
2. — Hardware Architectures and Parallel Programming Models — 2.
2-1

Hardware Architectures & Parallel Programming Models
Höchstleistungsrechenzentrum StuttgartSlide 1

Hardware Architectures
and

Parallel Programming Models
An Introduction

Rolf Rabenseifner, Michael M. Resch

University of Stuttgart

High-Performance Computing-Center Stuttgart (HLRS)

www.hlrs.de

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 2

Contents

• Motivation

• Hardware Architectures

– Basic Architectural Concepts

– Network Topologies

• Parallelization Strategies

• Programming Models

– Concepts

– Implementations

– Comparisons

• Future developments

2. — Hardware Architectures and Parallel Programming Models — 2.
2-2

Hardware Architectures & Parallel Programming Models
Höchstleistungsrechenzentrum StuttgartSlide 3

Motivation

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 4

Motivation

?

2. — Hardware Architectures and Parallel Programming Models — 2.
2-3

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 5

Abstract Model

Reality

Physical Model

Mathematical Model

Numerical Scheme

Programme Structure

Hardware Architecture

Programming Model

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 6

Parallel Compiler

• Why can’t I just say

f90 -Parallel mycode.f

or

cc -Parallel mycode.c

and everything works fine?

2. — Hardware Architectures and Parallel Programming Models — 2.
2-4

Hardware Architectures & Parallel Programming Models
Höchstleistungsrechenzentrum StuttgartSlide 7

Hardware
Architectures

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 8

We need the compute power

• Relevant engineering problems require performance that is orders
of magnitude higher than what is available

• CFD: Simulation of turbulence at a reasonable level of resolution

• Combustion: Combination of turbulence simulation and realistic
chemical models

• Climate simulation: Resolution required that is orders of
magnitude higher than today

2. — Hardware Architectures and Parallel Programming Models — 2.
2-5

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 9

We can not go on like this

• The physical limits of scalar processors are visible

• Clock-rate can no more grow orders of magnitude

• Fast hardware (e.g. ECL or GaAs) has a high power consumption,
therefore the potential for higher integration is limited

• High clock-rate needs high density due to the restriction of signal
speed by the speed of light

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 10

Progress of microprocessor

0.01

0.1

1

10

LINPACK 1000x1000 Performance

100

1000

MFLOPS

CISC Microprocessor

RISC Microprocessor

Vector Supercomputer

19821980 1984 1986 1988 1990 1992 1994 1996
year

20

78 8280 84 86 88 90 92 94 96

50

60

30

10

40

0

70

 (Cray)

M/1000
R2030

Clock Cycle (nsec)

i860

RS6000/580

RS6000/58H
Power2R8000

DEC21164

year

Micro-
processor

Vector Supercomputer

Information provided
by HITACHI

2. — Hardware Architectures and Parallel Programming Models — 2.
2-6

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 11

Why not vector computers anymore

• Higher segmentation not useful for general program and data
structures

• Higher segmentation increases pipeline-startup

• Performance improvement needs higher clock rates

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 12

Evolution of supercomputers

Peak Performance
(GFLOPS)

1,000

100

10

1

1980 1985 1990 95 96 97 year

Vector Supercomputer

Parallel Computer

SR2001

SR2201

S-3800

S-810
VP200 CRAY-XMP

VP400 VP2600
SX-2

SX-3

nCUBE2

CM200 VPP300SR4300

SX-4/32

VPP700

T3E

VPP500

T3DParagon

CM-5

T3E-900

S-820

CRAY-YMP

98

SR8000

Improving cost performance

Increase of parallel programs
 and low cost hardware

Legend
 Parallel Vector

Difficulty of performance improvement.
Fading of new development.

Shipment

2. — Hardware Architectures and Parallel Programming Models — 2.
2-7

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 13

Other aspects - even more important ones!

• Specialised high-end processors are extremely expensive

• Workstations and PCs can be clustered to form a more powerful
resource

• Heterogeneous environments can be set up having each processor
do the work it is best suited for.

• But: There are some costs in parallel computing!

