
2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-1

Hardware Architectures & Parallel Programming Models
Höchstleistungsrechenzentrum Stuttgart[2] Slide 1

Parallel Hardware Architectures
and

Parallel Programming Models

Rolf Rabenseifner
rabenseifner@hlrs.de

University of Stuttgart
High-Performance Computing-Center Stuttgart (HLRS)

www.hlrs.de

P
arallel H

ardw
are A

rchitectures and P
arallel P

rogram
m

ing M
odels [02]

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 2 / 54

Motivation

Response

Questions

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-2

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 3 / 54

Outline – [Chap. 1 Parallel hardware architectures]

• Parallel hardware architectures
(slide 4)

• Parallel programming models
(slide 13)

• Which parallel programming model is the best for my application?
(slide 41)

• Appendix
(slide 58)

O
ut

lin
e

P
arallel H

ardw
are A

rchitectures and P
arallel P

rogram
m

ing M
odels [02]

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 4 / 54

Concepts

Parallel Processing concepts:
• Pipelining -> vector computing
• Functional Parallelism -> modern processor technology
• Combined instructions -> e.g. multiply-add as one instruction
• Multithreading
• Array-Processing
• Multiprocessors (strongly coupled) -> Shared memory
• Multicomputers (weakly coupled) -> Distributed memory

Memory access concepts:
• Cache based
• Vector access via several memory banks
• Pre-load, pre-fetch

—> MFLOP/s performance and MB/s or Mword/s memory bandwidth

Hybrid
architectures

P
ar

al
le

l H
ar

dw
ar

e
A

rc
hi

te
ct

ur
es

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-3

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 5 / 54

Major Parallel Hardware Architectures

• Shared Memory
– SMP = symmetric multiprocessing

• Distributed Memory
– DMP = distributed memory parallel

• Hierarchical memory systems
– combining both concepts

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 6 / 54

Multiprocessor - shared memory

Memory-Interconnect

CPU CPU CPU CPU

memory
bank

memory
bank

memory
bank

memory
bank

• All CPUs are connected to all memory banks with same speed
• Uniform Memory Access (UMA)
• Symmetric Multi-Processing (SMP)
• Network types, e.g.

• Crossbar� independent access from each CPU
• BUS � one CPU can block the memory access of the other CPUs

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-4

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 7 / 54

Multicomputer - distributed memory

Node-Interconnect

CPU CPU CPU CPU

Memory Memory Memory Memory

Node or PE (processing element)

• Nodes are coupled by a node-interconnect
• Each CPU: – Fast access to its own memory

– but slower access to other CPU’s memories
• Non-Uniform memory Access (NUMA)
• Different network types, e.g. BUS, torus, crossbar

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 8 / 54

Hybrid architectures

Node Interconnect

• Most modern high-performance computing (HPC) systems are
clusters of SMP nodes

• SMP (symmetric multi-processing) inside of each node
• DMP (distributed memory parallelization) on the node interconnect

SMP
node

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-5

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 9 / 54

Interconnects

• Node interconnect
– bus based networks

•

– multi-link networks, e.g.,
• ring with independent

connections

– 2-D or 3-D torus
• each processor is connected

by a link with 4 or 6 neighbors

– Fat tree
• Links of higher tree levels

with more bandwidth

– cross-bar (single level)
– full interconnect

3-D torus (8x8x3 nodes)

cheap,
but poor
inter-
connect

scalable
network
costs, high
accumulated
bandwidth

not scalable!
n*(n-1)/2 links

Fat tree

switch switch switch switch

switch

switch

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 10 / 54

Other Architectures

• ccNUMA (cache coherent non-uniform memory access)
– a distributed (hybrid) architecture
– looks like one big SMP
– programmable like one big SMP
– but cluster of several small SMPs in reality
– cache coherent
– programming:

• global access with same load/store instruction as local
• parallelization, e.g., with OpenMP

• ccNUMA with >500 CPUs and multi-level network
• parallelization, e.g., with Multi Level Parallelism (MLP)

• DMP with RDMA (remote direct memory access)
– programming:

• global memory access with special instructions, but without OS
• e.g. Co-array Fortran, UPC (Universal Parallel C), shmem

• MTA (multi-threaded architecture)

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-6

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 11 / 54

Hitachi SR 8000-F1/112 (Rank 5 in TOP 500 / June 2000)

