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Response

Questions
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Outline – [Chap. 1  Parallel hardware architectures]

• Parallel hardware architectures
(slide 4)

• Parallel programming models
(slide 13)

• Which parallel programming model is the best for my application?
(slide 41)

• Appendix
(slide 58)
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Concepts

Parallel Processing concepts: 
• Pipelining -> vector computing
• Functional Parallelism -> modern processor technology
• Combined instructions -> e.g. multiply-add as one instruction
• Multithreading
• Array-Processing
• Multiprocessors (strongly coupled) -> Shared memory
• Multicomputers (weakly coupled) -> Distributed memory

Memory access concepts:
• Cache based
• Vector access via several memory banks
• Pre-load, pre-fetch

—> MFLOP/s performance  and MB/s or Mword/s memory bandwidth 

Hybrid
architectures
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Major Parallel Hardware Architectures

• Shared Memory
– SMP = symmetric multiprocessing

• Distributed Memory
– DMP = distributed memory parallel

• Hierarchical memory systems
– combining both concepts
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Multiprocessor - shared memory

Memory-Interconnect

CPU CPU CPU CPU

memory
bank

memory
bank

memory
bank

memory
bank

• All CPUs are connected to all memory banks with same speed 
• Uniform Memory Access (UMA)
• Symmetric Multi-Processing (SMP)
• Network types, e.g.

• Crossbar� independent access from each CPU 
• BUS � one CPU can block the memory access of the other CPUs
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Multicomputer - distributed memory

Node-Interconnect

CPU CPU CPU CPU

Memory Memory Memory Memory

Node or PE (processing element)

• Nodes are coupled by a node-interconnect
• Each CPU: – Fast access to its own memory 

– but slower access to other CPU’s memories
• Non-Uniform memory Access (NUMA)
• Different network types, e.g. BUS, torus, crossbar
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Hybrid architectures

Node Interconnect

• Most modern high-performance computing (HPC) systems are 
clusters of SMP nodes

• SMP (symmetric multi-processing) inside of each node
• DMP (distributed memory parallelization) on the node interconnect

SMP 
node
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Interconnects

• Node interconnect
– bus based networks

•

– multi-link networks, e.g.,
• ring with independent 

connections

– 2-D or 3-D torus
• each processor is connected 

by a link with 4 or 6 neighbors

– Fat tree
• Links of higher tree levels 

with more bandwidth

– cross-bar (single level)
– full interconnect

3-D torus  (8x8x3 nodes)

cheap, 
but poor
inter-
connect

scalable
network 
costs, high 
accumulated 
bandwidth

not scalable!  
n*(n-1)/2 links

Fat tree

switch switch switch switch

switch

switch
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Other Architectures

• ccNUMA (cache coherent non-uniform memory access)
– a distributed (hybrid) architecture
– looks like one big SMP
– programmable like one big SMP
– but cluster of several small SMPs in reality 
– cache coherent
– programming:

• global access with same load/store instruction as local
• parallelization, e.g., with OpenMP

• ccNUMA with >500 CPUs and multi-level network
• parallelization, e.g., with Multi Level Parallelism (MLP)

• DMP with RDMA (remote direct memory access)
– programming:

• global memory access with special instructions, but without OS
• e.g. Co-array Fortran, UPC (Universal Parallel C), shmem

• MTA (multi-threaded architecture)



2. — Parallel Hardware Architectures and Parallel Programming Models   — 2.
2-6

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 11 / 54

Hitachi SR 8000-F1/112  (Rank 5 in TOP 500 / June 2000)

• System:
– 168 nodes, 
– 2.016 TFLOP/s peak
– 1.65 TFLOP/s Linpack
– 1.3 TB memory

• Node:
– 8 CPUs, 12 GFLOP/s
– 8 GB, SMP
– pseudo-vector
– ext. b/w: 950 MB/s

• CPU:
– 1.5 GFLOP/s, 375 MHz
– 4 GB/s memory b/w 

• Installed: 1.Q 2000 at LRZ
• Extended: 1.Q. 2002 

(from 112 to 168 nodes)
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It was the first Teraflop
system in Germany
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Earth Simulator Project ESRDC / GS 40 (NEC)

