
Time Stamp Synchronization for Event Traces
of Large-Scale Message Passing Applications

D. Becker and F. Wolf
Forschungszentrum Jülich
Central Institute for Applied Mathematics

R. Rabenseifner
High Performance Computing Center Stuttgart
Department Parallel Computing

Daniel Becker 2

Outline

Introduction
Event model and replay-based parallel analysis
Controlled logical clock
Extended controlled logical clock
Timestamp synchronization
Conclusion
Future work

Daniel Becker 3

SCALASCA

Goal - diagnose wait states in MPI applications on large-
scale systems
Scalability through parallel analysis of event traces

Trace analysis
report

Execution on
parallel machine

Parallel trace
analyzer

Local trace files

Daniel Becker 4

Wait States in MPI Applications

time

pr
oc

es
s

time

pr
oc

es
s

time

pr
oc

es
s

time

pr
oc

es
s

ENTER EXIT SEND RECV COLLEXIT

(a) Late sender

(c) Late sender / wrong order

(b) Late receiver

(d) Wait at n-to-n

Daniel Becker 5

Non-Synchronized Clocks

Wait states diagnosis measures temporal displacements
between concurrent events
Problem - local processor clocks are often non-
synchronized

o Clocks may vary in offset and drift
Present approach - linear interpolation

o Accounts for differences in offset and drift
o Assumes that drift is not time dependant

Inaccuracies and changing drifts can still cause violations
of the logical event ordering

Synchronization method for violations not already
covered by linear interpolation required

Daniel Becker 6

Idea

Requirement - realistic message passing codes
o Different modes of communication (P2P & collective)
o Large numbers of processes

Build on controlled logical clock by Rolf Rabenseifner
o Synchronization based on Lamport’s logical clock
o Only P2P communication
o Sequential program

Approach
o Extend controlled logical clock to collective operations
o Define scalable correction algorithm through parallel replay

Daniel Becker 7

Event Model

Event includes at least timestamp, location
and event type

o Additional information may be supplied depending
on event type

Event type refers to
o Programming-model independent events
o MPI-related events
o Events internal to tracing library

Event sequence recorded for typical MPI operations
E XS

E CX

Enter
Exit

Collective Exit
Send
Receive

E XR

MPI_Send()

MPI_Recv()

MPI_Allreduce()

Daniel Becker 8

Replay-Based Parallel Analysis

Parallel analysis scheme
o SCALASCA toolset
o Originally developed to improve scalability on large-scale systems

Analyze separate local trace files in parallel
o Exploits distributed memory & processing capabilities
o Keeps whole trace in main memory
o Only process-local information visible to a process

Parallel replay of target application‘s communication behavior
o Parallel traversal of event streams
o Analyze communication with operation of same type
o Exchange of required data at synchronization points of target

application

Daniel Becker 9

Example: Wait at N x N

Waiting time due to inherent synchronization in N-to-N
operations (e.g., MPI_Allreduce)
Algorithm:

o Triggered by collective exit event
o Determine enter events
o Determine & distribute latest enter event (max-reduction)
o Calculate & store waiting time

time

lo
ca

tio
n

2

1 1… …

3… …

2… …

1

2

3

22

1

2

3

3

Daniel Becker 10

Controlled Logical Clock

Guarantees Lamport's clock condition
o Use happened-before relations to synchronize timestamps
o Send event always earlier than receive event

Scans event trace for clock condition violations and
modifies inexact timestamps
Stretches process-local time axis in the immediate
vicinity of affected event

o Preserves length of intervals between local events
Forward amortization

o Smoothes discontinuity at affected event
Backward amortization

Daniel Becker 11

Forward Amortization

Inconsistent event stream

Corrected and forward amortized event stream

E S X

E R Xp1 X

p0

E S X

R X

Minimum
Latency

EXp1

p0

R X

Daniel Becker 12

Backward Amortization

Forward amortized event stream

Forward and backward amortized event stream

E S X

R XR

Δt
EXp1

p0

E S X

R XE EXXp1

p0

Daniel Becker 13

Extended Controlled Logical Clock

Consider single collective operation as composition of
many point-to-point communications
Distinguish between different types

o 1-to-N
o N-to-1
o N-to-N

Determine send and receive events for each type
Define happened-before relations based on
decomposition of collective operations

