Time Stamp Synchronization for Event Traces
of Large-Scale Message Passing Applications

D. Becker and F. Wolf

Forschungszentrum Jilich
Central Institute for Applied Mathematics

R. Rabenseifner -
High Performance Computing Center Stuttgart 4+ L R
Department Parallel Computing N

Outline

o Introduction

o Event model and replay-based parallel analysis
o Controlled logical clock

o Extended controlled logical clock

o Timestamp synchronization

o Conclusion

o Future work

O Daniel Becker

SCALASCA

o Goal - diagnose wait states in MPI applications on large-
scale systems

o Scalablility through parallel analysis of event traces

Execution on Local trace files Parallel trace Trace analysis
parallel machine analyzer report

Forschungszentrum Jalich "

in der Helmholtz-Gemeinschaft

e[JNIVERSITYof
TENNESSEE

or

0 Daniel Becker 3

Wait States in MPI Applications

A

process

-

y

(a) Late sender

Omm

time

process

I

mbmt-

»

(c) Late sender / wrong order

O Daniel Becker

time

EENTER

A

[e
Q l
s !
n bml
time'
(b) Late receiver
A
[[]
P
5 o
— [H
time'
(d) Wait at n-to-n
BEXIT B SEND [J RECV [JCOLLEXIT

Non-Synchronized Clocks

o Walt states diagnosis measures temporal displacements
between concurrent events

o Problem - local processor clocks are often non-
synchronized
o Clocks may vary in offset and drift
o Present approach - linear interpolation
o Accounts for differences in offset and drift
o Assumes that drift is not time dependant

o Inaccuracies and changing drifts can still cause violations
of the logical event ordering

Synchronization method for violations not already
covered by linear interpolation required

'J Daniel Becker 5

|dea

o Requirement - realistic message passing codes
o Different modes of communication (P2P & collective)
o Large numbers of processes

o Build on controlled logical clock by Rolf Rabenseifner
o Synchronization based on Lamport’s logical clock
o Only P2P communication
o Sequential program

o Approach
o Extend controlled logical clock to collective operations
o Define scalable correction algorithm through parallel replay

O Daniel Becker

Event Model

o Event includes at least timestamp, location
and event type
o Additional information may be supplied depending
on event type
o Event type refers to
o Programming-model independent events
o MPI-related events
o Events internal to tracing library

o Event sequence recorded for typical MPI operations

5 = B/ | MPI Send() & Enter
l Exit

[E] R M| MPl_Recv() [Collective Exit
B Send

[E] MPI_Allreduce() @ Receive

O Daniel Becker

Replay-Based Parallel Analysis

o Parallel analysis scheme SCBIBSCS

o SCALASCA toolset
o Originally developed to improve scalability on large-scale systems

o Analyze separate local trace files in parallel
o Exploits distributed memory & processing capabilities
o Keeps whole trace in main memory
o Only process-local information visible to a process

o Parallel replay of target application‘'s communication behavior
o Parallel traversal of event streams
o Analyze communication with operation of same type

o Exchange of required data at synchronization points of target
application

0 Daniel Becker

Example: Wait at N x N

A ﬂ
[o — Ml | [

] > ‘B
S 2 o—— —y

® '

@ o _;.
time. =

8

o Waiting time due to inherent synchronization in N-to-N
operations (e.g., MPI_Allreduce)
o Algorithm:
o Triggered by collective exit event

o Determine enter events
o Determine & distribute latest enter event (max-reduction)

o Calculate & store waiting time

O Daniel Becker

Controlled Logical Clock

o Guarantees Lamport's clock condition
o Use happened-before relations to synchronize timestamps
o Send event always earlier than receive event

e Scans event trace for clock condition violations and
modifies inexact timestamps

o Stretches process-local time axis in the immediate
vicinity of affected event

o Preserves length of intervals between local events
- Forward amortization

o Smoothes discontinuity at affected event
- Backward amortization

o

Daniel Becker

10

Forward Amortization

» Inconsistent event stream
po X
o >
o Corrected and forward amortized event stream
ps X —
. -
L]

Minimum
Latency

q)

Daniel Becker

11

Backward Amortization

o Forward amortized event stream

S
le At | -

o Forward and backward amortized event stream

po 3 | -
o — —

q)

Daniel Becker

12

Extended Controlled Logical Clock

Consider single collective operation as composition of
many point-to-point communications

Distinguish between different types
o 1-to-N
o N-to-1
o N-to-N

Determine send and receive events for each type

Define happened-before relations based on
decomposition of collective operations

q)

Daniel Becker

13

Decomposition of Collective Operations

o 1xN: Root sends data to N processes

o Nx1: N processes send data to root
(B O

—

@ o
o NXN: N processes send data to N processes

» O >
O

q)