• System: 640 nodes, 40 TFLOP/s
10 TB memory
optical 640x640 crossbar
50m x 20m without 

peripherals
• Node: 8 CPUs, 64 GFLOP/s

16 GB, SMP
ext. b/w: 2x16 GB/s

• CPU: Vector
8 GFLOP/s, 500 MHz
Single-Chip, 0.15 µs
32 GB/s memory b/w

• Virtual Earth  - simulating
– Climate change (global warming)
– El Niño, hurricanes, droughts
– Air pollution (acid rain, ozone hole)
– Diastrophism (earthquake, volcanism)

• Installation: 2002
http://www.es.jamstec.go.jp/
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Outline  – [Chap. 2  Parallel Programming Models]

• Parallel hardware architectures

• Parallel programming models

• Which parallel programming model is the best for my application?
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Why?

• Why should I use parallel hardware architectures?

• Possible answers:
– The response of only one processor is not just in time
– Moore‘s Law:

• The number of transistors on a chip will double approximately every 18 
month

• ���� in the future, the number of processors on a chip will grow

– You own a 
• network of workstations (NOW)
• Beowulf-class systems 

= Clusters of Commercial Off-The-Shelf (COTS) PCs 
• a dual-board or quad-board PC

– Huge application with huge memory needs 
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Abstract Model

Questions
& Response

Reality

Physical Model

Mathematical Model

Numerical Scheme

Application Program

Hardware Architecture

a few parallel
Programming Models
e.g. MPI   HPF   OpenMP
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Parallelization strategies   — hardware resources

• Two major resources of computation:
– processor
– memory

• Parallelization means
– distributing work to processors
– distributing data (if  memory is distributed)

and
– synchronization of the distributed work
– communication of remote data to local processor (if memory is distr.)

• Programming models offer a combined method for
– distribution of work & data, synchronization and communication
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Distributing Work & Data

do i=1,100
� i=1,25

i=26,50
i=51,75
i=76,100

Work decomposition
• based on loop decomposition

Domain decomposition
• decomposition of work and

data is done in a higher model,
e.g. in the reality

A(  1:20, 1:  50)
A(  1:20, 51:100)
A(21:40, 1:  50)
A(21:40, 51:100)

Data decomposition
• all work for a local portion

of the data is done by the
local processor
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Synchronization

• Synchronization
– is necessary
– may cause

• idle time on some processors
• overhead to execute the synchronization primitive

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

BARRIER synchronization

Do i=1,100
a(i) = b(i)+c(i)

Enddo
Do i=1,100

d(i) = 2*a(101-i)
Enddo



2. — Parallel Hardware Architectures and Parallel Programming Models   — 2.
2-10

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 19 / 54

Communication

• Communication is necessary on the boundaries

– e.g. b(26) = a(26) + f*(a(25)+a(27)-2*a(26))

– e.g. at domain boundaries 

Do i=2,99
b(i) = a(i) + f*(a(i-1)+a(i+1)-2*a(i))

Enddo

a(1:25), b(1:25)
a(26,50), b(51,50)
a(51,75), b(51,75)
a(76,100), b(76,100)
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Major Programming Models

• OpenMP
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)

• HPF (High Performance Fortran)
– Data Parallelism
– User specifies data decomposition with directives
– Communication (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– by calling MPI communication library-routines

1
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Shared Memory Directives  – OpenMP,  I. 

Real :: A(n,m), B(n,m)

do j = 2, m-1
do i = 2, n-1

B(i,j) = ... A(i,j) 
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do
end do

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

O
pe

nM
P
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Shared Memory Directives  – OpenMP,  II.

