm.
• Inter-node bandwidth problem
• Sleeping threads and

saturation problem
�Additional OpenMP overhead
• Overlapping comm. and comp.
• Communication overhead w. DSM

© Rolf Rabenseifner
Slide 38 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Mismatch Problems

• Topology problem [with pure MPI]

• Unnecessary intra-node communication [with pure MPI]

• Inter-node bandwidth problem [with hybrid MPI+OpenMP]

• Sleeping threads and [with masteronly]
saturation problem [with pure MPI]

• Additional OpenMP overhead [with hybrid MPI+OpenMP]
– Thread fork / join
– Cache flush (data source thread – communicating thread – sync. � flush)

• Overlapping communication and computation [with hybrid MPI+OpenMP]
– an application problem � separation of local or halo-based code
– a programming problem � thread-ranks-based vs. OpenMP work-sharing
– a load balancing problem, if only some threads communicate / compute

• Communication overhead with DSM [with pure (Cluster) OpenMP]

� no silver bullet, i.e., each parallelization scheme has its problems

© Rolf Rabenseifner
Slide 39 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Overlapping communication and computation

• the application problem:
– one must separate application into:

• code that can run before the halo data is received
• code that needs halo data

�very hard to do !!!

• the thread-rank problem:
– comm. / comp. via

thread-rank
– cannot use

work-sharing directives

�loss of major
OpenMP support

• the load balancing problem

if (my_thread_rank < 1) {
MPI_Send/Recv….

} else {
my_range = (high-low-1) / (num_threads-1) + 1;
my_low = low + (my_thread_rank+1)*my_range;
my_high=high+ (my_thread_rank+1+1)*my_range;
my_high = max(high, my_high)
for (i=my_low; i<my_high; i++) {

….
}

}

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

© Rolf Rabenseifner
Slide 40 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Overlapping communication and computation

Subteams
• Important proposal

for OpenMP 3.x
or OpenMP 4.x

#pragma omp parallel
{
#pragma omp single onthreads(0)

{
MPI_Send/Recv….

}
#pragma omp for onthreads(1 : omp_get_numthreads()-1)

for (……..)
{ /* work without halo information */
} /* barrier at the end is only inside of the subteam */
…

#pragma omp barrier
#pragma omp for

for (……..)
{ /* work based on halo information */
}

} /*end omp parallel */

Overlapping Communication and Computation
MPI communication by one or a few threads while other threads are computing

Barbara Chapman et al.:
Toward Enhancing OpenMP’s
Work-Sharing Directives.
In proceedings, W.E. Nagel et
al. (Eds.): Euro-Par 2006,
LNCS 4128, pp. 645-654,
2006.

© Rolf Rabenseifner
Slide 41 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each CPU

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only

on master-thread

Multiple
more than one thread

may communicate

Funneled &
Reserved

reserved thread
for communication

Funneled
with

Full Load
Balancing

Multiple &
Reserved

reserved threads
for communication

Multiple
with

Full Load
Balancing

C
om

pa
ri

so
n

I.
(2

 e
xp

er
im

en
ts

)

Comparison II.
(theory + experiment)

Comparison III.

Different strategies
to simplify the
load balancing

© Rolf Rabenseifner
Slide 42 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Overlapping communication and computation (cont’d)

• the load balancing problem:
– some threads communicate, others not
– balance work on both types of threads
– strategies:

– reservation of one a fixed amount of
threads (or portion of a thread) for
communication

– see example last slide: 1 thread was
reserved for communication

� a good chance !!! … see next slide

� very hard to do !!!

Funneled
with

Full Load
Balancing

Funneled &
Reserved

reserved thread
for communi.

Multiple &
Reserved

reserved threads
for communic.

Multiple
with

Full Load
Balancing

© Rolf Rabenseifner
Slide 43 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Overlapping computation & communication (cont’d)

Funneled & reserved or Multiple & reserved:
• reserved tasks on threads:

– master thread or some threads: communication
– all other threads ……………... : computation

• cons:
– bad load balance, if

Tcommunication ncommunication_threads
≠

Tcomputation ncomputation_threads
• pros:

– more easy programming scheme than with full load balancing
– chance for good performance!

funneled &
reserved

—
skipped —

© Rolf Rabenseifner
Slide 44 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Performance ratio (theory)

• ε = ()–1Thybrid, funneled&reserved
Thybrid, masteronly

funneled &
reserved

Masteronly

εεεε > 1
funneled&
reserved
is faster

εεεε < 1
masteronly

is faster

fcomm [%]

pe
rf

or
m

an
ce

ra
tio

 (ε
)

fcomm [%]

Good chance of funneled & reserved:
εmax = 1+m(1– 1/n)

Small risk of funneled & reserved:
εmin = 1–m/n

Thybrid, masteronly = (fcomm + fcomp, non-overlap + fcomp, overlap) Thybrid, masteronly

n = # threads per SMP node, m = # reserved threads for MPI communication

© Rolf Rabenseifner
Slide 45 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Experiment: Matrix-vector-multiply (MVM)

• Jacobi-Davidson-Solver

• Hitachi SR8000

• 8 CPUs / SMP node

• JDS (Jagged Diagonal
Storage)

• vectorizing

• nproc = # SMP nodes

• DMat =

512*512*(nk
loc*nproc)