• System:
– 168 nodes,
– 2.016 TFLOP/s peak
– 1.65 TFLOP/s Linpack
– 1.3 TB memory

• Node:
– 8 CPUs, 12 GFLOP/s
– 8 GB, SMP
– pseudo-vector
– ext. b/w: 950 MB/s

• CPU:
– 1.5 GFLOP/s, 375 MHz
– 4 GB/s memory b/w

• Installed: 1.Q 2000 at LRZ
• Extended: 1.Q. 2002

(from 112 to 168 nodes)

P
arallel H

ardw
are A

rchitectures and P
arallel P

rogram
m

ing M
odels [02]

—
skipped —

It was the first Teraflop
system in Germany

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 12 / 54

Earth Simulator Project ESRDC / GS 40 (NEC)

• System: 640 nodes, 40 TFLOP/s
10 TB memory
optical 640x640 crossbar
50m x 20m without

peripherals
• Node: 8 CPUs, 64 GFLOP/s

16 GB, SMP
ext. b/w: 2x16 GB/s

• CPU: Vector
8 GFLOP/s, 500 MHz
Single-Chip, 0.15 µs
32 GB/s memory b/w

• Virtual Earth - simulating
– Climate change (global warming)
– El Niño, hurricanes, droughts
– Air pollution (acid rain, ozone hole)
– Diastrophism (earthquake, volcanism)

• Installation: 2002
http://www.es.jamstec.go.jp/

���������	��

����	�
�����������

.....

.....

������

��������

—
skipped —

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-7

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 13 / 54

Outline – [Chap. 2 Parallel Programming Models]

• Parallel hardware architectures

• Parallel programming models

• Which parallel programming model is the best for my application?

P
ar

al
le

l P
ro

gr
am

m
in

g
M

od
el

s

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 14 / 54

Why?

• Why should I use parallel hardware architectures?

• Possible answers:
– The response of only one processor is not just in time
– Moore‘s Law:

• The number of transistors on a chip will double approximately every 18
month

• ���� in the future, the number of processors on a chip will grow

– You own a
• network of workstations (NOW)
• Beowulf-class systems

= Clusters of Commercial Off-The-Shelf (COTS) PCs
• a dual-board or quad-board PC

– Huge application with huge memory needs

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-8

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 15 / 54

Abstract Model

Questions
& Response

Reality

Physical Model

Mathematical Model

Numerical Scheme

Application Program

Hardware Architecture

a few parallel
Programming Models
e.g. MPI HPF OpenMP

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 16 / 54

Parallelization strategies — hardware resources

• Two major resources of computation:
– processor
– memory

• Parallelization means
– distributing work to processors
– distributing data (if memory is distributed)

and
– synchronization of the distributed work
– communication of remote data to local processor (if memory is distr.)

• Programming models offer a combined method for
– distribution of work & data, synchronization and communication

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-9

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 17 / 54

Distributing Work & Data

do i=1,100
� i=1,25

i=26,50
i=51,75
i=76,100

Work decomposition
• based on loop decomposition

Domain decomposition
• decomposition of work and

data is done in a higher model,
e.g. in the reality

A(1:20, 1: 50)
A(1:20, 51:100)
A(21:40, 1: 50)
A(21:40, 51:100)

Data decomposition
• all work for a local portion

of the data is done by the
local processor

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 18 / 54

Synchronization

• Synchronization
– is necessary
– may cause

• idle time on some processors
• overhead to execute the synchronization primitive

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

i=1..25 | 26..50 | 51..75 | 76..100
execute on the 4 processors

BARRIER synchronization

Do i=1,100
a(i) = b(i)+c(i)

Enddo
Do i=1,100

d(i) = 2*a(101-i)
Enddo

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-10

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 19 / 54

Communication

• Communication is necessary on the boundaries

– e.g. b(26) = a(26) + f*(a(25)+a(27)-2*a(26))

– e.g. at domain boundaries

Do i=2,99
b(i) = a(i) + f*(a(i-1)+a(i+1)-2*a(i))

Enddo

a(1:25), b(1:25)
a(26,50), b(51,50)
a(51,75), b(51,75)
a(76,100), b(76,100)

P
arallel H

ardw
are A

rchitectures and P
arallel P

rogram
m

ing M
odels [02]

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 20 / 54

Major Programming Models

• OpenMP
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)

• HPF (High Performance Fortran)
– Data Parallelism
– User specifies data decomposition with directives
– Communication (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– by calling MPI communication library-routines

1

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-11

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 21 / 54

Shared Memory Directives – OpenMP, I.