Master ThreadSingle Thread

Team of ThreadsParallel Region

!$OMP PARALLEL

Master ThreadSingle Thread

!$OMP END PARALLEL

Team of ThreadsParallel Region

!$OMP PARALLEL

Master ThreadSingle Thread

!$OMP END PARALLEL
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Shared Memory Directives  – OpenMP,  III.

• OpenMP
– standardized shared memory parallelism
– thread-based
– the user has to specify the work distribution explicitly with directives
– no data distribution, no communication
– mainly loops can be parallelized
– compiler translates OpenMP directives into thread-handling
– standardized since 1997

• Automatic SMP-Parallelization
– e.g., Compas (Hitachi), Autotasking (NEC)
– thread based shared memory parallelism
– with directives (similar programming model as with OpenMP)
– supports automatic parallelization of loops
– similar to automatic vectorization
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Major Programming Models  – HPF

• OpenMP
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)

• HPF (High Performance Fortran)
– Data Parallelism
– User specifies data decomposition with directives
– Communication (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– by calling MPI communication library-routines

1

2

H
P

F
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Data Parallelism   – HPF,  I.

Real :: A(n,m), B(n,m)

do j = 2, m-1
do i = 2, n-1

B(i,j) = ... A(i,j) 
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do
end do

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

!HPF$ DISTRIBUTE A(block,block), B(...)
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Data Parallelism   – HPF,  II.

• HPF (High Performance Fortran)
– standardized data distribution model

– the user has to specify the data distribution explicitly 
– Fortran with language extensions and directives
– compiler generates message passing or shared memory parallel code
– work distribution & communication is implicit
– set-compute-rule:

the owner of the left-hand-side object computes the right-hand-side

– typically arrays and vectors are distributed

– draft HPF-1 in 1993, standardized since 1996 (HPF-2)
– JaHPF since 1999
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Major Programming Models  – MPI 

• OpenMP
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)

• HPF (High Performance Fortran)
– Data Parallelism
– User specifies data decomposition with directives
– Communication (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– by calling MPI communication library-routines

1
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Message Passing Program Paradigm  – MPI,  I.

• Each processor in a message passing program runs a sub-program
– written in a conventional sequential language, e.g., C or Fortran,
– typically the same on each processor (SPMD)

• All work and data distribution is based on value of myrank
– returned by special library routine

• Communication via special send & receive routines (message passing)

myrank=0
data

sub-
program

myrank=1
data

sub-
program

myrank=2
data

sub-
program

myrank=
(size-1)

data

sub-
program

communication network
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Additional Halo Cells   – MPI,  II.

Halo
(Shadow,
Ghost cells)

User defined communication
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Real :: A(n,m), B(n,m)
do j = 2, m-1

do i = 2, n-1
B(i,j) = ... A(i,j) 

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Message Passing   – MPI,  III.

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)
m1 = (m+size-1)/size;   ja=1+m1*myrank;   je=max(m1*(myrank+1), m)
jax=ja-1;  jex=je+1   // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)
do j = max(2,ja), min(m-1,je)

do i = 2, n-1
B(i,j) = ... A(i,j) 

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors
Call MPI_Recv(.......) ! - receiving from the neighbors, 

!   storing into the halo cells

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition
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Summary   — MPI,  IV.

• MPI (Message Passing Interface)
– standardized distributed memory parallelism with message passing
– process-based

– the user has to specify the work distribution & data distribution
& all communication

– synchronization implicit by completion of communication
– the application processes are calling MPI library-routines
– compiler generates normal sequential code

– typically domain decomposition is used
– communication across domain boundaries

– standardized 
MPI-1:   Version 1.0 (1994), 1.1 (1995), 1.2 (1997)
MPI-2:   since 1997
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Distribution methods

decom- easiest programming 
position interface

• Work OpenMP

• Data HPF

• Domain MPI
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Limitations, I.

• Automatic Parallelization
– the compiler 

• has no global view
• cannot detect independencies, e.g., of loop iterations
� parallelizes only parts of the code

– only for shared memory and ccNUMA systems, see OpenMP

• OpenMP
– only for shared memory and ccNUMA systems
– mainly for loop parallelization  with directives
– only for medium number of processors
– explicit domain decomposition also via rank of the threads 
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Limitations, II.