• Varying nk
loc

� Varying 1/fcomm
• fcomp,non-overlap =

1

fcomp,overlap 6

funneled &
reserved

Masteronly

pe
rf

or
m

an
ce

ra
tio

 (
ε)

(Theory)

Experiments

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models.
EWOMP 2002, Rome, Italy, Sep. 18–20, 2002

fu
nn

el
ed

&
 r

es
er

ve
d

is
fa

st
er

m
as

te
ro

nl
y

is
fa

st
er

© Rolf Rabenseifner
Slide 46 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Experiment: Matrix-vector-multiply (MVM)

• Same experiment
on IBM SP Power3 nodes
with 16 CPUs per node

• funneled&reserved is
always faster in this
experiments

• Reason:
Memory bandwidth
is already saturated
by 15 CPUs, see inset

• Inset:
Speedup on 1 SMP node
using different
number of threads

funneled &
reserved

Masteronly

Source: R. Rabenseifner, G. Wellein:
Communication and Optimization Aspects of Parallel Programming Models on Hybrid Architectures.
International Journal of High Performance Computing Applications, Vol. 17, No. 1, 2003, Sage Science Press .

fu
nn

el
ed

 &
 r

es
er

ve
d

is
 fa

st
er

m
as

te
ro

nl
y

is
 fa

st
er

pe
rf

or
m

an
ce

 r
at

io
 (

ε)

© Rolf Rabenseifner
Slide 47 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

some_serial_code
#pragma omp parallel for
for (j=…;…; j++)

block_to_be_parallelized
again_some_serial_code

Master thread,
other threads

••• sleeping •••

OpenMP (shared data)MPI local data in each process

dataSequential
program on
each CPU

Explicit message transfers
by calling MPI_Send & MPI_Recv

Parallel Programming Models on Hybrid Platforms

No overlap of Comm. + Comp.
MPI only outside of parallel regions
of the numerical application code

Overlapping Comm. + Comp.
MPI communication by one or a few threads

while other threads are computing

pure MPI
one MPI process

on each CPU

hybrid MPI+OpenMP
MPI: inter-node communication

OpenMP: inside of each SMP node

OpenMP only
distributed virtual
shared memory

Masteronly
MPI only outside
of parallel regions

Multiple/only
• appl. threads
• inside of MPI

Funneled
MPI only

on master-thread

Multiple
more than one thread

may communicate

Funneled &
Reserved

reserved thread
for communication

Funneled
with

Full Load
Balancing

Multiple &
Reserved

reserved threads
for communication

Multiple
with

Full Load
Balancing

C
om

pa
ri

so
n

I.
(2

 e
xp

er
im

en
ts

)

Comparison II.
(theory + experiment)

Comparison III.

© Rolf Rabenseifner
Slide 48 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Compilation and Optimization

• Library based communication (e.g., MPI)
– clearly separated optimization of

(1) communication � MPI library
(2) computation � Compiler

• Compiler based parallelization (including the communication):
– similar strategy OpenMP Source (Fortran / C)

with optimization directives

(1) OMNI Compiler

C-Code + Library calls
Communication-
& Thread-Library (2) optimizing native compiler

Executable

– preservation of original …
• … language?
• … optimization directives?

• Optimization of the computation more important than
optimization of the communication

essential for
success of MPI

hybrid MPI+OpenMP OpenMP only

© Rolf Rabenseifner
Slide 49 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

OpenMP/DSM

• Distributed shared memory (DSM) //
• Distributed virtual shared memory (DVSM) //
• Shared virtual memory (SVM)

• Principles
– emulates a shared memory
– on distributed memory hardware

• Implementations
– e.g., Intel® Cluster OpenMP

OpenMP only

© Rolf Rabenseifner
Slide 50 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Intel® Compilers with Cluster OpenMP

Goals

• To run OpenMP parallel applications on clusters

• Ease of OpenMP parallelization on cheap clusters

• Instead of
– expensive MPI parallelization, or
– expensive shared memory / ccNUMA hardware

© Rolf Rabenseifner
Slide 51 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Intel® Compilers with Cluster OpenMP –
Consistency Protocol

Basic idea:
• Between OpenMP barriers, data exchange is not necessary, i.e.,

visibility of data modifications to other threads only after synchronization.
• When a page of sharable memory is not up-to-date,

it becomes protected.
• Any access then faults (SIGSEGV) into Cluster OpenMP runtime library,

which requests info from remote nodes and updates the page.
• Protection is removed from page.
• Instruction causing the fault is re-started,

this time successfully accessing the data.