Hardware Architectures & Parallel Programming Models
Höchstleistungsrechenzentrum StuttgartSlide 14

Basic Architectural
Concepts

2. — Hardware Architectures and Parallel Programming Models — 2.
2-8

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 15

Old and new concepts

Processing concepts:

• Pipelining -> that is just vector computing

• Functional Parallelism -> modern processor technology

• Multithreading

• Array-Processing

• Multiprocessors (strongly coupled) -> Shared memory

• Multicomputers (weakly coupled) -> Distributed memory

Memory access concepts:

• Cache based

• Vector access via several memory banks

• Pre-load, pre-fetch

—> MFLOP/s performance and MB/s or Mword/s memory bandwidth

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 16

Pipelining

a+b=c

Adopt
Exponent

Add
Mantissa

Overflow Exponent Normalize

a1
b1

a2
b2

a1
b1

a3
b3

a2
b2

a1
b1

a4 a2 a3
b4 b3 b2

a1
b1

a5 a4 a3 a2 a1
b1b2b3b4b5

a6 a4a5 a3 a2

c1

b2b3b4b5b6

a7
a8
a9
a10
a11
a12

b7
b8
b9
b10
b11
b12

2. — Hardware Architectures and Parallel Programming Models — 2.
2-9

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 17

Array - Processor (I)

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

Sequencer

Instruction-
Memory

PE : CPU + Data - Memory

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 18

Array - Processor (II)

• A PE is not a full processor

• Each PE has its own set of data

• Each PE gets the same instruction

• Looks like a good idea; especially for programs with big loops over
elements or cells.

• All non-parallel parts of the code slow done the machine

• Realised by

– Maspar

– CM-2 (Thinking Machines)

– nCube

2. — Hardware Architectures and Parallel Programming Models — 2.
2-10

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 19

Multiprocessor - shared memory

Memory - Interconnect

Memory-
Segment

Memory-
Segment

Memory-
Segment

Memory-
Segment

CPU CPU CPU CPU

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 20

Multiprocessor

• A number of processors is coupled to a number of memory banks by
a fast network

• Each CPU has the same access speed to each memory bank

• This concept is often referred to as Uniform Memory Access (UMA)

• The bottleneck may be the network

2. — Hardware Architectures and Parallel Programming Models — 2.
2-11

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 21

Multicomputer - distributed memory (I)

Node-Interconnect

CPU CPU CPU CPU

Memory-
Segment

Memory-
Segment

Memory-
Segment

Memory-
Segment

Node or PE

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 22

Multicomputer - distributed memory (II)

• A number of full processors with memory is coupled by a fast
network

• Each CPU has fast access to its own memory but slower access to
other CPU’s memories

• This concept is often referred to as Non-Uniform memory Access
(NUMA)

• Again the network may become a bottleneck

2. — Hardware Architectures and Parallel Programming Models — 2.
2-12

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 23

The concepts of Flynn

• Classify architectures according to multiplicity of data and
instructions

• SI: single instruction for all processors

• MI: multiple instructions for different processors

• SD: single data for all processors

• MD: multiple data for different processors

• SISD Å classical processor

• SIMD Å array processor

• MIMD Å distributed or shared memory

• SPMDÅ single program & multiple data

• MPMDÅ multiple program & multiple data

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 24

I heard that

• Network of workstations (NOW)? Å Distributed memory

• Beowulf-class systems = Clusters of Commercial Off-The-Shelf
(COTS) PCs? Å Distributed memory

• Multiboard workstations/PCs ? Å Shared memory

• SMP? Å Symmetric multiprocessing.
 An easy way to do shared memory

• PVP? Å Parallel vector processing. Merger of two good concepts

• MPP? Å Massively parallel processing.

2. — Hardware Architectures and Parallel Programming Models — 2.
2-13

Hardware Architectures & Parallel Programming Models
Höchstleistungsrechenzentrum StuttgartSlide 25

Network Topologies

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 26

Complete interconnect

PE

PEPE

PE

PE PE

PE

2. — Hardware Architectures and Parallel Programming Models — 2.
2-14

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 27

Complete interconnect

• Number of nodes: K

• Number of links: 1/2*K*(K-1)

• Ports per node: K-1

• -> Possible only for small K

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 28

Parameters for network topologies (I)

• Route from one node to another: PATH
• Direct connection between two routers or nodes: LINK
• Minimum number of links between two nodes: DISTANCE

 (e.g., for complete interconnect: DISTANCE = 1)

• Maximum distance between two nodes in a network: DIAMETER
 (... = 1)

• Total number of connections or switches: COMPLEXITY
 (... = 1/2 * K * (K-1))