• HPF
– set-compute-rule may cause a lot of communication
– HPF-1 (and 2) not suitable for irregular and dynamic data
– JaHPF may solve these problems, 

but with additional programming costs
– can be used on any platform

• MPI
– the amount of your hours available for MPI programming
– can be used on any platform,  but

communication overhead on shared memory systems
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Other Concepts

• shmem and  MPI-2 one-sided communication
• Partitioned global address space (PGAS) languages

– Co-array Fortran
– UPC (Unified Parallel C)

• Multi level parallelism (MLP)
• Threads: A single process having multiple execution paths
• Remote Memory Operation: A set of processes in which one 

process can access the memory of another process without its 
participation

• Shared Virtual Memory (SVM)
Software based Distributed Shared Memory (SoftDSM)
Distributed Virtual Shared Memory (DVSM)
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SHMEM - Shared Memory Interface

• SHMEM allows a user to access remote memory locations with 
shmem_..._put() and shmem_..._get() routines.

• For parallel machines with global address space, this means no 
OS intervention => high bandwidth and low  latency.

• Targeted for SPMD programs.
• No forced syncs:  User has control of (and responsibility for) 

integrity of data from remote transfers.
• High BW, low latency and minimal syncs make SHMEM very fast, 

but dangerous if not carefully used.
• Cache coherency must be programmed explicitly.
• Example Cray T3E: 

– MPI and SHMEM bandwidth ~ the same
– MPI latency about 10x longer than SHMEM latency



2. — Parallel Hardware Architectures and Parallel Programming Models   — 2.
2-19

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 37 / 54

DMP Language Extensions,  I.

• Programmable access to the memory of the other processes
• Language bindings:

– Co-array Fortran
– UPC (Unified Parallel C)

• Special additional array index to explicitly address the process
• Examples (Co-array Fortran):

integer  a[*], b[*] ! Replicate a and b on all processes
a[1] = b[6] ! a on process 1  :=  b on process 6 

dimension (n,n) :: u[3,*] ! Allocates the nxn array u
!                 on each of  the 3x* processes

p = THIS_IMAGE(u,1) ! first co-subscript of local process
q = THIS_IMAGE(u,1) ! second co-subscript of local process 
u(1:n,1)[p+1,q] = u(1:n,n)[p,q] ! Copy right boundary u(1,) on process [p,]

! to right neighbor [p+1,] into left boundary u(n,)
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Multi Level Parallelism (MLP)

• program

• processes

• multiple threads inside
of each process 
(OpenMP)

• data associated with 
each process

• but shared (ccNUMA) 
access to other 
processes’ dataCheap load balancing

– by changing the number of threads per process

– before starting a new parallel region
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Programming Models on Hardware Platforms

Hardware allows: � Usable programming model:

• only reliable message transfer � MPI, HPF

• remote DMA (direct memory access) � ´´ ,    ´´ + SVM, shmem, 
UPC, Co-array Fortran

• SMP and PVP, MTA, ccNUMA � ´´ ,    ´´ + ´´ ,  ´´ , ´´ , ´´ + OpenMP
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Programming Models on Hybrid Systems

• MPI based: 

– the MPP model
• massively parallel processing
• each CPU = one MPI process

– MPI + OpenMP
• each SMP node = one MPI process
• MPI communication on the node interconnect
• OpenMP inside of each SMP node
• DMP with MPI  &  SMP with OpenMP

– MPI + automatic parallelization
• Compas on Hitachi,  Autotasking on NEC, ...
• same model as MPI+OpenMP

• Other models:
– HPF, MLP, ...  

Node Interconnect
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Outline – [Chap. 3  Which programming model is the best?]

• Parallel hardware architectures

• Parallel programming models

• Which parallel programming model is the best 
for my application?