OpenMP only

Courtesy of J. Cownie, Intel

© Rolf Rabenseifner
Slide 52 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Consistency Protocol Detail of Intel® Cluster OpenMP

Node 0

A
B
C

Write A[1]
Write C[1]

OMP Barrier
notices received and pro-
pagaded by master thread
WriteNotice(0A,2A,2B,0C)

WriteNotice(0A,1B,0C)

Calculate Diffs(A,TwinA)

Node 1

A
B
C

Write B[2]

OMP Barrier
WriteNotice(1B)

node page

Read A[1]
Page Fault

Diff Request(A)

Re-Read A[1]

Node 2

A
B
C

Write A[2]
Write B[1]

OMP Barrier
WriteNotice(2A,2B)

Calculate Diffs(A,TwinA)

by additional
service thread

Courtesy of J. Cownie, Intel

Pages:

by additional
service thread

page A starts
read-only

Page Fault
allocate (TwinA)

memcpy
(TwinA := A)
Re-Write A[2]

© Rolf Rabenseifner
Slide 53 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Comparison: MPI based parallelization � �� �� �� � DSM

• MPI based:
– Potential of boundary exchange between two domains in one large message

� Dominated by bandwidth of the network

• DSM based (e.g. Intel® Cluster OpenMP):
– Additional latency based overhead in each barrier

� May be marginal

– Communication of updated data of pages
� Not all of this data may be needed

� i.e., too much data is transferred

� Packages may be to small

� Significant latency

– Communication not oriented on boundaries
of a domain decomposition

� probably more data must be transferred than
necessary

hybrid MPI+OpenMP OpenMP only

by rule of thumb:

Communication
may be

10 times slower
than with MPI

© Rolf Rabenseifner
Slide 54 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Comparing results with heat example

• Normal OpenMP on shared memory (ccNUMA) NEC TX-7

heat_x.c / heatc2_x.c with OpenMP on NEC TX-7

0

2

4

6

8

10

12

14

16

18

se
ria

l 1 2 3 4 6 8 10

threads

S
p

ee
d

up

1000x1000

250x250

80x80

20x20

ideal speedup

Super-linear speedup
on 1000x1000 grid

© Rolf Rabenseifner
Slide 55 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Heat example: Cluster OpenMP Efficiency

• Cluster OpenMP on a Dual-Xeon cluster

heats2_x.c with Cluster OpenMP on NEC dual Xeon EM64T cluster

0

1

2

3

4

5

6

7

se
ria

l
1/

2 1 2 3 4 5 6 7 8

nodes

S
pe

ed
up

6000x6000 static(default) 1 threads/node

6000x6000 static(default) 2 threads/node
6000x6000 static(1:1) 1 threads/node

6000x6000 static(1:2) 1 threads/node
6000x6000 static(1:10) 1 threads/node

6000x6000 static(1:50) 1 threads/node
3000x3000 static(default) 1 threads/node

3000x3000 static(default) 2 threads/node

1000x1000 static(default) 1 threads/node
1000x1000 static(default) 2 threads/node

250x250 static(default) 1 threads/node
250x250 static(default) 2 threads/node

No speedup on 1000x1000 grid

Second CPU only usable in small cases

Up to 3 CPUs
on 3000x3000 grid

Efficiency only with small
communication foot-print

Terrible with non-default schedule

© Rolf Rabenseifner
Slide 56 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Cluster OpenMP – a summary

• Intel® Cluster OpenMP can be used for programs with
small communication foot-print!

• Source code modification needed: shared variables must be allocated in
sharable memory

• It works!

• But efficiency strongly depends on type of application!

For the appropriate application a suitable tool!

© Rolf Rabenseifner
Slide 57 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Mismatch Problems

• Topology problem [with pure MPI]

• Unnecessary intra-node communication [with pure MPI]

• Inter-node bandwidth problem [with hybrid MPI+OpenMP]

• Sleeping threads and [with masteronly]
saturation problem [with pure MPI]

• Additional OpenMP overhead [with hybrid MPI+OpenMP]
– Thread startup / join
– Cache flush (data source thread – communicating thread – sync. � flush)

• Overlapping communication and computation [with hybrid MPI+OpenMP]
– an application problem � separation of local or halo-based code
– a programming problem � thread-ranks-based vs. OpenMP work-sharing
– a load balancing problem, if only some threads communicate / compute

• Communication overhead with DSM [with pure (Cluster) OpenMP]

� no silver bullet, i.e., each parallelization scheme has its problems

© Rolf Rabenseifner
Slide 58 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

No silver bullet

• The analyzed programming models do not fit on hybrid architectures

– whether drawbacks are minor or major

� depends on applications’ needs

– problems …

� to utilize the CPUs the whole time

� to achieve the full inter-node network bandwidth

� to minimize inter-node messages

� to prohibit intra-node
– message transfer,
– synchronization and
– balancing (idle-time) overhead

� with the programming effort

© Rolf Rabenseifner
Slide 59 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Chances for optimization

– with hybrid masteronly (MPI only outside of parallel OpenMP regions), e.g.,

� Minimize work of MPI routines, e.g.,
� application can copy non-contiguous data into contiguous scratch arrays

(instead of using derived datatypes)

� MPI communication parallelized with multiple threads
to saturate the inter-node network
� by internal parallel regions inside of the MPI library

� by the user application

� Use only hardware that can saturate inter-node network with 1 thread

� Optimal throughput:
� reuse of idling CPUs by other applications

– On constellations:

� Hybrid Masteronly
with several MPI multi-threaded processes on each SMP node

© Rolf Rabenseifner
Slide 60 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Summary of mismatch problems

OpenMP work sharing only
partially usable

Load balancing problem due to
hybrid programming model

Separation of (a) halo data and
(b) inner data based calculations

Additional OpenMP overhead

()Sleeping CPUs while MPI
communication

Do we achieve full inter-node
bandwidth on constellations?

