
19. — Enhancements in OpenMP 2.0 — 19.
19-1

OpenMP 2.0
Slide 1 Höchstleistungsrechenzentrum Stuttgart

Enhancements in OpenMP 2.0

Matthias Müller

mueller@hlrs.de

University of Stuttgart

High-Performance Computing-Center Stuttgart (HLRS)

www.hlrs.de

Matthias MüllerOpenMP 2.0
Slide 2 Höchstleistungsrechenzentrum Stuttgart

Outline

• Timeline

• Clarifications/Modifications

• New Features

19. — Enhancements in OpenMP 2.0 — 19.
19-2

Matthias MüllerOpenMP 2.0
Slide 3 Höchstleistungsrechenzentrum Stuttgart

Timeline

• OpenMP 1.0 for Fortran released October 1997

• OpenMP 1.0 for C/C++ released at October 1998

• OpenMP 1.1 for Fortran released at November 1999

• OpenMP 2.0 for Fortran released at November 2000

• OpenMP 2.0 for C/C++ in preparation

Matthias MüllerOpenMP 2.0
Slide 4 Höchstleistungsrechenzentrum Stuttgart

Clarifications

• interface definitions for OpenMP runtime routines have been added

• an OpenMP compliant implementation must documents its
implementation-defined behavior

• clarification of implied flush directive

• Recycling of thread numbers is clarified
(if dynamic threads are disabled, the threads keep the same
number on subsequent parallel regions)

• initialized data must have the SAVE attribute, like in Fortran 95

19. — Enhancements in OpenMP 2.0 — 19.
19-3

Matthias MüllerOpenMP 2.0
Slide 5 Höchstleistungsrechenzentrum Stuttgart

Clarifications: Implementation-defined behavior

See Appendix E of the OpenMP 2.0 standard

• The size of the first chunk in SCHEDULE(GUIDED)

• default schedule for SCHEDULE(RUNTIME)

• default schedule

• default number of threads

• default for dynamic thread adjustment

• number of threads used to execute nested parallel regions

• atomic directives might be replaced by critical sections

• behavior in case of thread exhaustion

• use of parameters other than OMP_*_KIND in generic interfaces

• allocation status of allocatable arrays that are not affected by
COPYIN clause are undefined if dynamic thread mechanism is
enabled

Matthias MüllerOpenMP 2.0
Slide 6 Höchstleistungsrechenzentrum Stuttgart

Clarifications: Implied flush directive

• A FLUSH directive identifies a sequence point at which a consistent
view of the shared memory is guaranteed

• It is implied at the following constructs:
– BARRIER
– CRITICAL and END CRITICAL
– END {DO, SECTIONS}
– END {SINGLE, WORKSHARE}
– ORDERED AND END ORDERED
– PARALLEL and END PARALLEL

with their combined variants

• It is NOT implied at the following constructs:
– DO
– MASTER and END MASTER
– SECTIONS
– SINGLE
– WORKSHARE

Thread- n m
number
 new value
Memory

 old value
Cache

CPU
Registers

cache flush
is needed to
load the
new value
into the CPU

?

19. — Enhancements in OpenMP 2.0 — 19.
19-4

Matthias MüllerOpenMP 2.0
Slide 7 Höchstleistungsrechenzentrum Stuttgart

New Features

• Wallclock timers
• WORKSHARE directive

• REDUCTION on array names

• NUM_THREAD clause

• _OPENMP preprocessor macro

• Nested lock routines like in C/C++

• Reprivatization of variables is allowed

• Directives may contain comments
• COPYPRIVATE is a new modifier on END SINGLE

• THREADPRIVATE may be applied to common blocks

• COPYIN on common blocks

Matthias MüllerOpenMP 2.0
Slide 8 Höchstleistungsrechenzentrum Stuttgart

New Feature: Wall clock timers

• Portable wall clock timers similar to MPI_WTIME
• DOUBLE PRECISION FUNCTION OMP_GET_WTIME()

– provides elapsed time

START=OMP_GET_WTIME()
! Work to be measured
END = OMP_GET_WTIME()
PRINT *, ´Work took ´, END-START, ´ seconds´

– provides “per-thread time”, i.e. needs not be globally consistent

• DOUBLE PRECISION FUNCTION OMP_GET_WTICK()

– returns the number of seconds between two successive clock
ticks

19. — Enhancements in OpenMP 2.0 — 19.
19-5

Matthias MüllerOpenMP 2.0
Slide 9 Höchstleistungsrechenzentrum Stuttgart

New Feature: WORKSHARE directive

• WORKSHARE directive allows parallelization of array expressions and
FORALL statements

• Usage:
!$OMP WORKSHARE
A=B
! Rest of block
!$OMP END WORKSHARE

• Semantics:

– Work inside block is divided into separate units of work.

– Each unit of work is executed only once.

– The units of work are assigned to threads in any manner.

– The compiler must ensure sequential semantics.
– Similar to PARALLEL DO without explicit loops.

Matthias MüllerOpenMP 2.0
Slide 10 Höchstleistungsrechenzentrum Stuttgart

New Feature: Reduction on Arrays

• REDUCTION clause may be applied to arrays

• Example:
!$OMP PARALLEL DO REDUCTION(MAX:M)
DO I=1, 100
 M=MAX(M,N(I))
END DO

• Deferred shape and assumed size arrays are not allowed!

19. — Enhancements in OpenMP 2.0 — 19.
19-6

Matthias MüllerOpenMP 2.0
Slide 11 Höchstleistungsrechenzentrum Stuttgart

New Feature: NUM_THREAD clause

• The NUM_THREAD clause on parallel regions defines the number of
threads to be used to execute that region

• Example:

!$OMP PARALLEL NUM_THREADS(scalar integer expression)

block

!$OMP END PARALLEL

• can also be used on combined parallel work-sharing constructs

Matthias MüllerOpenMP 2.0
Slide 12 Höchstleistungsrechenzentrum Stuttgart

New Feature: _OPENMP

• If an OpenMP compliant compiler supports a macro preprocessor it
has to define the symbol _OPENMP

• The symbol is of the value YYYYMM

– YYYY is the year

– MM the month

of the version of OpenMP the implementation supports

19. — Enhancements in OpenMP 2.0 — 19.
19-7

Matthias MüllerOpenMP 2.0
Slide 13 Höchstleistungsrechenzentrum Stuttgart

Summary

• OpenMP 2.0 contains

– many clarification that reflects the experience made in the last
years

– some improvements/extensions:
• interface definitions
• Wallclock timers
• WORKSHARE directive
• REDUCTION on array names

• Some features have direct expressions in C/C++ and can be
expected in OpenMP 2.0 for C/C++

