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Motivation

?
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Abstract Model

Reality

Physical Model

Mathematical Model

Numerical Scheme

Programme Structure

Hardware Architecture

Programming Model
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Parallel Compiler

• Why can’t I just say

f90 -Parallel mycode.f

or

cc -Parallel mycode.c

and everything works fine?
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Hardware
Architectures

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 8

We need the compute power

• Relevant engineering problems require performance that is orders
of magnitude higher than what is available

• CFD: Simulation of turbulence at a reasonable level of resolution

• Combustion: Combination of turbulence simulation and realistic
chemical models

• Climate simulation: Resolution required that is orders of
magnitude higher than today
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We can not go on like this

• The physical limits of scalar processors are visible

• Clock-rate can no more grow orders of magnitude

• Fast hardware (e.g. ECL or GaAs) has a high power consumption,
therefore the potential for higher integration is limited

• High clock-rate needs high density due to the restriction of signal
speed by the speed of light
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Progress of microprocessor
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Why not vector computers anymore

• Higher segmentation not useful for general program and data
structures

• Higher segmentation increases pipeline-startup

• Performance improvement needs higher clock rates
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Evolution of supercomputers
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Other aspects - even more important ones!

• Specialised high-end processors are extremely expensive

• Workstations and PCs can be clustered to form a more powerful
resource

• Heterogeneous environments can be set up having each processor
do the work it is best suited for.

• But: There are some costs in parallel computing!
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Basic Architectural
Concepts
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Old and new concepts

Processing concepts:

• Pipelining -> that is just vector computing

• Functional Parallelism -> modern processor technology

• Multithreading

• Array-Processing

• Multiprocessors (strongly coupled) -> Shared memory

• Multicomputers (weakly coupled) -> Distributed memory

Memory access concepts:

• Cache based

• Vector access via several memory banks

• Pre-load, pre-fetch

—>  MFLOP/s performance  and  MB/s or Mword/s memory bandwidth
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Pipelining
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Array - Processor (I)

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

PE PE

Sequencer

Instruction-
Memory

PE : CPU + Data - Memory

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 18

Array - Processor (II)

• A PE is not a full processor

• Each PE has its own set of data

• Each PE gets the same instruction

• Looks like a good idea; especially for programs with big loops over
elements or cells.

• All non-parallel parts of the code slow done the machine

• Realised by

– Maspar

– CM-2 (Thinking Machines)

– nCube
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Multiprocessor - shared memory

Memory - Interconnect

Memory-
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Multiprocessor

• A number of processors is coupled to a number of memory banks by
a fast network

• Each CPU has the same access speed to each memory bank

• This concept is often referred to as Uniform Memory Access (UMA)

• The bottleneck may be the network
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Multicomputer - distributed memory (I)

Node-Interconnect

CPU CPU CPU CPU
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Multicomputer - distributed memory (II)

• A number of full processors with memory is coupled by a fast
network

• Each CPU has fast access to its own memory but slower access to
other CPU’s memories

• This concept is often referred to as Non-Uniform memory Access
(NUMA)

• Again the network may become a bottleneck
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The concepts of Flynn

• Classify architectures according to multiplicity of data and
instructions

• SI: single instruction for all processors

• MI: multiple instructions for different processors

• SD: single data for all processors

• MD: multiple data for different processors

• SISD Å classical processor

• SIMD Å array processor

• MIMD Å distributed or shared memory

• SPMDÅ single program & multiple data

• MPMDÅ multiple program & multiple data
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I heard that ........

• Network of workstations (NOW)?  Å  Distributed memory

• Beowulf-class systems = Clusters of Commercial Off-The-Shelf
(COTS) PCs?  Å  Distributed memory

• Multiboard workstations/PCs ?  Å  Shared memory

• SMP? Å  Symmetric multiprocessing.
                 An easy way to do shared memory

• PVP? Å  Parallel vector processing. Merger of two good concepts

• MPP? Å  Massively parallel processing.
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Network Topologies
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Complete interconnect
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Complete interconnect

• Number of nodes: K

• Number of links: 1/2*K*(K-1)

• Ports per node: K-1

• -> Possible only for small K
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Parameters for network topologies (I)

• Route from one node to another: PATH
• Direct connection between two routers or nodes: LINK
• Minimum number of links between two nodes: DISTANCE

      (e.g., for complete interconnect: DISTANCE = 1)

• Maximum distance between two nodes in a network: DIAMETER
                 (... = 1)

• Total number of connections or switches: COMPLEXITY
              (... = 1/2 * K * (K-1) )

• Smallest number of nodes to expand the network:
EXPANSION-INCREMENT   (... = 1)