Additional MPI communication
inside of SMP nodes

Application topology problem
(neighbor domains inside of SMP node)

Pure
OpenMP:
e.g., Intel
Cluster
OpenMP

Over-
lapping
several
processes
per node

Over-
lapping
1 process
per node

Master-
only
several
processes
per node

Master-
only
1 process
per node

Pure
MPI

Performance and Programming
Problems with ...

© Rolf Rabenseifner
Slide 61 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Mismatch Problems

• Thread-safety quality of MPI libraries

• Summary

skip

© Rolf Rabenseifner
Slide 62 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

MPI rules with OpenMP / Automatic SMP-parallelization

• Special MPI-2 Init for multi-threaded MPI processes:

• REQUIRED values (increasing order):
– MPI_THREAD_SINGLE: Only one thread will execute
– THREAD_MASTERONLY: MPI processes may be multi-threaded,

(virtual value, but only master thread will make MPI-calls
not part of the standard) AND only while other threads are sleeping

– MPI_THREAD_FUNNELED: Only master thread will make MPI-calls
– MPI_THREAD_SERIALIZED: Multiple threads may make MPI-calls,

but only one at a time
– MPI_THREAD_MULTIPLE: Multiple threads may call MPI,

with no restrictions
• returned provided may be less than REQUIRED by the application

int MPI_Init_thread(int * argc, char ** argv[],
int thread_level_required,
int * thead_level_provided);

int MPI_Query_thread(int *thread_level_provided);
int MPI_Is_main_thread(int * flag);

© Rolf Rabenseifner
Slide 63 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Calling MPI inside of OMP MASTER

• Inside of a parallel region, with “OMP MASTER”

• Requires MPI_THREAD_FUNNELED,
i.e., only master thread will make MPI-calls

• Caution: There isn’t any synchronization with “OMP MASTER”!
Therefore, “OMP BARRIER” normally necessary to
guarantee, that data or buffer space from/for other
threads is available before/after the MPI call!

!$OMP BARRIER #pragma omp barrier
!$OMP MASTER #pragma omp master

call MPI_Xxx(...) MPI_Xxx(...);
!$OMP END MASTER
!$OMP BARRIER #pragma omp barrier

• But this implies that all other threads are sleeping!
• The additional barrier implies also the necessary cache flush!

© Rolf Rabenseifner
Slide 64 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

… the barrier is necessary – example with MPI_Recv

!$OMP PARALLEL
!$OMP DO

do i=1,1000
a(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP BARRIER
!$OMP MASTER

call MPI_RECV(buf,...)
!$OMP END MASTER
!$OMP BARRIER
!$OMP DO

do i=1,1000
c(i) = buf(i)

end do
!$OMP END DO NOWAIT
!$OMP END PARALLEL

#pragma omp parallel
{
#pragma omp for nowait

for (i=0; i<1000; i++)
a[i] = buf[i];

#pragma omp barrier
#pragma omp master

MPI_Recv(buf,...);
#pragma omp barrier

#pragma omp for nowait
for (i=0; i<1000; i++)

c[i] = buf[i];

}
/* omp end parallel */

© Rolf Rabenseifner
Slide 65 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Outline

• Introduction / Motivation
• Programming models on clusters of SMP nodes
• Mismatch Problems
• Thread-safety quality of MPI libraries

• Summary

© Rolf Rabenseifner
Slide 66 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Acknowledgements

• I want to thank
– Gerhard Wellein, RRZE
– Monika Wierse, Wilfried Oed, and Tom Goozen, CRAY
– Holger Berger, NEC
– Reiner Vogelsang, SGI
– Gabriele Jost, NASA
– Dieter an Mey, RZ Aachen
– Horst Simon, NERSC
– Matthias Müller, HLRS
– my colleges at HLRS

© Rolf Rabenseifner
Slide 67 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

OpenMP work sharing only partially
usable

Load balancing problem due to
hybrid programming model

Separation of (a) halo data and
(b) inner data based calculations

Additional OpenMP overhead

() () Sleeping CPUs while MPI
communication

Do we achieve full inter-node
bandwidth on constellations?

Additional MPI communication inside
of SMP nodes

Application topology problem
(neighbor domains inside of SMP node)

Pure
OpenMP:
e.g., Intel
Cluster
OpenMP

Over-
lapping
several
processes
per node

Over-
lapping
1 process
per node

Master-
only
several
processes
per node

Master-
only
1 process
per node

Pure
MPI

Performance and Programming
Problems with ...

On clusters
with small nodes (≤≤≤≤ 4 CPUs)

Good candidates
with limited programming expense

Row should
not be

relevant
due to

nodes with
≤≤≤≤ 4 CPUs

© Rolf Rabenseifner
Slide 68 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

OpenMP work sharing only partially
usable

Load balancing problem due to
hybrid programming model

Separation of (a) halo data and
(b) inner data based calculations

Additional OpenMP overhead

() Sleeping CPUs while MPI
communication

Do we achieve full inter-node
bandwidth on constellations?

Additional MPI communication inside
of SMP nodes

Application topology problem
(neighbor domains inside of SMP node)

Pure
OpenMP:
e.g., Intel
Cluster
OpenMP

Over-
lapping
several
processes
per node

Over-
lapping
1 process
per node

Master-
only
several
processes
per node

Master-
only
1 process
per node

Pure
MPI

Performance and Programming
Problems with ...