• Smallest number of nodes to expand the network:
EXPANSION-INCREMENT (... = 1)

• Minimal number of links that have to fail for a separation of the system:
CONNECTIVITY (... = K-1)

2. — Hardware Architectures and Parallel Programming Models — 2.
2-15

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 29

Ring topology (Clusters)

• DISTANCE between one and K/2

• DIAMETER is therefore K/2

• COMPLEXITY is K

• EXPANSION-INCREMENT is one

• CONNECTIVITY is 2

PE

PEPE

PE

PE PE

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 30

Hypercube (very popular in CS)

• DISTANCE between one and
log2(K)

• DIAMETER is therefore log2(K)

• COMPLEXITY is 1/2*K*log2(K)

• EXPANSION-INCREMENT is K

• CONNECTIVITY is log2(K)

• Build in iPSC but still too complex
and too expensive!!

2. — Hardware Architectures and Parallel Programming Models — 2.
2-16

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 31

2D-Mesh or Torus (Paragon, T3E)

• MESH
• DISTANCE between one and ~2*sqrt(K)

• DIAMETER is therefore ~2*sqrt(K)

• COMPLEXITY is ~2*K

• EXPANSION-INCREMENT is ~sqrt(K)

• CONNECTIVITY is 2

• TORUS
• DISTANCE between 1 and ~sqrt(K)

• DIAMETER is therefore ~sqrt(K)

• COMPLEXITIY is 2*K

• EXPANSION INCREMENT is ~sqrt(K)

• CONNECTIVITY is 4

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 32

Switch (SX-4, SX-5)

• Connects N CPUs to M memory banks

• Number of switching elements N*M

2. — Hardware Architectures and Parallel Programming Models — 2.
2-17

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 33

Current developments

• Extending the shared memory concept to distributed memory
machines by implementing sort of virtual shared memory. With
cache based CPUs this requires cache coherency protocols that
are rather complicated. The architecure is often referred to as
Cache Coherent Non-Uniform Memory Acces (CC_NUMA).

• Extending the shared memory concept to much larger numbers of
processors (even 256 and more)

• Multithreaded architectures (MTA) that support threads in hardware

• Hybrid architectures that combine shared and distributed memory in
one architecture

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 34

Hybrid architectures

Node Interconnect

2. — Hardware Architectures and Parallel Programming Models — 2.
2-18

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 35

Hitachi SR 8000-F1/112 (Rank 5 in TOP 500 / June 2000)

• System:

– 112 nodes,

– 1.34 TFLOP/s peak

– 1.03 TFLOP/s Linpack

– 0.9 TB memory

• Node:

– 8 CPUs, 12 GFLOP/s

– 8 GB, SMP

– pseudo-vector

– ext. b/w: 950 MB/s

• CPU:

– 1.5 GFLOP/s, 375 MHz

– 4 GB/s memory b/w

• Installed: 1.Q 2000 at LRZ

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 36

Earth Simulator Project ESRDC / GS 40 (NEC)

• System: 640 nodes, 40 TFLOP/s

10 TB memory

optical 640x640 crossbar

50m x 20m without
 peripherals

• Node: 8 CPUs, 64 GFLOP/s

16 GB, SMP

ext. b/w: 2x16 GB/s

• CPU: Vector

8 GFLOP/s, 500 MHz

Single-Chip, 0.15 µs

32 GB/s memory b/w

• Virtual Earth - simulating

– Climate change (global warming)

– El Niño, hurricanes, droughts

– Air pollution (acid rain, ozone hole)

– Diastrophism (earthquake, volcanism)

• Installation: 2002
http://www.gaia.jaeri.go.jp/public/e_publicconts.html

 RSWLFDO
VLQJOH�VWDJH
FURVVEDU

����������

.....

.....

1RGH��

1RGH����

2. — Hardware Architectures and Parallel Programming Models — 2.
2-19

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 37

Hardware Architectures – Summary

• There are a lot of architectures around

• The basic concepts are shared memory and distributed memory
with some high speed network

• There is a variety of networks but the simple ones turn out to be
those that can be used for real live

• Future trends try to combine the positive aspects of different
approaches as much as possible

Hardware Architectures & Parallel Programming Models
Höchstleistungsrechenzentrum StuttgartSlide 38

Parallelization
Strategies

2. — Hardware Architectures and Parallel Programming Models — 2.
2-20

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 39

Parallel Compiler

• Why can’t I just say

f90 -Parallel mycode.f

or

cc -Parallel mycode.c

and everything works fine?