Real :: A(n,m), B(n,m)

do j = 2, m-1
do i = 2, n-1

B(i,j) = ... A(i,j)
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do
end do

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

!$OMP END PARALLEL DO

!$OMP PARALLEL DO

O
pe

nM
P

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 22 / 54

Shared Memory Directives – OpenMP, II.

Master ThreadSingle Thread

Team of ThreadsParallel Region

!$OMP PARALLEL

Master ThreadSingle Thread

!$OMP END PARALLEL

Team of ThreadsParallel Region

!$OMP PARALLEL

Master ThreadSingle Thread

!$OMP END PARALLEL

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-12

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 23 / 54

Shared Memory Directives – OpenMP, III.

• OpenMP
– standardized shared memory parallelism
– thread-based
– the user has to specify the work distribution explicitly with directives
– no data distribution, no communication
– mainly loops can be parallelized
– compiler translates OpenMP directives into thread-handling
– standardized since 1997

• Automatic SMP-Parallelization
– e.g., Compas (Hitachi), Autotasking (NEC)
– thread based shared memory parallelism
– with directives (similar programming model as with OpenMP)
– supports automatic parallelization of loops
– similar to automatic vectorization

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 24 / 54

Major Programming Models – HPF

• OpenMP
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)

• HPF (High Performance Fortran)
– Data Parallelism
– User specifies data decomposition with directives
– Communication (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– by calling MPI communication library-routines

1

2

H
P

F

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-13

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 25 / 54

Data Parallelism – HPF, I.

Real :: A(n,m), B(n,m)

do j = 2, m-1
do i = 2, n-1

B(i,j) = ... A(i,j)
... A(i-1,j) ... A(i+1,j)
... A(i,j-1) ... A(i,j+1)

end do
end do

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

!HPF$ DISTRIBUTE A(block,block), B(...)

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 26 / 54

Data Parallelism – HPF, II.

• HPF (High Performance Fortran)
– standardized data distribution model

– the user has to specify the data distribution explicitly
– Fortran with language extensions and directives
– compiler generates message passing or shared memory parallel code
– work distribution & communication is implicit
– set-compute-rule:

the owner of the left-hand-side object computes the right-hand-side

– typically arrays and vectors are distributed

– draft HPF-1 in 1993, standardized since 1996 (HPF-2)
– JaHPF since 1999

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-14

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 27 / 54

Major Programming Models – MPI

• OpenMP
– Shared Memory Directives
– to define the work decomposition
– no data decomposition
– synchronization is implicit (can be also user-defined)

• HPF (High Performance Fortran)
– Data Parallelism
– User specifies data decomposition with directives
– Communication (and synchronization) is implicit

• MPI (Message Passing Interface)
– User specifies how work & data is distributed
– User specifies how and when communication has to be done
– by calling MPI communication library-routines

1

2

3

M
P

I

P
arallel H

ardw
are A

rchitectures and P
arallel P

rogram
m

ing M
odels [02]

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 28 / 54

Message Passing Program Paradigm – MPI, I.

• Each processor in a message passing program runs a sub-program
– written in a conventional sequential language, e.g., C or Fortran,
– typically the same on each processor (SPMD)

• All work and data distribution is based on value of myrank
– returned by special library routine

• Communication via special send & receive routines (message passing)

myrank=0
data

sub-
program

myrank=1
data

sub-
program

myrank=2
data

sub-
program

myrank=
(size-1)

data

sub-
program

communication network

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-15

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 29 / 54

Additional Halo Cells – MPI, II.

Halo
(Shadow,
Ghost cells)

User defined communication

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 30 / 54

Real :: A(n,m), B(n,m)
do j = 2, m-1

do i = 2, n-1
B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Message Passing – MPI, III.

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)
m1 = (m+size-1)/size; ja=1+m1*myrank; je=max(m1*(myrank+1), m)
jax=ja-1; jex=je+1 // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)
do j = max(2,ja), min(m-1,je)

do i = 2, n-1
B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors
Call MPI_Recv(.......) ! - receiving from the neighbors,

! storing into the halo cells

Loop over y-dimension
Vectorizable loop over x-dimension

Calculate B,
using upper and lower,

left and right value of A

Data definition

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-16

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 31 / 54

Summary — MPI, IV.