Good candidates
with limited programming expense

On constellations (> 4 CPUs per node)

For extreme HPC,
probably best chance

© Rolf Rabenseifner
Slide 69 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

OpenMP work sharing only partially
usable

Load balancing problem due to
hybrid programming model

Separation of (a) halo data and
(b) inner data based calculations

Additional OpenMP overhead

() Sleeping CPUs while MPI
communication

Do we achieve full inter-node
bandwidth on constellations?

Additional MPI communication inside
of SMP nodes

Application topology problem
(neighbor domains inside of SMP node)

Pure
OpenMP:
e.g., Intel
Cluster
OpenMP

Over-
lapping
several
processes
per node

Over-
lapping
1 process
per node

Master-
only
several
processes
per node

Master-
only
1 process
per node

Pure
MPI

Performance and Programming
Problems with ...

Maybe a candidate
with limited programming expense

Non-MPI applications
with extremely small communication foot-print

therefore
irrelevant
aspects

© Rolf Rabenseifner
Slide 70 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Conclusions

• Constellations (>4 CPUs per SMP node):
– Only a few platforms

• e.g., Cray X1 in MSP mode, NEC SX-6
• are well designed hybrid MPI+OpenMP masteronly scheme

– Other platforms
• masteronly style cannot saturate inter-node bandwidth
• Several multi-threaded MPI processes per SMP node may help

• Clusters with small SMP nodes:
• Simple masteronly style is a good candidate
• although some CPU idle (while one is communicating)

• DSM systems (pure OpenMP, e.g Intel Cluster OpenMP):
• may help for some (but only some) applications

• Optimal performance:
• overlapping of communication & computation � extreme programming effort

• Pure MPI:
• often the cheapest and (nearly) best solution

See also www.hlrs.de/people/rabenseifner � list of publications � Teaching in Germany

© Rolf Rabenseifner
Slide 71 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Appendix

• Abstract
• Intel® Compilers with Cluster OpenMP –

Consistency Protocol – Examples
• Author
• References (with direct relation to the content of this tutorial)
• Further references

© Rolf Rabenseifner
Slide 72 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Abstract

Abstract. Most HPC systems are clusters of shared memory nodes. Such systems can be PC
clusters with dual or quad boards, but also "constellation" type systems with large SMP nodes.
Parallel programming must combine the distributed memory parallelization on the node inter-
connect with the shared memory parallelization inside of each node.

This lecture analyzes the strength and weakness of several parallel programming models on
clusters of SMP nodes. Various hybrid MPI+OpenMP programming models are compared with
pure MPI. Benchmark results of several platforms are presented. A hybrid-masteronly
programming model can be used more efficiently on some vector-type systems, but also on
clusters of dual-CPUs. On other systems, one CPU is not able to saturate the inter-node network
and the commonly used masteronly programming model suffers from insufficient inter-node
bandwidth. The thread-safety quality of MPI libraries is also discussed.

Another option is the use of distributed virtual shared-memory technologies which enable the
utilization of "near-standard" OpenMP on distributed memory architectures. The performance
issues of this approach and its impact on applications are discussed. This lecture analyzes
strategies to overcome typical drawbacks of easily usable programming schemes on clusters of
SMP nodes.

© Rolf Rabenseifner
Slide 73 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Intel® Compilers with Cluster OpenMP –
Real consistency protocol is more complicated
• Diffs are done only when requested
• Several diffs are locally stored and transferred later

if a thread first reads a page after several barriers.
• Each write is internally handled as a read followed by a write.
• If too many diffs are stored, a node can force a "reposession" operation,

i.e., the page is marked as invalid and fully re-send if needed.
• Another key point:

– After a page has been made read/write in a process,
no more protocol traffic is generated by the process for that page until
after the next synchronization (and similarly if only reads are done
once the page is present for read).

– This is key because it’s how the large cost of the protocol is averaged
over many accesses.

– I.e., protocol overhead only “once” per barrier
• Examples in the Appendix

Courtesy of J. Cownie, Intel

© Rolf Rabenseifner
Slide 74 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Intel® Compilers with Cluster OpenMP –
Consistency Protocol – Examples

Notation

• ..=A[i] Start/End Start/end a read on element i on page A

• A[i]=.. Start/End Start/end a write on element i on page A,
trap to library

• Twin(A) Create a twin copy of page A

• WriteNotice(A) Send write notice for page A to other processors

• DiffReq_A_n(s:f) Request diffs for page A from node n between s and f

• Diff_A_n(s:f) Generate a diff for page A in writer n between s and
where s and f are barrier times.
This also frees the twin for page A.

Courtesy of J. Cownie, Intel

© Rolf Rabenseifner
Slide 75 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Exa. 1

Node 0 Node 1
Barrier 0 Barrier 0
A[1]=.. Start
Twin(A)
A[2]=.. End

A[5]=.. Start
Twin(A)
A[5]=.. End

Barrier 1 Barrier 1
WriteNotice(A) Writenotice(A)
A[5]=.. Start
Diffreq_A_1(0:1)->

<-Diff_A_1(0:1)
Apply diffs
A[5]=.. End
Barrier 2
WriteNotice(A)

Barrier 2

Courtesy of J. Cownie, Intel

© Rolf Rabenseifner
Slide 76 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Exa. 2
Node 0 Node 1 Node 2
Barrier 0 Barrier 0 Barrier 0
A[1]=.. Start
Twin(A)
A[1]=.. End
Barrier 1
WriteNotice(A)
A[2]=.. (no trap to library)
Barrier 2
(No WriteNotice(A) required)
A[3]=.. (no trap to lib)

