

Performance Evaluation of Supercomputers using HPCC and IMB Benchmarks

Subhash Saini

Robert Ciotti, Brian T. N. Gunney, Alice Koniges, Don Dossa Panagiotis Adamidis, Rolf Rabenseifner, Sunil R. Tiyyagura, Matthias Mueller, and Rod Fatoohi

NASA Advanced Supercomputing (NAS) Division NASA Ames Research Center, Moffett Field, California

IPDPS 2006 - PMEO, Rhodes, Greece, April 29

Outline

Computing platforms

- Columbia System (NASA, USA)
- NEC SX-8 (HLRS, Germany)
- Cray X1 (NASA, USA)
- Cray Opteron Cluster (NASA, USA)
- Dell POWER EDGE (NCSA, USA)

Benchmarks

- HPCC Benchmark suite
- IMB Benchmarks
- Summary

SX-8 System Architecture

SX-8 Technology

- Hardware dedicated to scientific and engineering applications.
- CPU: 2 GHz frequency, 90 nm-Cu technology
- 8000 I/O per CPU chip
- Hardware vector square root
- Serial signalling technology to memory, about 2000 transmitters work in parallel
- 64 GB/s memory bandwidth per CPU
- Multilayer, low-loss PCB board, replaces 20000 cables
- Optical cabling used for internode connections
- Very compact packaging.

SX-8 specifications

- 16 GF / CPU (vector)
- 64 GB/s memory bandwidth per CPU
- 8 CPUs / node
- 512 GB/s memory bandwidth per node
- Maximum 512 nodes
- Maximum 4096 CPUs, max 65 TFLOPS
- Internode crossbar Switch
- 16 GB/s (bi-directional) interconnect bandwidth per node
- Maximum size SX-8 is among the most powerful computers in the world

Columbia 2048 System

- Four SGI Altix BX2 boxes with 512 processors each connected with NUMALINK4 using fat-tree topology
- Intel Itanium 2 processor with 1.6 GHz and 9 MB of L3 cache
- SGI Altix BX2 compute brick has eight Itanium 2 processors with 16 GB of local memory and four ASICs called SHUB
- In addition to NUMALINK4, InfiniBand (IB) and 10 Gbit Ethernet networks also available
- Processor peak performance is 6.4 Gflop/s; system peak of the 2048 system is 13 Tflop/s
- Measured latency and bandwidth of IB are 10.5 microseconds and 855 MB/s.

SGI Altix 3700

- Itanium 2@ 1.5GHz (peak 6 GF/s)
- 128 FP reg, 32K L1, 256K L2, 6MB L3
- **CC-NUMA** in hardware
 - 64-bit Linux w/ single system image -- looks like a single Linux machine but with many processors 9

Cray X1 CPU: Multistreaming Processor

New Cray Vector Instruction Set Architecture (ISA)
64- and 32-bit operations, IEEE floating-point

Cray X1 CPU: Multistreaming Processor

New Cray Vector Instruction Set Architecture (ISA)
64- and 32-bit operations, IEEE floating-point

Interconnect network

- 2 ports/M-chip
- 1.6 GB/s/port peak in each direction

= <u>102.4 GB/s to the network</u>

Local memory

Peak BW = 16 sections x 12.8 GB/s/section = <u>204.8 GB/s</u> Capacity = 16, 32 or 64 GB

Cray X1 at NAS

Architecture

- 4 nodes, 16 MSPs (64 SSPs)
- 1 node reserved for system;
 3 nodes usable for user codes

64 GB main memory;
 4 TB FC RAID

Operating Environment

- Unicos MP 2.4.3.4
- Cray Fortran and C 5.2
- PBSPro job scheduler

Cray X1 at NAS

Intel Xeon Cluster ("Tungsten") at NCSA

High End Computing Platforms

 Table 2: System characteristics of the computing platforms .