• MPI (Message Passing Interface)
– standardized distributed memory parallelism with message passing
– process-based

– the user has to specify the work distribution & data distribution
& all communication

– synchronization implicit by completion of communication
– the application processes are calling MPI library-routines
– compiler generates normal sequential code

– typically domain decomposition is used
– communication across domain boundaries

– standardized
MPI-1: Version 1.0 (1994), 1.1 (1995), 1.2 (1997)
MPI-2: since 1997

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 32 / 54

Distribution methods

decom- easiest programming
position interface

• Work OpenMP

• Data HPF

• Domain MPI

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-17

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 33 / 54

Limitations, I.

• Automatic Parallelization
– the compiler

• has no global view
• cannot detect independencies, e.g., of loop iterations
� parallelizes only parts of the code

– only for shared memory and ccNUMA systems, see OpenMP

• OpenMP
– only for shared memory and ccNUMA systems
– mainly for loop parallelization with directives
– only for medium number of processors
– explicit domain decomposition also via rank of the threads

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 34 / 54

Limitations, II.

• HPF
– set-compute-rule may cause a lot of communication
– HPF-1 (and 2) not suitable for irregular and dynamic data
– JaHPF may solve these problems,

but with additional programming costs
– can be used on any platform

• MPI
– the amount of your hours available for MPI programming
– can be used on any platform, but

communication overhead on shared memory systems

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-18

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 35 / 54

Other Concepts

• shmem and MPI-2 one-sided communication
• Partitioned global address space (PGAS) languages

– Co-array Fortran
– UPC (Unified Parallel C)

• Multi level parallelism (MLP)
• Threads: A single process having multiple execution paths
• Remote Memory Operation: A set of processes in which one

process can access the memory of another process without its
participation

• Shared Virtual Memory (SVM)
Software based Distributed Shared Memory (SoftDSM)
Distributed Virtual Shared Memory (DVSM)

O
th

er
 C

on
ce

pt
s

P
arallel H

ardw
are A

rchitectures and P
arallel P

rogram
m

ing M
odels [02]

� next slides

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 36 / 54

SHMEM - Shared Memory Interface

• SHMEM allows a user to access remote memory locations with
shmem_..._put() and shmem_..._get() routines.

• For parallel machines with global address space, this means no
OS intervention => high bandwidth and low latency.

• Targeted for SPMD programs.
• No forced syncs: User has control of (and responsibility for)

integrity of data from remote transfers.
• High BW, low latency and minimal syncs make SHMEM very fast,

but dangerous if not carefully used.
• Cache coherency must be programmed explicitly.
• Example Cray T3E:

– MPI and SHMEM bandwidth ~ the same
– MPI latency about 10x longer than SHMEM latency

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-19

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 37 / 54

DMP Language Extensions, I.

• Programmable access to the memory of the other processes
• Language bindings:

– Co-array Fortran
– UPC (Unified Parallel C)

• Special additional array index to explicitly address the process
• Examples (Co-array Fortran):

integer a[*], b[*] ! Replicate a and b on all processes
a[1] = b[6] ! a on process 1 := b on process 6

dimension (n,n) :: u[3,*] ! Allocates the nxn array u
! on each of the 3x* processes

p = THIS_IMAGE(u,1) ! first co-subscript of local process
q = THIS_IMAGE(u,1) ! second co-subscript of local process
u(1:n,1)[p+1,q] = u(1:n,n)[p,q] ! Copy right boundary u(1,) on process [p,]

! to right neighbor [p+1,] into left boundary u(n,)

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 38 / 54

Multi Level Parallelism (MLP)

• program

• processes

• multiple threads inside
of each process
(OpenMP)

• data associated with
each process

• but shared (ccNUMA)
access to other
processes’ dataCheap load balancing

– by changing the number of threads per process

– before starting a new parallel region

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-20

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 39 / 54

Programming Models on Hardware Platforms

Hardware allows: � Usable programming model:

• only reliable message transfer � MPI, HPF

• remote DMA (direct memory access) � ´´ , ´´ + SVM, shmem,
UPC, Co-array Fortran

• SMP and PVP, MTA, ccNUMA � ´´ , ´´ + ´´ , ´´ , ´´ , ´´ + OpenMP

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 40 / 54

Programming Models on Hybrid Systems

• MPI based:

– the MPP model
• massively parallel processing
• each CPU = one MPI process

– MPI + OpenMP
• each SMP node = one MPI process
• MPI communication on the node interconnect
• OpenMP inside of each SMP node
• DMP with MPI & SMP with OpenMP

– MPI + automatic parallelization
• Compas on Hitachi, Autotasking on NEC, ...
• same model as MPI+OpenMP

• Other models:
– HPF, MLP, ...