• Minimal number of links that have to fail for a separation of the system:
CONNECTIVITY   (... = K-1)
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Ring topology (Clusters)

• DISTANCE between one and K/2

• DIAMETER is therefore K/2

• COMPLEXITY is K

• EXPANSION-INCREMENT is one

• CONNECTIVITY is 2

PE

PEPE

PE

PE PE
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Hypercube (very popular in CS)

• DISTANCE between one and
log2(K)

• DIAMETER is therefore log2(K)

• COMPLEXITY is 1/2*K*log2(K)

• EXPANSION-INCREMENT is K

• CONNECTIVITY is log2(K)

• Build in iPSC but still too complex
and too expensive!!
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2D-Mesh or Torus (Paragon, T3E)

• MESH
• DISTANCE between one and  ~2*sqrt(K)

• DIAMETER is therefore ~2*sqrt(K)

• COMPLEXITY is ~2*K

• EXPANSION-INCREMENT is ~sqrt(K)

• CONNECTIVITY is 2

• TORUS
• DISTANCE between 1 and ~sqrt(K)

• DIAMETER is therefore ~sqrt(K)

• COMPLEXITIY is 2*K

• EXPANSION INCREMENT is ~sqrt(K)

• CONNECTIVITY is 4

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 32

Switch (SX-4, SX-5)

• Connects N CPUs to M memory banks

• Number of switching elements N*M
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Current developments

• Extending the shared memory concept to distributed memory
machines by implementing sort of virtual shared memory. With
cache based CPUs this requires cache coherency protocols that
are rather complicated. The architecure is often referred to as
Cache Coherent Non-Uniform Memory Acces (CC_NUMA).

• Extending the shared memory concept to much larger numbers of
processors (even 256 and more)

• Multithreaded architectures (MTA) that support threads in hardware

• Hybrid architectures that combine shared and distributed memory in
one architecture
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Hybrid architectures

Node Interconnect
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Hitachi SR 8000-F1/112  (Rank 5 in TOP 500 / June 2000)

• System:

– 112 nodes,

– 1.34 TFLOP/s peak

– 1.03 TFLOP/s Linpack

– 0.9 TB memory

• Node:

– 8 CPUs, 12 GFLOP/s

– 8 GB, SMP

– pseudo-vector

– ext. b/w: 950 MB/s

• CPU:

– 1.5 GFLOP/s, 375 MHz

– 4 GB/s memory b/w

• Installed: 1.Q 2000 at LRZ
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Earth Simulator Project ESRDC / GS 40 (NEC)

• System: 640 nodes, 40 TFLOP/s

10 TB memory

optical 640x640 crossbar

50m x 20m without
                   peripherals

• Node: 8 CPUs, 64 GFLOP/s

16 GB, SMP

ext. b/w: 2x16 GB/s

• CPU: Vector

8 GFLOP/s, 500 MHz

Single-Chip, 0.15 µs

32 GB/s memory b/w

• Virtual Earth  - simulating

– Climate change (global warming)

– El Niño, hurricanes, droughts

– Air pollution (acid rain, ozone hole)

– Diastrophism (earthquake, volcanism)

• Installation: 2002
http://www.gaia.jaeri.go.jp/public/e_publicconts.html
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Hardware Architectures  –  Summary

• There are a lot of architectures around

• The basic concepts are shared memory and distributed memory
with some high speed network

• There is a variety of networks but the simple ones turn out to be
those that can be used for real live

• Future trends try to combine the positive aspects of different
approaches as much as possible

Hardware Architectures & Parallel Programming Models
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Parallelization
Strategies
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Parallel Compiler

• Why can’t I just say

f90 -Parallel mycode.f

or

cc -Parallel mycode.c

and everything works fine?

• Logical dependencies

• Data dependencies

• Global view
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A Problem (I)

Flow around a cylinder: 
Numerical Simulation using FV, FE or FD

Data Structure: A(1:n,1:m)

Solve: (A+B+C)x=b
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A Problem (II)

Real :: b(n),A(n,m),B(n,m),C(n,m)

do i = 1,n

  b(i) = ....

  do j = 1,m

    A(i,j) = ....
    B(i,j) = ....
    C(i,j) = ....

  end do
end do

Loop over x-dimension

Calculate b

Loop over y-dimension

Calculate A

Calculate B

Calculate C

Data definition
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Parallelization strategies (1)

• Two major resources of computation:

– processor

– memory

• Parallelization means

– distributing work to processors

– distributing data (if  memory is distributed)

• These two concepts are often combined
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Parallelization strategies (2)