W
hi

ch
 is

 B
es

t?
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Questions

• Available parallelization strategies in my numerical scheme?
– loop parallelism
– domain decomposition

• Which hardware architecture?
– today
– in the future

• How many working hours do I want to spend for parallelizing the code?

Numerical Scheme
Application Program

Hardware Architecture
Programming Model
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Execution time

• My application runs too slow
– (Floating point) operations / second on each CPU?

• vectorization (memory�CPU�memory)
– expensive hardware  /  cheap programming effort

• cache oriented optimization
– cheap hardware  /  expensive programming effort

• such optimization is impossible for me
– Parallelization

• shared memory
– expensive & limited hardware  /  cheap programming effort

• distributed memory
– cheap hardware  /  expensive programming effort

Today / in the future

� OpenMP, HPF, MPI

� MPI, HPF, shmem, MLP, CoArrayFort., ...
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Speedup, Efficiency, and Scaleup

• Definition: T(p,N) = time to solve problem of total size N on p processors

• Parallel speedup: S(p,N) = T(1,N) / T(p,N)
compute same problem with more processors in shorter time

• Parallel Efficiency: E(p,N) = S(p,N) / p

• Scaleup: Sc(p,N) = N / n    with  T(1,n) = T(p,N)
compute larger problem with more processors in same time

• Weak scaling: T(p, p•n) / T(1,n) is reported,
i.e., problem size per process (N = p•n) is fixed

• Problems:

– Absolute MFLOPS rate / hardware peak performance?

– S(p,N) close to p or far less?     � see Amdahls Law on next slide

– Or super-scalar speedup:  S(p,N)>p, e.g., due to cache usage   
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Amdahls Law

T(p,N) = f·T(1,N)  +  (1-f)·T(1,N) / p
f ... sequential part of code that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = 1 / (f + (1-f) / p)

For p —> infinity,  speedup is limited by S(p,N) < 1 / f
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Amdahls Law  (double-logarithmic)

T(p,N) = f·T(1,N)  +  (1-f)·T(1,N) / p
f ... sequential part of code that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = 1 / (f + (1-f) / p)

For p —> infinity,  speedup is limited by S(p,N) < 1 / f
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f=   1%  =>  S(p,N) < 100
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f= 10%  =>  S(p,N) < 10
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Parallelization problems

• Two major resources of computation:
– processor
– memory

• Parallelization means

– distributing work to processors
—> load balancing necessary
—> synchronization overhead should be minimized

—> to achieve optimal speedup

– distributing data (if  memory is distributed)
—> implies communication 

to bring data to processor
—> communication is overhead

—> is reducing the speedup

du/dx = (–ui +ui+1)/�x
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Parallelization costs

• low  costs for parallel hardware � high parallelization costs
• high costs for parallel hardware � low parallelization costs

costs for parallel hardware

costs for
parallelization 
of software



2. — Parallel Hardware Architectures and Parallel Programming Models   — 2.
2-25

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 49 / 54

Advantages and Challenges

  OpenMP HPF MPI 
Maturity of programming model ++ + ++ 
Maturity of standardization + + ++ 
Migration of serial programs ++ 0 – – 
Ease of programming (new progr.) ++ + – 
Correctness of parallelization  – ++ – – 
Portability to any hardware architecture – ++ ++ 
Availability of implementations of the stand. + + ++ 
Availability of parallel libraries 0 0 0 
Scalability to hundreds/thousands of 
processors  

– – 0 ++ 

Efficiency – 0 ++ 
Flexibility – dynamic program structures – – ++ 
  – irregular grids, triangles, tetra-

hedrons, load balancing, redistribut. 
– – ++ 
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Implications on Hybrid Systems

• Hybrid system = cluster of SMPs, e.g., with vector CPUs
– MPP (massively parallel processing) model  (pure MPI): 

• one MPI process on each CPU
– hybrid model: MPI+OpenMP or  MPI+automatic parallelization

• each MPI process is multi-threaded with OpenMP/…
• lousy communication speed, 

if MPI is done only by master thread
(all other threads are sleeping)

• highest costs for parallelizing the software
• Amdahl’s law 

with reduced number of CPUs on several levels
– HPF may also fit,

• e.g., on the Earth Simulator in Japan

���� next slide
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Why not hybrid models?