• Logical dependencies

• Data dependencies

• Global view

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 40

A Problem (I)

Flow around a cylinder:
Numerical Simulation using FV, FE or FD

Data Structure: A(1:n,1:m)

Solve: (A+B+C)x=b

2. — Hardware Architectures and Parallel Programming Models — 2.
2-21

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 41

A Problem (II)

Real :: b(n),A(n,m),B(n,m),C(n,m)

do i = 1,n

 b(i) =

 do j = 1,m

 A(i,j) =
 B(i,j) =
 C(i,j) =

 end do
end do

Loop over x-dimension

Calculate b

Loop over y-dimension

Calculate A

Calculate B

Calculate C

Data definition

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 42

Parallelization strategies (1)

• Two major resources of computation:

– processor

– memory

• Parallelization means

– distributing work to processors

– distributing data (if memory is distributed)

• These two concepts are often combined

2. — Hardware Architectures and Parallel Programming Models — 2.
2-22

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 43

Parallelization strategies (2)

Flow around a cylinder:
Numerical Simulation using FV, FE or FD

Data Structure: A(1:n,1:m)

Solve: (A+B+C)x=b

(A+B+C)x = b
calc A
calc B
calc C
calc b

Work decomposition

Domain decomposition

A(1:20,1:50)
A(1:20,51:100)
A(1:20,101:150)
A(1:20,151:200)

Data decomposition

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 44

Speedup, Efficency, and Scalup

• Definition:
– T(p,N) = time to solve problem of size N on p processors

• Speedup:
– S(p,N) = T(1,N) / T(p,N)
– compute same problem with more processors in shorter time

• Efficiency:
– E(p,N) = S(p,N) / p

• Scaleup:
– Sc(p,N) = N / n with T(1,n) = T(p,N)
– compute larger problem with more processors in same time

• Problems:
– Absolute MFLOPS rate / hardware peak performance?
– S(p,N) close to p or far less? —> see Amdahls Law on next slide
– Or super-scalar speedup: S(p,N)>p, e.g., due to cache usage

2. — Hardware Architectures and Parallel Programming Models — 2.
2-23

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 45

Parallelization problems

• Two major resources of computation:

– processor

– memory

• Parallelization means

– distributing work to processors
—> load balancing necessary
—> synchronization overhead should be minimized
 —> to achieve optimal speedup

– distributing data (if memory is distributed)
—> implies communication to bring data to processor
 —> communication is overhead
 —> reduced speedup

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 46

Parallelization Problems

• Decomposition (Domain, Data, Work)

• Communication is overhead

du dx u u dxi i/ () /= −+ −1 1

ui-1 ui+1

2. — Hardware Architectures and Parallel Programming Models — 2.
2-24

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 47

Amdahls Law

T(1,N) = f + (T(1,N) - f) f ... sequential part of code
that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = T(1,N) / (f + (T(1,N) - f) / p)

For p —> infinity, speedup is limited by S(p,N) < T(1,N) / f

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
p = #processors

S
p

ee
d

u
p

 S
(p

,N
) S(p,N) = p

f / T(1,N) =0.1% => S(p,N) < 1000

f / T(1,N) = 1% => S(p,N) < 100

f / T(1,N) = 5% => S(p,N) < 20

f / T(1,N) = 10% => S(p,N) < 10

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 48

Amdahls Law (double-logarithmic)

T(1,N) = f + (T(1,N) - f) f ... sequential part of code
that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = T(1,N) / (f + (T(1,N) - f) / p)

For p —> infinity, speedup is limited by S(p,N) < T(1,N) / f

1

10

100

1000

1 10 100 1000
p = #processors

S
p

e
e

d
u

p
 S

(p
,N

) S(p,N) = p

f / T(1,N) =0.1% => S(p,N) < 1000

f / T(1,N) = 1% => S(p,N) < 100

f / T(1,N) = 5% => S(p,N) < 20

f / T(1,N) = 10% => S(p,N) < 10

2. — Hardware Architectures and Parallel Programming Models — 2.
2-25

Hardware Architectures & Parallel Programming Models
Höchstleistungsrechenzentrum StuttgartSlide 49