..=A[1] Start
<-Diffreq_A_0(0:2)

Diff_A_0(0:2)->
Apply diffs
..=A[1] End

Barrier 3
(no WriteNotice(A) required because diffs
were sent after the A[3]=..)
A[1]=.. Start
Twin(A)
Barrier 4
WriteNotice(A)

..=A[1] Start
<- Diffreq_A_0(0:4)

Create Diff_A_0(2:4) send Diff_A_O(0:4)->
Apply diffs
..=A[1] End

Barrier 1 Barrier 1

Barrier 2 Barrier 2

Barrier 3 Barrier 3

Barrier 4 Barrier 4

Courtesy of J. Cownie, Intel

© Rolf Rabenseifner
Slide 77 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Exa. 3
(start)

Node 0 Node 1 Node 2 Node 3
Barrier 0 Barrier 0 Barrier 0 Barrier 0
A[1]=.. Start A[5]=.. Start
Twin(A) Twin(A)
A[1]=.. End A[5]=.. End
Barrier 1 Barrier 1
WriteNotice(A) WriteNotice(A)
A[2]=.. Start A[1]=.. Start
Diffreq_A_1(0:1)-> <-Diffreq_A_0(0:1)
Diff_A_0(0:1)-> <-Diff_A_1_(0:1)
Apply diff Apply diff
Twin(A) Twin(A)
A[2]=.. End A[1]=.. End
Barrier 2 Barrier 2
WriteNotice(A) WriteNotice(A)
A[3]..= Start A[6]..= Start
Diffreq_A_1(1:2)-> <-Diffreq_A_A(1:2)
Diffs_A_0(1:2)-> <-Diffs_A_1(1:2)
Apply diffs Apply diffs
Twin(A) Twin(A)
A[3]=.. End A[6]=.. End

..=A[1] Start
<-Diffreq_A_0(0:2)
<-Diffreq_A_1(0:2)

Create Diff_A_0(1:2) Create Diff_A_1(1:2)
Send Diff_A_0(0:2)-> Send Diff_A_1(0:2)->

Apply all diffs
..=A[1] End

Barrier 1

Barrier 2 Barrier 2

Barrier 1

Courtesy of J. Cownie, Intel

© Rolf Rabenseifner
Slide 78 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Exa. 3
(end)

These examples may give an impression of the overhead
induced by the Cluster OpenMP consistency protocol.

Node 0 Node 1 Node 2 Node 3
Barrier 3 Barrier 3
Writenotice(A) Writenotice(A)
A[1]=.. Start
Diffreq_A_1(2:3)->

<-Diffs_A_1_(2:3)
Apply diffs
Twin(A)
A[1]..= End
Barrier 4
Writenotice(A)

..=A[1] Start
<-Diffreq_A_0(0:4)
<-Diffreq_A_1(0:4)

Create Diff_A_0(3:4) Create Diff_A_1(2:4)
Send Diff_A_0(0:4)-> Send Diff_A_1(0:4)->

Apply diffs
..=A[1] End

Barrier 3 Barrier 3

Barrier 4 Barrier 4 Barrier 4

Courtesy of J. Cownie, Intel

© Rolf Rabenseifner
Slide 79 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Rolf Rabenseifner

Dr. Rolf Rabenseifner studied mathematics and physics at the University of
Stuttgart. Since 1984, he has worked at the High-Performance Computing-
Center Stuttgart (HLRS). He led the projects DFN-RPC, a remote procedure
call tool, and MPI-GLUE, the first metacomputing MPI combining different
vendor's MPIs without loosing the full MPI interface. In his dissertation, he
developed a controlled logical clock as global time for trace-based profiling of
parallel and distributed applications. Since 1996, he has been a member of
the MPI-2 Forum. From January to April 1999, he was an invited researcher at
the Center for High-Performance Computing at Dresden University of
Technology.

Currently, he is head of Parallel Computing - Training and Application
Services at HLRS. He is involved in MPI profiling and benchmarking, e.g., in
the HPC Challenge Benchmark Suite. In recent projects, he studied parallel
I/O, parallel programming models for clusters of SMP nodes, and optimization
of MPI collective routines. In workshops and summer schools, he teaches
parallel programming models in many universities and labs in Germany.

© Rolf Rabenseifner
Slide 80 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

References (with direct relation to the content of this tutorial)

• NAS Parallel Benchmarks:
http://www.nas.nasa.gov/Resources/Software/npb.html

• R.v.d. Wijngaart and H. Jin,
NAS Parallel Benchmarks, Multi-Zone Versions,
NAS Technical Report NAS-03-010, 2003

• H. Jin and R. v.d.Wijngaart,
Performance Characteristics of the multi-zone NAS Parallel Benchmarks,
Proceedings IPDPS 2004

• G. Jost, H. Jin, D. an Mey and F. Hatay,
Comparing OpenMP, MPI, and Hybrid Programming,
Proc. Of the 5th European Workshop on OpenMP, 2003

• E. Ayguade, M. Gonzalez, X. Martorell, and G. Jost,
Employing Nested OpenMP for the Parallelization of Multi-Zone CFD Applications,
Proc. Of IPDPS 2004

© Rolf Rabenseifner
Slide 81 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

References

• Rolf Rabenseifner,
Hybrid Parallel Programming on HPC Platforms.
In proceedings of the Fifth European Workshop on OpenMP, EWOMP '03,
Aachen, Germany, Sept. 22-26, 2003, pp 185-194, www.compunity.org.