• Typically, hybrid models can achieve only 10 % more efficiency,

• but often:  hybrid model less efficient than MPI-MPP model !!!

• Programming effort should be invested into

– cache optimization

– vectorization

DMP
SMP
cache / vectorization

� MPI

� OpenMP / automatic parallelization

� optimization by hand / by compiler

you may win factors and not only percents !

(Distributed 
memory parallelism)
(Symmetric
multiprocessing)
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Which Model is the Best for Me?

• Depends on 
– your application
– your platform
– which efficiency do you need on your platform
– how much time do you want to spent on parallelization

easy to “assembler of 
program parallel programming”

OpenMP MLP HPF MPI MPI+OpenMP

without                         with
programming of the halos
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Summary

• Hardware architectures
– hybrid (hierarchical) systems are the future

• cluster of dual-board PC
• …
• clusters of PVP-SMP systems 

• Parallel Programming models
– MPI and OpenMP are dominating
– HPF still alive (� JaHPF on Earth Simulator)

• Which model is the best
– depends on your needs & hardware,  today and in future
– OpenMP is limited to shared memory platforms, 

but may be extended with a data distribution model (like HPF)
– MPI is the assembler of parallel programming
– invest your working effort into single-CPU-optimization,

rather than into hybrid programming
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Appendix

Additional Slides
– Abbreviations
– Classification of Flynn
– Co-Array Fortran examples
– MLP example and interface definition
– Pipelining and memory access
– Parallelization costs
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Abbreviations

• Network of workstations (NOW)?  � Distributed memory

• Beowulf-class systems = Clusters of Commercial Off-The-Shelf 
(COTS) PCs � Distributed memory

• Multiboard workstations/PCs  � Shared memory

• SMP � Symmetric multiprocessing � Shared memory 

• PVP � Parallel vector processing 

• MPP � Massively parallel processing

• PE � Processing Element, e.g., one node of an MPP system
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The Classification of Flynn

• Classify architectures according to multiplicity of data and 
instructions

• SI: single instruction for all processors
• MI: multiple instructions for different processors
• SD: single data for all processors
• MD: multiple data for different processors

• SISD � classical processor
• SIMD � array processor
• MIMD � distributed or shared memory

• SPMD � single program & multiple data
• MPMD� multiple program & multiple data
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Real :: A(n,m), B(n,m)
do j = 2,m-1

do i = 2,n-1
B(i,j) = ... A(i,j) 

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

DMP Language Extensions  – Co-Array Fortran Example

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)
m1 = (m+size-1)/size;   ja=1+m1*myrank;   je=max(m1*(myrank+1), m)
jax=ja-1;  jex=je+1   // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)
do j = max(2,ja), min(m-2,je)

do i = 2,n-1
B(i,j) = ... A(i,j) 

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors
Call MPI_Recv(.......) ! - receiving from the neighbors, 

!   storing into the halo cells

size = NUM_IMAGES()
p = THIS_IMAGE() ! index of the invoking image (= MPI myrank+1)
m = size * m1

Real :: A(n, m1)[*],  B(n, m1)[*]
do j = 2, m1-1

do i = 2, n-1
B(i,j) = ... A(i,j) ... A(i-1,j) ... A(i+1,j) ... A(i,j-1) ... A(i,j+1)

end do
end do
if (p > 1) then ! calculation on left boundary of each image

do i = 1,n
B(i,1) = ... A(i,1) ... A(i-1,1) ... A(i+1,1) ... A(i,m)[p-1] ... A(i,j+1)

end do
endif
if (p < size) then ! calculation on right boundary of each image

do i = 1,n
B(i,m) = ... A(i,m) ... A(i-1,m) ... A(i+1,m) ... A(i,m-1) ... A(i,1)[p+1]

end do
endif

Call SYNC_IMAGES()
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Multi Level Parallelism (MLP)