Platform	Туре	CPUs / node	Clock (GHz)	Peak/node (Gflop/s)	Network	Network Topology	Operating System	Location	Processor Vendor	System Vendor
SGI Altix BX2	Scalar	2	1.6	12.8	NUMALINK 4	Fat-tree	Linux (Suse)	NASA (USA)	Intel	SGI
Cray X1	Vector	4	0.800	12.8	Proprietary	4D-Hypercube	UNICOS	NASA (USA)	Cray	Cray
Cray Opteron Cluster	Scalar	2	2.0	8.0	Myrinet	Fat-tree	Linux (Redhat)	NASA (USA)	AMD	Cray
Dell Xeon Cluster	Scalar	2	3.6	14.4	InfiniBand	Fat-tree	Linux (Redhat)	NCSA (USA)	Intel	Dell
NEC SX-8	Vector	8	2.0	16.0	IXS	Multi-stage Crossbar	Super-UX	HLRS (Germany)	NEC	NEC

HPC Challenge Benchmarks

- Basically consists of 7 benchmarks
 - HPL: floating-point execution rate for solving a linear system of equations
 - DGEMM: floating-point execution rate of double precision real matrix-matrix multiplication
 - STREAM: sustainable memory bandwidth
 - PTRANS: transfer rate for large data arrays from memory (total network communications capacity)
 - RandomAccess: rate of random memory integer updates (GUPS)
 - FFTE: floating-point execution rate of double-precision complex 1D discrete FFT
 - Latency/Bandwidth: ping-pong, random & natural ring 19

- HPCS program has developed a new suite of benchmarks (HPC Challenge)
- Each benchmark focuses on a different part of the memory hierarchy

NAS

 HPCS program performance targets will flatten the memory hierarchy, improve real application performance, and make programming easier

- Programs can be decomposed into memory reference patterns
- Stride is the distance between memory references
 - **Programs with small strides have high "Spatial Locality"**
- Reuse is the number of operations performed on each reference
 - **Programs with large reuse have high "Temporal Locality"**
- Can measure in real programs and correlate with HPC Challenge

Spatial/Temporal Locality Results

HPC Challenge bounds real applications

Allows us to map between applications and benchmarks

Intel MPI Benchmarks Used

- 1. **Barrier:** A barrier function MPI_Barrier is used to synchronize all processes.
- 2. **Reduction:** Each processor provides *A* numbers. The global result, stored at the root processor is also *A* numbers. The number *A[i]* is the results of all the *A[i]* from the *N* processors.
- 3. All_reduce: MPI_Allreduce is similar to MPI_Reduce except that all members of the communicator group receive the reduced result.
- 4. **Reduce scatter:** The outcome of this operation is the same as an MPI Reduce operation followed by an MPI Scatter
- 5. Allgather: All the processes in the communicator receive the result, not only the root

Intel MPI Benchmarks Used

- **Allgatherv:** it is vector variant of MPI_ALLgather.
- All_to_All: Every process inputs A*N bytes and receives A*N bytes (A bytes for each process), where N is number of processes.
- 3. **Send_recv:** Here each process sends a message to the right and receives from the left in the chain.
- 4. **Exchange:** Here process exchanges data with both left and right in the chain
- 5. **Broadcast:** Broadcast from one processor to all members of the communicator.

Accumulated Random Ring BW vs HPL Performance

Accumulated EP Stream Copy vs HPL Performance

Normalized Values of HPCC Benchmark

Ratio	Maximum value			
G-HPL	8.729 TF/s			
G-EP DGEMM/G-HPL	1.925			
G-FFTE/G-HPL	0.020			
G-Ptrans/G-HPL	0.039 B/F			
G-StreamCopy/G-HPL	2.893 B/F			
RandRingBW/PP-HPL	0.094 B/F			
1/RandRingLatency	0.197 1/µs			
G-RandomAccess/G-HPL	4.9e-5 Update/F			

HPCC Benchmarks Normalized with HPL Value

1 MB Reduction

1 MB Reduction

1 MB Allreduce

1 MB Allreduce

NAS

1 MB Reduction_scatter

1 MB Reduce_scatter

1 MB Allgather

1 MB Allgather

1 MB Allgatherv

1 MB All_to_All

1 MB Alltoall

Summary

- Performance of vector systems is consistently better than all the scalar systems
- Performance of SX-8 is better than Cray X1
- Perfprmance of SGI Altix BX2 is better than Dell Xeon cluster and Cray Opteron cluster
- IXS (SX-8) > Cray X1 network > SGI Altix BX2 (NL4) > Dell Xeon cluster (IB) > Cray Opteron cluster (Myrinet).

