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SCALASCA

o Goal - diagnose wait states in MPI applications on large-
scale systems

o Scalablility through parallel analysis of event traces

Execution on Local trace files Parallel trace Trace analysis
parallel machine analyzer report
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Wait States in MPI Applications
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Non-Synchronized Clocks

o Walt states diagnosis measures temporal displacements
between concurrent events

o Problem - local processor clocks are often non-
synchronized
o Clocks may vary in offset and drift
o Present approach - linear interpolation
o Accounts for differences in offset and drift
o Assumes that drift is not time dependant

o Inaccuracies and changing drifts can still cause violations
of the logical event ordering

Synchronization method for violations not already
covered by linear interpolation required
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o Requirement - realistic message passing codes
o Different modes of communication (P2P & collective)
o Large numbers of processes

o Build on controlled logical clock by Rolf Rabenseifner
o Synchronization based on Lamport’s logical clock
o Only P2P communication
o Sequential program

o Approach
o Extend controlled logical clock to collective operations
o Define scalable correction algorithm through parallel replay
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Event Model

o Event includes at least timestamp, location
and event type
o Additional information may be supplied depending
on event type
o Event type refers to
o Programming-model independent events
o MPI-related events
o Events internal to tracing library

o Event sequence recorded for typical MPI operations
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Replay-Based Parallel Analysis

o Parallel analysis scheme SCBIBSCS

o SCALASCA toolset
o Originally developed to improve scalability on large-scale systems

o Analyze separate local trace files in parallel
o Exploits distributed memory & processing capabilities
o Keeps whole trace in main memory
o Only process-local information visible to a process

o Parallel replay of target application‘'s communication behavior
o Parallel traversal of event streams
o Analyze communication with operation of same type

o Exchange of required data at synchronization points of target
application
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Example: Wait at N x N
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o Waiting time due to inherent synchronization in N-to-N
operations (e.g., MPI_Allreduce)
o Algorithm:
o Triggered by collective exit event

o Determine enter events
o Determine & distribute latest enter event (max-reduction)

o Calculate & store waiting time
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Controlled Logical Clock

o Guarantees Lamport's clock condition
o Use happened-before relations to synchronize timestamps
o Send event always earlier than receive event

e Scans event trace for clock condition violations and
modifies inexact timestamps

o Stretches process-local time axis in the immediate
vicinity of affected event

o Preserves length of intervals between local events
- Forward amortization

o Smoothes discontinuity at affected event
- Backward amortization

o

Daniel Becker

10



Forward Amortization

» Inconsistent event stream
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Backward Amortization

o Forward amortized event stream

S
le At | -

o Forward and backward amortized event stream

po 3 | -
o — —

q)

Daniel Becker

12



Extended Controlled Logical Clock

Consider single collective operation as composition of
many point-to-point communications

Distinguish between different types
o 1-to-N
o N-to-1
o N-to-N

Determine send and receive events for each type

Define happened-before relations based on
decomposition of collective operations
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Decomposition of Collective Operations

o 1xN: Root sends data to N processes

o Nx1: N processes send data to root
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Happened-Before Relation

o Synchronization needs one send event timestamp

o Operation may have multiple send and receive events
o Multiple receives used to synchronize multiple clocks
o Latest send event is the relevant send event

o Example: N-to-1

— , root
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Forward Amortization

o New timestamp LC’ is maximum of
o Max( send event timestamp + minimum latency)
o Event timestamp
o Previous event timestamp + minimum event spacing
o Previous event timestamp + controlled event spacing
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Controller

o Approximates original communication
after clock condition violation

o Limits synchronization error
o Bounds propagation during forward amortization
o Requires global view of the trace data
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Backward Amortization
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Timestamp Synchronization

o Event tracing of applications running on thousands of
processes requires scalable synchronization scheme

o Proposed algorithm depends on accuracy of
original timestamps

o Two-step synchronization scheme

o Pre-synchronization
- Linear interpolation

o Parallel post-mortem timestamp synchronization
- Extended controlled logical clock
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Pre-Synchronization

o Account for differences in offset and drift
o Assume that drift is not time dependant

o Offset measurement at program initialization and
finalization
o Among arbitrary chosen master and worker processes

o Linear interpolation between these two points
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Parallel Timestamp Synchronization

o Extended controlled logical clock

o Parallel traversal of the event stream
o Forward amortization
o Backward amortization

o Exchange required timestamp at synchronization points
o Perform clock correction

o Apply control mechanism after replaying the
communication
o Global view of the trace data
o Multiple passes until error is below a predefined threshold
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Forward Amortization

o Timestamps exchanged depending on the type of

operation
Type of operation |timestamp exchanged MPI function
P2P timestamp of send event MPI Send
1-to-N timestamp of root enter event MPI| Bcast
N-to-1 max( all enter event timestamps ) | MPI Reduce
N-to-N max( all enter event timestamps ) | MPI Allreduce

0 Daniel Becker 22



Backward Amortization

o Timestamps exchanged depending on the type of

operation

Type of operation |timestamp exchanged MPI function

P2P timestamp of receive event MPI Send

1-to-N min( all collective exit event MPI Reduce
timestamps )

N-to-1 timestamp of root collective exit MP| Bcast
event

N-to-N min( all collective exit event MPI Allreduce
timestamps )
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Conclusion

o Extended controlled logical clock algorithm takes
collective communication semantics into account
o Defined collective send and receive operations
o Defined collective happened-before relations

o Parallel implementation design presented using
SCALASCA's parallel replay approach
o Exploits distributed memory & processing capabilities
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Future Work

o Finish actual implementation

» Evaluate algorithm using real message
passing codes

o Extend algorithm to shared memory
programming models

o Extend algorithm to one sided communication
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Thank you...

For more information, visit
our project home page:

http://www.scalasca.org
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