Programming
Models

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 50

Concepts of Programming Models

• Threads: A single process having multiple execution paths

• Remote Memory Operation: A set of processes in which one
process can access the memory of another process without its
participation

• Shared Memory Directives:
– User specifies via directives how work is parallelized

– Data decomposition is implicit

– Communication is implicit

• Data Parallelism:
– User specifies how data is distributed

– Communication is implicit

• Message Passing:
– User specifies how data is distributed

– User specifies how and when communication has to be done

2. — Hardware Architectures and Parallel Programming Models — 2.
2-26

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 51

Concepts - Shared Memory Directives (I)

• User explicitly defines parallelism by inserting directives

• Parallelization is then done by the compiling system

• Typically parallel sections are defined

• Typically loops are defined to be executed in parallel

• Previously architecture dependent

• Since 1997 standardized by OpenMP

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 52

Concepts - Shared Memory Directives (II)

Master ThreadSingle Process

Team of ThreadsParallel Region

Team of ThreadsParallel Region

Master ThreadSingle Process

Master ThreadSingle Process

2. — Hardware Architectures and Parallel Programming Models — 2.
2-27

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 53

Concepts - Shared Memory Directives (III)

Real :: b(n),A(n,m),B(n,m),C(n,m)

do i = 1,n

 b(i) =

 do j = 1,m

 A(i,j) =
 B(i,j) =
 C(i,j) =

 end do
end do

Loop over x-dimension

Calculate b

Loop over y-dimension

Calculate A

Calculate B

Calculate C

Data definition

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 54

Concepts - Data Parallelism (I)

• User defines data decomposition explicitly by using language
extensions.

• Parallelization is done by a compiling system.

• Typically Matrices and vectors are distributed

• Typically these are arrays or similar constructs

• Previously a lot of research languages

• Since 1996 HPF (High Performance Fortran) is the standard

2. — Hardware Architectures and Parallel Programming Models — 2.
2-28

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 55

Concepts - Data Parallelism (II)

Real :: b(n),A(n,m),B(n,m),C(n,m)

do i = 1,n

 b(i) =

 do j = 1,m

 A(i,j) =
 B(i,j) =
 C(i,j) =

 end do
end do

Loop over x-dimension

Calculate b

Loop over y-dimension

Calculate A

Calculate B

Calculate C

Data definition
!HPF$ DISTRIBUTE A(block,block),B(...),C(...)
!HPF$ DISTRIBUTE b(block)

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 56

Concepts - Message Passing (I)

• User explicitly distributes data

• User explicitly defines communication

• Compiler has to do no additional work

• Typically domain or work decomposition is used

• Typically communication across borders of domains is necessary

• Every parallel machine has its own message-passing library

• Since 1995 MPI (Message Passing Interface) is the standard

2. — Hardware Architectures and Parallel Programming Models — 2.
2-29

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 57

Concepts - Message Passing (II)

User defined communication

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 58

Concepts - Message Passing (III)

Real :: b(n/4),A(n/2,m/2),B(n/2,m/2),C(n/2,m/2)

do i = 1,n/2

 b(i) =

 do j = 1,m/2

 A(i,j) =
 B(i,j) =
 C(i,j) =

 end do
end do

Loop over x-dimension

Calculate b

Loop over y-dimension

Calculate A

Calculate B

Calculate C

Data definition

Call MPI_Send(.......)
Call MPI_Recv(.......)

2. — Hardware Architectures and Parallel Programming Models — 2.
2-30

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 59

Implementations

• Shared Memory Directives:
– Native Directives (Cray, NEC, Hitachi,...)

– OpenMP

• Data Parallelism:
– CM-Fortran, Vienna-Fortran, Fortran-D

– HPF

• Message Passing:
– Native libraries (NX, MPL,....)

– PVM (portable and free)

– MPI (The standard)

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 60

Implementations and Architectures

• Shared Memory Directives: Typically the standard model for
shared memory machines. Keeps codes for those architectures
portable. Could be ported to distributed memory machines by
modeling it on top of message passing or distributed-shared
memory models.

• Data Parallelism: No specific architecture. Is typically broken down
to message passing calls that are inserted by the compiler. Could
also be put on top of shared memory directives.

• Message Passing: Naturally expresses the distributed memory
architecture. However, may also be faster on shared memory
machines and is the only one to ensure portability across all
platforms at the moment.