• Rolf Rabenseifner,
Comparison of Parallel Programming Models on Clusters of SMP Nodes.
In proceedings of the 45nd Cray User Group Conference, CUG SUMMIT 2003,
May 12-16, Columbus, Ohio, USA.

• Rolf Rabenseifner and Gerhard Wellein,
Comparison of Parallel Programming Models on Clusters of SMP Nodes.
In Modelling, Simulation and Optimization of Complex Processes (Proceedings of
the International Conference on High Performance Scientific Computing,
March 10-14, 2003, Hanoi, Vietnam) Bock, H.G.; Kostina, E.; Phu, H.X.;
Rannacher, R. (Eds.), pp 409-426, Springer, 2004.

• Rolf Rabenseifner and Gerhard Wellein,
Communication and Optimization Aspects of Parallel Programming Models
on Hybrid Architectures.
In the International Journal of High Performance Computing Applications,
Vol. 17, No. 1, 2003, pp 49-62. Sage Science Press.

© Rolf Rabenseifner
Slide 82 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

References

• Rolf Rabenseifner,
Communication and Optimization Aspects on Hybrid Architectures.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface, J.
Dongarra and D. Kranzlmüller (Eds.), Proceedings of the 9th European PVM/MPI
Users' Group Meeting, EuroPVM/MPI 2002, Sep. 29 - Oct. 2, Linz, Austria, LNCS,
2474, pp 410-420, Springer, 2002.

• Rolf Rabenseifner and Gerhard Wellein,
Communication and Optimization Aspects of Parallel Programming Models on
Hybrid Architectures.
In proceedings of the Fourth European Workshop on OpenMP (EWOMP 2002),
Roma, Italy, Sep. 18-20th, 2002.

• Rolf Rabenseifner,
Communication Bandwidth of Parallel Programming Models on Hybrid
Architectures.
Proceedings of WOMPEI 2002, International Workshop on OpenMP: Experiences
and Implementations, part of ISHPC-IV, International Symposium on High
Performance Computing, May, 15-17., 2002, Kansai Science City, Japan, LNCS
2327, pp 401-412.

© Rolf Rabenseifner
Slide 83 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

References

• Barbara Chapman et al.:
Toward Enhancing OpenMP’s Work-Sharing Directives.
In proceedings, W.E. Nagel et al. (Eds.): Euro-Par 2006, LNCS 4128, pp. 645-654,
2006.

© Rolf Rabenseifner
Slide 84 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Further references

• Sergio Briguglio, Beniamino Di Martino, Giuliana Fogaccia and Gregorio Vlad,
Hierarchical MPI+OpenMP implementation of parallel PIC applications on
clusters of Symmetric MultiProcessors,
10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,
29 Sep - 2 Oct, 2003

• Barbara Chapman,
Parallel Application Development with the Hybrid MPI+OpenMP Programming
Model,
Tutorial, 9th EuroPVM/MPI & 4th DAPSYS Conference, Johannes Kepler University
Linz, Austria September 29-October 02, 2002

• Luis F. Romero, Eva M. Ortigosa, Sergio Romero, Emilio L. Zapata,
Nesting OpenMP and MPI in the Conjugate Gradient Method for Band Systems,
11th European PVM/MPI Users' Group Meeting in conjunction with DAPSYS'04,
Budapest, Hungary, September 19-22, 2004

• Nikolaos Drosinos and Nectarios Koziris,
Advanced Hybrid MPI/OpenMP Parallelization Paradigms for Nested Loop
Algorithms onto Clusters of SMPs,
10th European PVM/MPI Users' Group Conference (EuroPVM/MPI‘03), Venice, Italy,
29 Sep - 2 Oct, 2003

© Rolf Rabenseifner
Slide 85 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Further references

• Holger Brunst and Bernd Mohr,
Performance Analysis of Large-scale OpenMP and Hybrid MPI/OpenMP
Applications with VampirNG
Proceedings for IWOMP 2005, Eugene, OR, June 2005.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

• Felix Wolf and Bernd Mohr,
Automatic performance analysis of hybrid MPI/OpenMP applications
Journal of Systems Architecture, Special Issue "Evolutions in parallel distributed
and network-based processing", Volume 49, Issues 10-11, Pages 421-439,
November 2003.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

• Felix Wolf and Bernd Mohr,
Automatic Performance Analysis of Hybrid MPI/OpenMP Applications
short version: Proceedings of the 11-th Euromicro Conference on Parallel,
Distributed and Network based Processing (PDP 2003), Genoa, Italy, February
2003.
long version: Technical Report FZJ-ZAM-IB-2001-05.
http://www.fz-juelich.de/zam/kojak/documentation/publications/

© Rolf Rabenseifner
Slide 86 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Further references

• Frank Cappello and Daniel Etiemble,
MPI versus MPI+OpenMP on the IBM SP for the NAS benchmarks,
in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/cappello00mpi.html
www.sc2000.org/techpapr/papers/pap.pap214.pdf