Node Interconnect

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-21

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 41 / 54

Outline – [Chap. 3 Which programming model is the best?]

• Parallel hardware architectures

• Parallel programming models

• Which parallel programming model is the best
for my application?

W
hi

ch
 is

 B
es

t?

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 42 / 54

Questions

• Available parallelization strategies in my numerical scheme?
– loop parallelism
– domain decomposition

• Which hardware architecture?
– today
– in the future

• How many working hours do I want to spend for parallelizing the code?

Numerical Scheme
Application Program

Hardware Architecture
Programming Model

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-22

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 43 / 54

Execution time

• My application runs too slow
– (Floating point) operations / second on each CPU?

• vectorization (memory�CPU�memory)
– expensive hardware / cheap programming effort

• cache oriented optimization
– cheap hardware / expensive programming effort

• such optimization is impossible for me
– Parallelization

• shared memory
– expensive & limited hardware / cheap programming effort

• distributed memory
– cheap hardware / expensive programming effort

Today / in the future

� OpenMP, HPF, MPI

� MPI, HPF, shmem, MLP, CoArrayFort., ...

P
arallel H

ardw
are A

rchitectures and P
arallel P

rogram
m

ing M
odels [02]

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 44 / 54

Speedup, Efficiency, and Scaleup

• Definition: T(p,N) = time to solve problem of total size N on p processors

• Parallel speedup: S(p,N) = T(1,N) / T(p,N)
compute same problem with more processors in shorter time

• Parallel Efficiency: E(p,N) = S(p,N) / p

• Scaleup: Sc(p,N) = N / n with T(1,n) = T(p,N)
compute larger problem with more processors in same time

• Weak scaling: T(p, p•n) / T(1,n) is reported,
i.e., problem size per process (N = p•n) is fixed

• Problems:

– Absolute MFLOPS rate / hardware peak performance?

– S(p,N) close to p or far less? � see Amdahls Law on next slide

– Or super-scalar speedup: S(p,N)>p, e.g., due to cache usage

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-23

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 45 / 54

Amdahls Law

T(p,N) = f·T(1,N) + (1-f)·T(1,N) / p
f ... sequential part of code that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = 1 / (f + (1-f) / p)

For p —> infinity, speedup is limited by S(p,N) < 1 / f

0
10
20
30
40
50
60
70
80
90

100

0 20 40 60 80 100
p = #processors

S
pe

ed
up

 S
(p

,N
) S(p,N) = p (ideal speedup)

f=0.1% => S(p,N) < 1000

f= 1% => S(p,N) < 100

f= 5% => S(p,N) < 20

f= 10% => S(p,N) < 10

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 46 / 54

Amdahls Law (double-logarithmic)

T(p,N) = f·T(1,N) + (1-f)·T(1,N) / p
f ... sequential part of code that can not be done in parallel

S(p,N) = T(1,N) / T(p,N) = 1 / (f + (1-f) / p)

For p —> infinity, speedup is limited by S(p,N) < 1 / f

1

10

100

1000

1 10 100 1000
p = #processors

S
pe

ed
up

 S
(p

,N
) S(p,N) = p (ideal speedup)

f=0.1% => S(p,N) < 1000

f= 1% => S(p,N) < 100

f= 5% => S(p,N) < 20

f= 10% => S(p,N) < 10

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-24

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 47 / 54

Parallelization problems

• Two major resources of computation:
– processor
– memory

• Parallelization means

– distributing work to processors
—> load balancing necessary
—> synchronization overhead should be minimized

—> to achieve optimal speedup

– distributing data (if memory is distributed)
—> implies communication

to bring data to processor
—> communication is overhead

—> is reducing the speedup

du/dx = (–ui +ui+1)/�x

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 48 / 54

Parallelization costs

• low costs for parallel hardware � high parallelization costs
• high costs for parallel hardware � low parallelization costs

costs for parallel hardware

costs for
parallelization
of software

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-25

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 49 / 54

Advantages and Challenges

 OpenMP HPF MPI
Maturity of programming model ++ + ++
Maturity of standardization + + ++
Migration of serial programs ++ 0 – –
Ease of programming (new progr.) ++ + –
Correctness of parallelization – ++ – –
Portability to any hardware architecture – ++ ++
Availability of implementations of the stand. + + ++
Availability of parallel libraries 0 0 0
Scalability to hundreds/thousands of
processors