2. — Hardware Architectures and Parallel Programming Models — 2.
2-31

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 61

Other Concepts

• shmem and MPI-2 one-sided communication

• Distributed memory programming (DMP) language extensions

• Multi level parallelism (MLP)

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 62

SHMEM - Shared Memory Interface

• SHMEM allows a user to access remote memory locations with
shmem_..._put() and shmem_..._get() routines.

• For parallel machines with global address space, this means no
OS intervention => high bandwidth and low latency.

• Targeted for SPMD programs.

• No forced syncs: User has control of (and responsibility for)
integrity of data from remote transfers.

• High BW, low latency and minimal syncs make SHMEM very fast,
but dangerous if not careful.

2. — Hardware Architectures and Parallel Programming Models — 2.
2-32

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 63

Several efforts extend standard languages to address remote memory, e.g.,

Fortran 90 Co-arrays (aka, F--):
dimension (n,n) :: x[2,3], y[2,3] ! Replicate x, y on 6 pes.

real a[3], b[3] ! Replicate a, b on 3 pes.

a[1] = b[3] - Put b from node 3 to a on node 1.

x(n,1:n)[p,q] = y(1,1:n)[p,mod(q+1,3)+1] - Copy BCs to left.

DMP Language Extensions

Mem Image 1
a

b

Mem Image 2

Mem Image 3

Mem Image [1,1]

x(n,n)

Mem Image [2,1]
x(n,n)

Mem Image [2,3]
x(n,n)

Mem Image [1,3]
x(n,n)

Mem Image [1,2]
x(n,n)

Mem Image [2,2]

x(n,n)

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 64

Multi Level Parallelism (MLP)

• Two levels of parallelism (usually)

• Fine grained parallelism provided by the compiler (e.g., OpenMP)
at loop level

• Coarse grained parallelism provided by forked processs

• communication by shared memory arenas, i.e. direct access to
global arrays by compiler generated code

• Minimal latency (0.33–1.0 µsec on 512 processor Origin2000)

• Only four additional routines: INITMEM, GETMEM, FORKIT, BARRIER

• Targeted for large CPU count NUMA SMP systems

• Efficient and easy load balancing on ccNUMA,
e.g., by adapting the number of threads on each process

• Method can also execute across clusters

2. — Hardware Architectures and Parallel Programming Models — 2.
2-33

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 65

Example: Parallel Efficiency of OVERFLOW/MLP

• OVERFLOW CFD code at NASA/Ames

• high, sustained GFLOP/s rate

• with Multi Level Parallelism (MLP)

• scalable on large CPU counts

• on 512 processor ccNUMA Origin 2000

75

60

45

30

15

0

P
er

fo
rm

an
ce

 (
G

FL
O

P
/s

)

0 128 256 384 512
Number of CPUs

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 66

MLPlib

The MLPlib routines for scalable parallel execution support are:
• Subroutine INITMEM(numbytes)

– The INITMEM routine sets up a UNIX shared memory arena consisting of
numbytes bytes to be used by all subsequently spawned processes

• Subroutine GETMEM(xarry,xpoint,numxbyt)
– The GETMEM routine allocates numxbyt bytes to the xarray variable

– xpoint is the Cray pointer to xarray

– xarray is resident in the shared memory arena

– The xarray data will be visible to all MLP processes using the shared memory
arena .

• Subroutine FORKIT(numpro,myrank)
– spawns a total of numpro additional processes

– returns current process id myrank (0–numpro)

• Subroutine BARRIER(numpro)
– The BARRIER roitine waits until numpro processes have hit the barrier, then all

drop through

Reference: Ciotti, Taft, Peterson: “Early Experiences with the 512p Origin2000”
in proceedings of the Cray User Group conference SUMMIT 2000, www.cray.org

2. — Hardware Architectures and Parallel Programming Models — 2.
2-34

Hardware Architectures & Parallel Programming Models
Höchstleistungsrechenzentrum StuttgartSlide 67

Advantages and
Challenges

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 68

Advantages and Challenges

OpenMP HPF MPI

Maturity of programming model ++ + ++
Maturity of standardization + + ++
Migration of serial programs ++ 0 – –
Ease of programming (new progr.) ++ + –
Correctness of parallelization – ++ – –
Portability to any hardware architecture – ++ ++
Availability of implementations of the stand. + + ++
Availability of parallel libraries 0 0 0
Scalability to hundreds/thousands of
processors