Daniel Becker

14

Happened-Before Relation

o Synchronization needs one send event timestamp

o Operation may have multiple send and receive events
o Multiple receives used to synchronize multiple clocks
o Latest send event is the relevant send event

o Example: N-to-1

— , root

g Daniel Becker 15

Forward Amortization

o New timestamp LC’ is maximum of
o Max(send event timestamp + minimum latency)
o Event timestamp
o Previous event timestamp + minimum event spacing
o Previous event timestamp + controlled event spacing

q)

Daniel Becker

16

Controller

o Approximates original communication
after clock condition violation

o Limits synchronization error
o Bounds propagation during forward amortization
o Requires global view of the trace data

q)

Daniel Becker

17

Backward Amortization

»
»

min(LC,’ (corr. receive event) - y - LCP)

LC-LCP

o
.
.
.
.
o
.
.
.
.
.
o
.
o
.

.
.
K

Jump discontinuity due to
“““““““““““““ a clock condition violation

.
Yy
o

o
.
.
o
. .
ot e

.
v

o

“““

| | | | o~
s | s R s s R LCP:=LC, without jump

Amortization interval

M Results of the extended controlled logical clock with jump discontinuities
M Linear interpolation with backwards amortization
I Piecewise linear interpolation with backwards amortization

jump

Amortization interval —m

O Daniel Becker

18

Timestamp Synchronization

o Event tracing of applications running on thousands of
processes requires scalable synchronization scheme

o Proposed algorithm depends on accuracy of
original timestamps

o Two-step synchronization scheme

o Pre-synchronization
- Linear interpolation

o Parallel post-mortem timestamp synchronization
- Extended controlled logical clock

q)

Daniel Becker

19

Pre-Synchronization

o Account for differences in offset and drift
o Assume that drift is not time dependant

o Offset measurement at program initialization and
finalization
o Among arbitrary chosen master and worker processes

o Linear interpolation between these two points

50
40
30

Ci- Cs[psec]

10
0
-10
-20
-30

Offset; :

q)

20 1o

------------------------- Clock errors after lingar
....................... begin-to-end correction

Daniel Becker

rank i=0
—rank i=1
——rank i=2
——rank i=3
——rank i=4
——rank i=5
—rank i=6
—rank i=7
— - + Send-Recv-Latency
— - - Send-Recv-Latency
- - + Allreduce-Latency
- = + - Allreduce-Latency

20

Parallel Timestamp Synchronization

o Extended controlled logical clock

o Parallel traversal of the event stream
o Forward amortization
o Backward amortization

o Exchange required timestamp at synchronization points
o Perform clock correction

o Apply control mechanism after replaying the
communication
o Global view of the trace data
o Multiple passes until error is below a predefined threshold

O Daniel Becker 21

Forward Amortization

o Timestamps exchanged depending on the type of

operation
Type of operation |timestamp exchanged MPI function
P2P timestamp of send event MPI Send
1-to-N timestamp of root enter event MPI| Bcast
N-to-1 max(all enter event timestamps) | MPI Reduce
N-to-N max(all enter event timestamps) | MPI Allreduce

0 Daniel Becker 22

Backward Amortization

o Timestamps exchanged depending on the type of

operation

Type of operation |timestamp exchanged MPI function

P2P timestamp of receive event MPI Send

1-to-N min(all collective exit event MPI Reduce
timestamps)

N-to-1 timestamp of root collective exit MP| Bcast
event

N-to-N min(all collective exit event MPI Allreduce
timestamps)

o Daniel Becker

23

q)

Conclusion

o Extended controlled logical clock algorithm takes
collective communication semantics into account
o Defined collective send and receive operations
o Defined collective happened-before relations

o Parallel implementation design presented using
SCALASCA's parallel replay approach
o Exploits distributed memory & processing capabilities

Daniel Becker

24

Future Work

o Finish actual implementation

» Evaluate algorithm using real message
passing codes

o Extend algorithm to shared memory
programming models

o Extend algorithm to one sided communication

q)

Daniel Becker

25

Thank you...

For more information, visit
our project home page:

http://www.scalasca.org

0 Daniel Becker

26

	Time Stamp Synchronization for Event Traces of Large-Scale Message Passing Applications
	Outline
	SCALASCA
	Wait States in MPI Applications
	Non-Synchronized Clocks
	Idea
	Event Model
	Replay-Based Parallel Analysis
	Example: Wait at N x N
	Controlled Logical Clock
	Forward Amortization
	Backward Amortization
	Extended Controlled Logical Clock
	Decomposition of Collective Operations
	Happened-Before Relation
	Forward Amortization
	Controller
	Backward Amortization
	Timestamp Synchronization
	Pre-Synchronization
	Parallel Timestamp Synchronization
	Forward Amortization
	Backward Amortization
	Conclusion
	Future Work
	Thank you…