Daniel Becker 14

Decomposition of Collective Operations

1xN: Root sends data to N processes

Nx1: N processes send data to root

NxN: N processes send data to N processes

Daniel Becker 15

Happened-Before Relation

Synchronization needs one send event timestamp
Operation may have multiple send and receive events
Multiple receives used to synchronize multiple clocks
Latest send event is the relevant send event

Example: N-to-1

root

Daniel Becker 16

Forward Amortization

New timestamp LC’ is maximum of
o Max(send event timestamp + minimum latency)
o Event timestamp
o Previous event timestamp + minimum event spacing
o Previous event timestamp + controlled event spacing

Daniel Becker 17

Controller

Approximates original communication
after clock condition violation
Limits synchronization error
Bounds propagation during forward amortization
Requires global view of the trace data

Daniel Becker 18

Backward Amortization

Results of the extended controlled logical clock with jump discontinuities
Linear interpolation with backwards amortization
Piecewise linear interpolation with backwards amortization

LC
i’-

LC
ib

x

x

x

x

x

RSSSSS R II

Jump discontinuity due to
a clock condition violation

LCi
b:= LCi’ without jump

min(LCk’ (corr. receive event) - µ - LCi
b)

wish

Amortization interval =
jump

accuracy

Amortization interval

Daniel Becker 19

Timestamp Synchronization

Event tracing of applications running on thousands of
processes requires scalable synchronization scheme
Proposed algorithm depends on accuracy of
original timestamps

Two-step synchronization scheme
o Pre-synchronization

Linear interpolation

o Parallel post-mortem timestamp synchronization
Extended controlled logical clock

Daniel Becker 20

Pre-Synchronization

Account for differences in offset and drift
Assume that drift is not time dependant
Offset measurement at program initialization and
finalization

o Among arbitrary chosen master and worker processes

Linear interpolation between these two points

Daniel Becker 21

Parallel Timestamp Synchronization

Extended controlled logical clock
Parallel traversal of the event stream

o Forward amortization
o Backward amortization

Exchange required timestamp at synchronization points
Perform clock correction
Apply control mechanism after replaying the
communication

o Global view of the trace data
o Multiple passes until error is below a predefined threshold

Daniel Becker 22

Forward Amortization

Timestamps exchanged depending on the type of
operation

Type of operation timestamp exchanged MPI function
P2P timestamp of send event MPI Send

1-to-N timestamp of root enter event MPI Bcast

N-to-1 max(all enter event timestamps) MPI Reduce

N-to-N max(all enter event timestamps) MPI Allreduce

Daniel Becker 23

Backward Amortization

Timestamps exchanged depending on the type of
operation

Type of operation timestamp exchanged MPI function
P2P timestamp of receive event MPI Send

1-to-N min(all collective exit event
timestamps)

MPI Reduce

N-to-1 timestamp of root collective exit
event

MPI Bcast

N-to-N min(all collective exit event
timestamps)

MPI Allreduce

Daniel Becker 24

Conclusion

Extended controlled logical clock algorithm takes
collective communication semantics into account

o Defined collective send and receive operations
o Defined collective happened-before relations

Parallel implementation design presented using
SCALASCA’s parallel replay approach

o Exploits distributed memory & processing capabilities

Daniel Becker 25

Future Work

Finish actual implementation
Evaluate algorithm using real message
passing codes
Extend algorithm to shared memory
programming models
Extend algorithm to one sided communication

Daniel Becker 26

Thank you…

For more information, visit
our project home page:

http://www.scalasca.org

	Time Stamp Synchronization for Event Traces of Large-Scale Message Passing Applications
	Outline
	SCALASCA
	Wait States in MPI Applications
	Non-Synchronized Clocks
	Idea
	Event Model
	Replay-Based Parallel Analysis
	Example: Wait at N x N
	Controlled Logical Clock
	Forward Amortization
	Backward Amortization
	Extended Controlled Logical Clock
	Decomposition of Collective Operations
	Happened-Before Relation
	Forward Amortization
	Controller
	Backward Amortization
	Timestamp Synchronization
	Pre-Synchronization
	Parallel Timestamp Synchronization
	Forward Amortization
	Backward Amortization
	Conclusion
	Future Work
	Thank you…