– – 0 ++

Efficiency – 0 ++
Flexibility – dynamic program structures – – ++
 – irregular grids, triangles, tetra-

hedrons, load balancing, redistribut.
– – ++

2. — Hardware Architectures and Parallel Programming Models — 2.
2-35

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 69

Programming Models on Hardware Platforms

 vectorization
 pseudo vectorization
 automatic parallelization
 thread programming
 OpenMP
 OpenMP with data
 distribution extensions
 MLP

shmem
 HPF
 MPI
 MPI-2 one-sided

 automatic work
 distribution systems

PVP MTA ccNUMA remote reliable unreliable
SMP dma mesage message

transfer transfer

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 70

Comparing Hardware Platforms

Parallel
-ization

Memory
access

Parallel
method

Programming Models
Standards

Limited by ...

1 threadShared
memory
parallel
(SMP)
MTA

fine
grained multiple

threads

Vectorization
Pseudo vectorization
Automatic parallelization
Thread programming
OpenMP

Loop length
-> only medium

number of
threads

Size of shared
memorycc-

NUMA Multi Level Parallelism (MLP):
 OpenMP & forked process:

- data exchange via global arrays
- synchronization via barrier

currently
restricted to
NASA/Ames,
only on Origin

remote
dma

Only on a few
platforms

One sided communication
- Cray shmem
- MPI-2 one-sided PUT/GET Long latency

High Performance Fortran (HPF) (Structured only)

Mes-
sage
transfer

Message Passing Interface (MPI)

Parallel Vitual Machine (PVM)

coarse
grained

cluster
of un-
reliable
systems

multiple
proc-
esses

Systems to manage thousands of
PCs / workstations

Shadow
must be
programmed
by hand

2. — Hardware Architectures and Parallel Programming Models — 2.
2-36

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 71

Which Model is the Best for Me?

• Depends on

– your application

– your platform

– which efficiency do you need on your platform

– how much time do you want to spent on parallelization
easy to “assembler of
program parallel programming”

SMP SMP-cluster
with rdma

SMP-Cluster
without rdma

MPP

Without
shadow
programming

OpenMP MLP+OpenMP or
future OpenMP
enhancements
(HPF)

HPF HPF

With shadow
programming
by hand

(MPI) MPI+OpenMP MPI+OpenMP
(MPI on all
processors)

MPI

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 72

Summary of Comparison

• Shared Memory Directives:

Sounds like heaven. Nearly nothing to change and the compiler
does everything for you.

• Data Parallelism:

Rather like purgatory. You have to work more but may enjoy the
support of a good compiler.

• Message Passing:

A bit like hell. A lot of work and nearly no support by the compiler.

2. — Hardware Architectures and Parallel Programming Models — 2.
2-37

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 73

Future Directions

• Hierarchical Programming Models

DM-Node MPI

SM-Node OpenMP

Cache Cache oriented programming

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 74

 Internode Parallelization
Parallelized with HPF,MPI,PVM by user

Internode Parallelize

 Element Parallelization

Automatically Parallelized by Compiler

Element Parallelize

Applied Image

DO i=1,l
 DO j=1,m
 DO k=1,n

Pseudo-Vector Processing

Pseudo-Vector Processing

Application Program Processing

2. — Hardware Architectures and Parallel Programming Models — 2.
2-38

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 75

Will We Converge? No!
Parallel Programming Models – Survey Results

1997 2001
• Compiler based 72% 64%

(automatic or with directives)
e.g. OpenMP

• Explicit compiler based 44% 59%
e.g. HPF, CRAFT

• Explicit message passing 72% 68%
e.g. MPI, PVM, LINDA

• Other 6% 7%
• None 4% 3%

• Consider the following IDC study.

• 97 Interviews -- Mid 1997

• Customers who purchased at least a $1 million supercomputer

• Interviewee was a buyer or decision maker of key influence.

estimated
in 1997

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 76

Parallel Programming Models – Summary

• 2 main problems presented:

– Decomposition of work

– Handling of communication

• 3 models presented

– Shared Memory Directives

– Data Parallelism

– Message Passing

• 3 model Implementations evaluated

– OpenMP

– HPF

– MPI