Flow around a cylinder: 
Numerical Simulation using FV, FE or FD

Data Structure: A(1:n,1:m)

Solve: (A+B+C)x=b

(A+B+C)x = b
calc A
calc B
calc C
calc b

Work decomposition

Domain decomposition

A(1:20,1:50)
A(1:20,51:100)
A(1:20,101:150)
A(1:20,151:200)

Data decomposition
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Speedup, Efficency, and Scalup

• Definition:
– T(p,N) = time to solve problem of size N on p processors

• Speedup:
– S(p,N) = T(1,N) / T(p,N)
– compute same problem with more processors in shorter time

• Efficiency:
– E(p,N) = S(p,N) / p

• Scaleup:
– Sc(p,N) = N / n    with  T(1,n) = T(p,N)
– compute larger problem with more processors in same time

• Problems:
– Absolute MFLOPS rate / hardware peak performance?
– S(p,N) close to p or far less?   —> see Amdahls Law on next slide
– Or super-scalar speedup:  S(p,N)>p, e.g., due to cache usage
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Parallelization problems

• Two major resources of computation:

– processor

– memory

• Parallelization means

– distributing work to processors
—> load balancing necessary
—> synchronization overhead should be minimized
      —> to achieve optimal speedup

– distributing data (if  memory is distributed)
—> implies communication to bring data to processor
      —> communication is overhead
            —> reduced speedup
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Parallelization Problems

• Decomposition (Domain, Data, Work)

• Communication is overhead

du dx u u dxi i/ ( ) /= −+ −1 1

ui-1 ui+1
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Amdahls Law

T(1,N) = f + (T(1,N) - f) f ... sequential part of code
that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = T(1,N) / (f + (T(1,N) - f) / p)

For p —> infinity,  speedup is limited by S(p,N) < T(1,N) / f
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Amdahls Law  (double-logarithmic)

T(1,N) = f + (T(1,N) - f) f ... sequential part of code
that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = T(1,N) / (f + (T(1,N) - f) / p)

For p —> infinity,  speedup is limited by S(p,N) < T(1,N) / f
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Programming
Models
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Concepts of Programming Models

• Threads: A single process having multiple execution paths

• Remote Memory Operation: A set of processes in which one
process can access the memory of another process without its
participation

• Shared Memory Directives:
– User specifies via directives how work is parallelized

– Data decomposition is implicit

– Communication is implicit

• Data Parallelism:
– User specifies how data is distributed

– Communication is implicit

• Message Passing:
– User specifies how data is distributed

– User specifies how and when communication has to be done
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Concepts - Shared Memory Directives (I)

• User explicitly defines parallelism by inserting directives

• Parallelization is then done by the compiling system

• Typically parallel sections are defined

• Typically loops are defined to be executed in parallel

• Previously architecture dependent

• Since 1997 standardized by OpenMP
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Concepts - Shared Memory Directives (II)

Master ThreadSingle Process

Team of ThreadsParallel Region

Team of ThreadsParallel Region

Master ThreadSingle Process

Master ThreadSingle Process
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Concepts - Shared Memory Directives (III)

Real :: b(n),A(n,m),B(n,m),C(n,m)

do i = 1,n

  b(i) = ....

  do j = 1,m

    A(i,j) = ....
    B(i,j) = ....
    C(i,j) = ....

  end do
end do

Loop over x-dimension

Calculate b

Loop over y-dimension

Calculate A

Calculate B

Calculate C

Data definition

!$OMP END PARALLEL DO

!$OMP PARALLEL DO
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Concepts - Data Parallelism (I)

• User defines data decomposition explicitly by using language
extensions.

• Parallelization is done by a compiling system.

• Typically Matrices and vectors are distributed

• Typically these are arrays or similar constructs

• Previously a lot of research languages

• Since 1996 HPF (High Performance Fortran) is the standard
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Concepts - Data Parallelism (II)

Real :: b(n),A(n,m),B(n,m),C(n,m)

do i = 1,n

  b(i) = ....

  do j = 1,m

    A(i,j) = ....
    B(i,j) = ....
    C(i,j) = ....

  end do
end do

Loop over x-dimension

Calculate b

Loop over y-dimension

Calculate A

Calculate B

Calculate C

Data definition
!HPF$ DISTRIBUTE A(block,block),B(...),C(...)
!HPF$ DISTRIBUTE b(block) 
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Concepts - Message Passing (I)

• User explicitly distributes data

• User explicitly defines communication

• Compiler has to do no additional work

• Typically domain or work decomposition is used

• Typically communication across borders of domains is necessary

• Every parallel machine has its own message-passing library

• Since 1995 MPI (Message Passing Interface) is the standard
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Concepts - Message Passing (II)