• Jonathan Harris,
Extending OpenMP for NUMA Architectures,
in proceedings of the Second European Workshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

• D. S. Henty,
Performance of hybrid message-passing and shared-memory parallelism for
discrete element modeling,
in Proc. Supercomputing'00, Dallas, TX, 2000.
http://citeseer.nj.nec.com/henty00performance.html
www.sc2000.org/techpapr/papers/pap.pap154.pdf

© Rolf Rabenseifner
Slide 87 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Further references

• Matthias Hess, Gabriele Jost, Matthias Müller, and Roland Rühle,
Experiences using OpenMP based on Compiler Directed Software DSM on a
PC Cluster,
in WOMPAT2002: Workshop on OpenMP Applications and Tools, Arctic Region
Supercomputing Center, University of Alaska, Fairbanks, Aug. 5-7, 2002.
http://www.hlrs.de/people/mueller/papers/wompat2002/wompat2002.pdf

• John Merlin,
Distributed OpenMP: Extensions to OpenMP for SMP Clusters,
in proceedings of the Second EuropeanWorkshop on OpenMP, EWOMP 2000.
www.epcc.ed.ac.uk/ewomp2000/proceedings.html

• Mitsuhisa Sato, Shigehisa Satoh, Kazuhiro Kusano, and Yoshio Tanaka,
Design of OpenMP Compiler for an SMP Cluster,
in proceedings of the 1st European Workshop on OpenMP (EWOMP'99), Lund,
Sweden, Sep. 1999, pp 32-39. http://citeseer.nj.nec.com/sato99design.html

• Alex Scherer, Honghui Lu, Thomas Gross, and Willy Zwaenepoel,
Transparent Adaptive Parallelism on NOWs using OpenMP,
in proceedings of the Seventh Conference on Principles and Practice of Parallel
Programming (PPoPP '99), May 1999, pp 96-106.

© Rolf Rabenseifner
Slide 88 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Further references

• Weisong Shi, Weiwu Hu, and Zhimin Tang,
Shared Virtual Memory: A Survey,
Technical report No. 980005, Center for High Performance Computing,
Institute of Computing Technology, Chinese Academy of Sciences, 1998,
www.ict.ac.cn/chpc/dsm/tr980005.ps.

• Lorna Smith and Mark Bull,
Development of Mixed Mode MPI / OpenMP Applications,
in proceedings of Workshop on OpenMP Applications and Tools (WOMPAT 2000),
San Diego, July 2000. www.cs.uh.edu/wompat2000/

• Gerhard Wellein, Georg Hager, Achim Basermann, and Holger Fehske,
Fast sparse matrix-vector multiplication for TeraFlop/s computers,
in proceedings of VECPAR'2002, 5th Int'l Conference on High Performance Computing
and Computational Science, Porto, Portugal, June 26-28, 2002, part I, pp 57-70.
http://vecpar.fe.up.pt/

© Rolf Rabenseifner
Slide 89 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Further references

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,
Load Balanced Parallel Simulated Annealing on a Cluster of SMP Nodes.
In proceedings, W. E. Nagel, W. V. Walter, and W. Lehner (Eds.): Euro-Par 2006,
Parallel Processing, 12th International Euro-Par Conference, Aug. 29 - Sep. 1,
Dresden, Germany, LNCS 4128, Springer, 2006.

• Agnieszka Debudaj-Grabysz and Rolf Rabenseifner,
Nesting OpenMP in MPI to Implement a Hybrid Communication Method of
Parallel Simulated Annealing on a Cluster of SMP Nodes.
In Recent Advances in Parallel Virtual Machine and Message Passing Interface,
Beniamino Di Martino, Dieter Kranzlmüller, and Jack Dongarra (Eds.), Proceedings
of the 12th European PVM/MPI Users' Group Meeting, EuroPVM/MPI 2005,
Sep. 18-21, Sorrento, Italy, LNCS 3666, pp 18-27, Springer, 2005

© Rolf Rabenseifner
Slide 90 / 70 Höchstleistungsrechenzentrum Stuttgart
Hybrid Parallel Programming

Extended versions of this lecture

• Rolf Rabenseifner, Georg Hager, Gabriele Jost and Rainer Keller:
Hybrid MPI and OpenMP Parallel Programming.
Half-day tutorial, Recent Advances in Parallel Virtual Machine and Message
Passing Interface, Beniamino Di Martino, Dieter Kranzlmüller, and Jack Dongarra
(Eds.), Proceedings of the 13th European PVM/MPI Users' Group Meeting,
EuroPVM/MPI 2006, Sep. 17-20, Bonn, Germany, LNCS 4192, p. 11, Springer,
2006.
URL: http://www.hlrs.de/people/rabenseifner/publ/publications.html#PVM2006

• Rolf Rabenseifner, Georg Hager, Gabriele Jost, Rainer Keller:
Hybrid MPI and OpenMP Parallel Programming.
Half-day Tutorial at Super Computing 2007, SC07, Reno, Nevada, USA,
Nov. 10 - 16, 2007.
URL:
http://www.hlrs.de/people/rabenseifner/publ/publications.html#SC2007Tutorial
Extended Abstract:
http://www.hlrs.de/people/rabenseifner/publ/SC2007-tutorial.html

