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SCALASCA

Goal - diagnose wait states in MPI applications on large-
scale systems
Scalability through parallel analysis of event traces

Trace analysis
report

Execution on
parallel machine

Parallel trace
analyzer

Local trace files
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Wait States in MPI Applications
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Non-Synchronized Clocks

Wait states diagnosis measures temporal displacements 
between concurrent events
Problem - local processor clocks are often non-
synchronized

o Clocks may vary in offset and drift
Present approach - linear interpolation 

o Accounts for differences in offset and drift
o Assumes that drift is not time dependant

Inaccuracies and changing drifts can still cause violations 
of the logical event ordering

Synchronization method for violations not already 
covered by linear interpolation required 
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Idea

Requirement - realistic message passing codes
o Different modes of communication (P2P & collective)
o Large numbers of processes

Build on controlled logical clock by Rolf Rabenseifner
o Synchronization based on Lamport’s logical clock
o Only P2P communication
o Sequential program

Approach
o Extend controlled logical clock to collective operations
o Define scalable correction algorithm through parallel replay
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Event Model

Event includes at least timestamp, location 
and event type

o Additional information may be supplied depending 
on event type

Event type refers to
o Programming-model independent events
o MPI-related events
o Events internal to tracing library

Event sequence recorded for typical MPI operations
E XS

E CX

Enter
Exit

Collective Exit
Send
Receive

E XR

MPI_Send()

MPI_Recv()

MPI_Allreduce()
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Replay-Based Parallel Analysis

Parallel analysis scheme
o SCALASCA toolset
o Originally developed to improve scalability on large-scale systems

Analyze separate local trace files in parallel
o Exploits distributed memory & processing capabilities
o Keeps whole trace in main memory
o Only process-local information visible to a process

Parallel replay of target application‘s communication behavior
o Parallel traversal of event streams
o Analyze communication with operation of same type
o Exchange of required data at synchronization points of target 

application
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Example: Wait at N x N

Waiting time due to inherent synchronization in N-to-N 
operations (e.g., MPI_Allreduce) 
Algorithm:

o Triggered by collective exit event
o Determine enter events
o Determine & distribute latest enter event (max-reduction)
o Calculate & store waiting time
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Controlled Logical Clock

Guarantees Lamport's clock condition
o Use happened-before relations to synchronize timestamps
o Send event always earlier than receive event

Scans event trace for clock condition violations and 
modifies inexact timestamps 
Stretches process-local time axis in the immediate 
vicinity of affected event

o Preserves length of intervals between local events
Forward amortization

o Smoothes discontinuity at affected event
Backward amortization
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Forward Amortization

Inconsistent event stream

Corrected and forward amortized event stream
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Backward Amortization

Forward amortized event stream

Forward and backward amortized event stream

E S X

R XR

Δt
EXp1

p0

E S X

R XE EXXp1

p0



Daniel Becker 13

Extended Controlled Logical Clock

Consider single collective operation as composition of 
many point-to-point communications
Distinguish between different types

o 1-to-N
o N-to-1
o N-to-N

Determine send and receive events for each type
Define happened-before relations based on 
decomposition of collective operations
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Decomposition of Collective Operations

1xN: Root sends data to N processes 

Nx1: N processes send data to root

NxN: N processes send data to N processes 
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Happened-Before Relation

Synchronization needs one send event timestamp
Operation may have multiple send and receive events
Multiple receives used to synchronize multiple clocks
Latest send event is the relevant send event

Example: N-to-1

root
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Forward Amortization

New timestamp LC’ is maximum of
o Max( send event timestamp + minimum latency)
o Event timestamp 
o Previous event timestamp + minimum event spacing 
o Previous event timestamp + controlled event spacing
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Controller

Approximates original communication 
after clock condition violation
Limits synchronization error
Bounds propagation during forward amortization
Requires global view of the trace data
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Backward Amortization

Results of the extended controlled logical clock with jump discontinuities
Linear interpolation with backwards amortization
Piecewise linear interpolation with backwards amortization
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a clock condition violation

LCi
b:= LCi’ without jump

min(LCk’ (corr. receive event) - µ - LCi
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Timestamp Synchronization

Event tracing of applications running on thousands of 
processes requires scalable synchronization scheme
Proposed algorithm depends on accuracy of 
original timestamps

Two-step synchronization scheme
o Pre-synchronization

Linear interpolation

o Parallel post-mortem timestamp synchronization
Extended controlled logical clock



Daniel Becker 20

Pre-Synchronization

Account for differences in offset and drift 
Assume that drift is not time dependant
Offset measurement at program initialization and 
finalization

o Among arbitrary chosen master and worker processes

Linear interpolation between these two points
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Parallel Timestamp Synchronization

Extended controlled logical clock
Parallel traversal of the event stream

o Forward amortization
o Backward amortization

Exchange required timestamp at synchronization points
Perform clock correction
Apply control mechanism after replaying the 
communication

o Global view of the trace data
o Multiple passes until error is below a predefined threshold
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Forward Amortization

Timestamps exchanged depending on the type of 
operation

Type of operation timestamp exchanged MPI function
P2P timestamp of send event MPI Send

1-to-N timestamp of root enter event MPI Bcast

N-to-1 max( all enter event timestamps ) MPI Reduce

N-to-N max( all enter event timestamps ) MPI Allreduce
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Backward Amortization

Timestamps exchanged depending on the type of 
operation

Type of operation timestamp exchanged MPI function
P2P timestamp of receive event MPI Send

1-to-N min( all collective exit event
timestamps )

MPI Reduce

N-to-1 timestamp of root collective exit
event

MPI Bcast

N-to-N min( all collective exit event
timestamps )

MPI Allreduce
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Conclusion

Extended controlled logical clock algorithm takes 
collective communication semantics into account

o Defined collective send and receive operations
o Defined collective happened-before relations

Parallel implementation design presented using 
SCALASCA’s parallel replay approach

o Exploits distributed memory & processing capabilities
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Future Work

Finish actual implementation
Evaluate algorithm using real message 
passing codes
Extend algorithm to shared memory 
programming models
Extend algorithm to one sided communication
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Thank you…

For more information, visit
our project home page:

http://www.scalasca.org
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