User defined communication
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Concepts - Message Passing (III)

Real :: b(n/4),A(n/2,m/2),B(n/2,m/2),C(n/2,m/2)

do i = 1,n/2

  b(i) = ....

  do j = 1,m/2

    A(i,j) = ....
    B(i,j) = ....
    C(i,j) = ....

  end do
end do

Loop over x-dimension

Calculate b

Loop over y-dimension

Calculate A

Calculate B

Calculate C

Data definition

Call MPI_Send(.......)
Call MPI_Recv(.......)
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Implementations

• Shared Memory Directives:
– Native Directives (Cray, NEC, Hitachi,...)

– OpenMP

• Data Parallelism:
– CM-Fortran, Vienna-Fortran, Fortran-D

– HPF

• Message Passing:
– Native libraries (NX, MPL,....)

– PVM (portable and free)

– MPI (The standard)

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 60

Implementations and Architectures

• Shared Memory Directives: Typically the standard model for
shared memory machines. Keeps codes for those architectures
portable. Could be ported to distributed memory machines by
modeling it on top of message passing or distributed-shared
memory models.

• Data Parallelism: No specific architecture. Is typically broken down
to message passing calls that are inserted by the compiler. Could
also be put on top of shared memory directives.

• Message Passing: Naturally expresses the distributed memory
architecture. However, may also be faster on shared memory
machines and is the only one to ensure portability across all
platforms at the moment.
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Other Concepts

• shmem  and  MPI-2 one-sided communication

• Distributed memory programming (DMP) language extensions

• Multi level parallelism (MLP)

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 62

SHMEM - Shared Memory Interface

• SHMEM allows a user to access remote memory locations with
shmem_..._put() and shmem_..._get() routines.

• For parallel machines with global address space, this means no
OS intervention => high bandwidth and low  latency.

• Targeted for SPMD programs.

• No forced syncs:  User has control of (and responsibility for)
integrity of data from remote transfers.

• High BW, low latency and minimal syncs make SHMEM very fast,
but dangerous if not careful.
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Several efforts extend standard languages to address remote memory, e.g.,

Fortran 90 Co-arrays (aka, F--):
dimension (n,n) :: x[2,3], y[2,3]  ! Replicate x, y on 6 pes.

real a[3], b[3]                             ! Replicate a, b on 3 pes.

a[1] = b[3] - Put b from node 3 to a on node 1.

x(n,1:n)[p,q] = y(1,1:n)[p,mod(q+1,3)+1] - Copy BCs to left.

DMP Language Extensions

Mem Image 1
a

b

Mem Image 2

Mem Image 3

Mem Image [1,1]

x(n,n)

Mem Image [2,1]
x(n,n)

Mem Image [2,3]
x(n,n)

Mem Image [1,3]
x(n,n)

Mem Image [1,2]
x(n,n)

Mem Image [2,2]

x(n,n)

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
Slide 64

Multi Level Parallelism (MLP)

• Two levels of parallelism (usually)

• Fine grained parallelism provided by the compiler (e.g., OpenMP)
at loop level

• Coarse grained parallelism provided by forked processs

• communication by shared memory arenas, i.e. direct access to
global arrays by compiler generated code

• Minimal latency  (0.33–1.0 µsec on 512 processor Origin2000 )

• Only four additional routines:  INITMEM,  GETMEM,  FORKIT,  BARRIER

• Targeted for large CPU count NUMA SMP systems

• Efficient and easy load balancing on ccNUMA,
e.g., by adapting the number of threads on each process

• Method can also execute across clusters
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Example: Parallel Efficiency of OVERFLOW/MLP

• OVERFLOW CFD code at NASA/Ames

• high, sustained GFLOP/s rate

• with Multi Level Parallelism (MLP)

• scalable on large CPU counts

• on 512 processor ccNUMA Origin 2000
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MLPlib

The MLPlib routines for scalable parallel execution support are:
• Subroutine INITMEM(numbytes)

– The INITMEM routine sets up a UNIX shared memory arena consisting of
numbytes bytes to be used by all subsequently spawned processes

• Subroutine GETMEM(xarry,xpoint,numxbyt)
– The GETMEM routine allocates numxbyt bytes to the xarray variable

– xpoint is the Cray pointer to xarray

– xarray is resident in the shared memory arena

– The xarray data will be visible to all MLP processes using the shared memory
arena .