• Two levels of parallelism (usually)

• Fine grained parallelism provided by the compiler (e.g., OpenMP) 
at loop level

• Coarse grained parallelism provided by forked processes

• communication by shared memory arenas, i.e. direct access to 
global arrays by compiler generated code

• Minimal latency  (0.33–1.0 µsec on 512 processor Origin2000)

• Only four additional routines:  INITMEM,  GETMEM,  FORKIT,  BARRIER

• Targeted for large CPU count NUMA SMP systems

• Efficient and easy load balancing on ccNUMA, 
e.g., by adapting the number of threads on each process

• Method can also execute across clusters

• A Fortran interface for System V shm
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Example: Parallel Efficiency of OVERFLOW/MLP
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• OVERFLOW CFD code at NASA/Ames
• high, sustained GFLOP/s rate
• with Multi Level Parallelism (MLP)
• scalable on large CPU counts
• on 512 processor ccNUMA Origin 2000
Ref.: Ciotti, Taft, Peterson: “Early Experiences with the 512p Origin2000”

in proceedings of the Cray User Group conference SUMMIT 2000, 
www.cray.org
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MLPlib

The MLPlib routines for scalable parallel execution support are:
• Subroutine INITMEM(numbytes)

– The INITMEM routine sets up a UNIX shared memory arena consisting of numbytes
bytes to be used by all subsequently spawned processes

• Subroutine GETMEM(xarry,xpoint,numxbyt)
– The GETMEM routine allocates numxbyt bytes to the xarray variable
– xpoint is the Cray pointer to xarray
– xarray is resident in the shared memory arena 
– The xarray data will be visible to all MLP processes using the shared memory arena.

• Subroutine FORKIT(numpro,myrank)
– spawns a total of numpro additional processes

– returns current process id myrank (0–numpro)

• Subroutine BARRIER(numpro)
– The BARRIER routine waits until numpro processes have hit the barrier, then all drop 

through
Reference: Ciotti, Taft, Peterson: “Early Experiences with the 512p Origin2000”
in proceedings of the Cray User Group conference SUMMIT 2000, www.cray.org
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Pipelining

• c = a + b
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Parallelism & memory access, I.  

• The memory access characterizes vector systems today!

Main MemoryMain Memory

PrePre--fetchfetchPrePre--loadload

Cache

Floating Point Registers

Load

Arithmetic UnitArithmetic Unit

Memory SwitchMemory Switch

Direct vectorDirect vector--loadload
Indexed vectorIndexed vector--loadload

availability
depend on
platform
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Parallelism & memory access, II.  

• Pipelined memory access
– vector register 

& vector load/store operations
– indexed vector load/store

operations

– pseudo-vectorization
• e.g., with pre-fetch

• Parallel vector processing (PVP)

• Without vector memory access:
– memory latency hiding with one to three levels of caches

VSTVADDVLD

PF Lat LD + ST
LD + ST

LD + ST
LD + ST

LD + ST

PF Lat LD + ST
LD + ST
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Parallelization Costs on NOW (Network of Workstations)
and COTS (Clusters of Commercial Off-The-Shelf PCs)

• Network of workstations (NOW)   or   Beowulf-class systems 
=  Clusters of Commercial Off-The-Shelf (COTS) PCs

� probably a huge number of processors
� distributed memory parallelization, e.g., with MPI or HPF

� Amdahl’s law may limit the speedup
� communication overhead may reduce efficiency

� high costs to correctly parallelize codes  (e.g., multigrid codes)
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Parallelization Costs 
on shared memory PVP (Parallel Vector Processor) 

• Shared memory Parallel Vector Processing (PVP)

� shared memory parallelization, e.g., with OpenMP

� Amdahl’s law with reduced number of CPUs, but on two levels:

• vectorization

• SMP parallelization

� no communication overhead
� probably easier to achieve good efficiency
� but limited number of CPUs

� cheap parallelization 

but expensive hardware?