• Subroutine FORKIT(numpro,myrank)
– spawns a total of numpro additional processes

– returns current process id myrank (0–numpro)

• Subroutine BARRIER(numpro)
– The BARRIER roitine waits until numpro processes have hit the barrier, then all

drop through

Reference: Ciotti, Taft, Peterson: “Early Experiences with the 512p Origin2000”
in proceedings of the Cray User Group conference SUMMIT 2000, www.cray.org
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Advantages and
Challenges
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Advantages and Challenges

OpenMP HPF MPI

Maturity of programming model ++ + ++
Maturity of standardization + + ++
Migration of serial programs ++ 0 – –
Ease of programming (new progr.) ++ + –
Correctness of parallelization – ++ – –
Portability to any hardware architecture – ++ ++
Availability of implementations of the stand. + + ++
Availability of parallel libraries 0 0 0
Scalability to hundreds/thousands of
processors

– – 0 ++

Efficiency – 0 ++
Flexibility – dynamic program structures – – ++
 – irregular grids, triangles, tetra-

hedrons, load balancing, redistribut.
– – ++
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Programming Models on Hardware Platforms

 vectorization
 pseudo vectorization
 automatic parallelization
 thread programming
 OpenMP
         OpenMP with data
          distribution extensions
         MLP

shmem
 HPF
 MPI
 MPI-2 one-sided

 automatic work
 distribution systems

PVP MTA ccNUMA remote reliable unreliable
SMP   dma mesage  message

transfer   transfer
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Comparing  Hardware Platforms

Parallel
-ization

Memory
access

Parallel
method

Programming Models
Standards

Limited by ...

1 threadShared
memory
parallel
(SMP)
MTA

fine
grained multiple

threads

Vectorization
Pseudo vectorization
Automatic parallelization
Thread programming
OpenMP

Loop length
-> only medium

number of
threads

Size of shared
memorycc-

NUMA Multi Level Parallelism (MLP):
   OpenMP & forked process:

- data exchange via global arrays
- synchronization via barrier

currently
restricted to
NASA/Ames,
only on Origin

remote
dma

Only on a few
platforms

One sided communication
- Cray shmem
- MPI-2 one-sided PUT/GET Long latency

High Performance Fortran (HPF) (Structured only)

Mes-
sage
transfer

Message Passing Interface (MPI)

Parallel Vitual Machine (PVM)

coarse
grained

cluster
of un-
reliable
systems

multiple
proc-
esses

Systems to manage thousands of
PCs / workstations

Shadow
must be
programmed
by hand
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Which Model is the Best for Me?

• Depends on

– your application

– your platform

– which efficiency do you need on your platform

– how much time do you want to spent on parallelization
easy to “assembler of
program parallel programming”

SMP SMP-cluster
with rdma

SMP-Cluster
without rdma

MPP

Without
shadow
programming

OpenMP MLP+OpenMP or
future OpenMP
enhancements
(HPF)

HPF HPF

With shadow
programming
by hand

(MPI) MPI+OpenMP MPI+OpenMP
(MPI on all
processors)

MPI
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Summary of Comparison

• Shared Memory Directives:

Sounds like heaven. Nearly nothing to change and the compiler
does everything for you.

• Data Parallelism:

Rather like purgatory. You have to work more but may enjoy the
support of a good compiler.

• Message Passing:

A bit like hell. A lot of work and nearly no support by the compiler.
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Future Directions

• Hierarchical Programming Models

DM-Node MPI

SM-Node OpenMP

Cache Cache oriented programming
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       Internode Parallelization
Parallelized with HPF,MPI,PVM by user

Internode Parallelize

            Element Parallelization

Automatically Parallelized by Compiler

Element Parallelize

Applied Image

DO i=1,l
  DO j=1,m
    DO k=1,n

Pseudo-Vector Processing

Pseudo-Vector Processing

Application Program Processing
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Will We Converge? No!
Parallel Programming Models  –  Survey Results

1997 2001
• Compiler based 72% 64%

(automatic or with directives)
e.g. OpenMP

• Explicit compiler based 44% 59%
e.g. HPF, CRAFT

• Explicit message passing 72% 68%
e.g. MPI, PVM, LINDA

• Other   6%   7%
• None   4%   3%

• Consider the following IDC study.

• 97 Interviews -- Mid 1997

• Customers who purchased at least a $1 million supercomputer

• Interviewee was a buyer or decision maker of key influence.

estimated
in 1997
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Parallel Programming Models  –  Summary

• 2 main problems presented:

– Decomposition of work

– Handling of communication

• 3 models presented

– Shared Memory Directives

– Data Parallelism

– Message Passing

• 3 model Implementations evaluated

– OpenMP

– HPF

– MPI