– – 0 ++

Efficiency – 0 ++
Flexibility – dynamic program structures – – ++
 – irregular grids, triangles, tetra-

hedrons, load balancing, redistribut.
– – ++

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 50 / 54

Implications on Hybrid Systems

• Hybrid system = cluster of SMPs, e.g., with vector CPUs
– MPP (massively parallel processing) model (pure MPI):

• one MPI process on each CPU
– hybrid model: MPI+OpenMP or MPI+automatic parallelization

• each MPI process is multi-threaded with OpenMP/…
• lousy communication speed,

if MPI is done only by master thread
(all other threads are sleeping)

• highest costs for parallelizing the software
• Amdahl’s law

with reduced number of CPUs on several levels
– HPF may also fit,

• e.g., on the Earth Simulator in Japan

���� next slide

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-26

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 51 / 54

Why not hybrid models?

• Typically, hybrid models can achieve only 10 % more efficiency,

• but often: hybrid model less efficient than MPI-MPP model !!!

• Programming effort should be invested into

– cache optimization

– vectorization

DMP
SMP
cache / vectorization

� MPI

� OpenMP / automatic parallelization

� optimization by hand / by compiler

you may win factors and not only percents !

(Distributed
memory parallelism)
(Symmetric
multiprocessing)

P
arallel H

ardw
are A

rchitectures and P
arallel P

rogram
m

ing M
odels [02]

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 52 / 54

Which Model is the Best for Me?

• Depends on
– your application
– your platform
– which efficiency do you need on your platform
– how much time do you want to spent on parallelization

easy to “assembler of
program parallel programming”

OpenMP MLP HPF MPI MPI+OpenMP

without with
programming of the halos

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-27

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 53 / 54

Acknowledgements

• Thanks to Alfred Geiger and Michael Resch (HLRS)
– pictures and slides from their Parallel Programming lectures

• Thanks to Uwe Küster (HLRS) and Tim Lanfear (Hitachi)
– pictures about vectorization

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 54 / 54

Summary

• Hardware architectures
– hybrid (hierarchical) systems are the future

• cluster of dual-board PC
• …
• clusters of PVP-SMP systems

• Parallel Programming models
– MPI and OpenMP are dominating
– HPF still alive (� JaHPF on Earth Simulator)

• Which model is the best
– depends on your needs & hardware, today and in future
– OpenMP is limited to shared memory platforms,

but may be extended with a data distribution model (like HPF)
– MPI is the assembler of parallel programming
– invest your working effort into single-CPU-optimization,

rather than into hybrid programming

S
um

m
ar

y

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-28

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 55 / 54

Appendix

Additional Slides
– Abbreviations
– Classification of Flynn
– Co-Array Fortran examples
– MLP example and interface definition
– Pipelining and memory access
– Parallelization costs

A
pp

en
di

x

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 56 / 54

Abbreviations

• Network of workstations (NOW)? � Distributed memory

• Beowulf-class systems = Clusters of Commercial Off-The-Shelf
(COTS) PCs � Distributed memory

• Multiboard workstations/PCs � Shared memory

• SMP � Symmetric multiprocessing � Shared memory

• PVP � Parallel vector processing

• MPP � Massively parallel processing

• PE � Processing Element, e.g., one node of an MPP system

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-29

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 57 / 54

The Classification of Flynn

• Classify architectures according to multiplicity of data and
instructions

• SI: single instruction for all processors
• MI: multiple instructions for different processors
• SD: single data for all processors
• MD: multiple data for different processors

• SISD � classical processor
• SIMD � array processor
• MIMD � distributed or shared memory

• SPMD � single program & multiple data
• MPMD� multiple program & multiple data

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 58 / 54

Real :: A(n,m), B(n,m)
do j = 2,m-1

do i = 2,n-1
B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

DMP Language Extensions – Co-Array Fortran Example

Call MPI_Comm_size(MPI_COMM_WORLD, size, ierror)
Call MPI_Comm_rank(MPI_COMM_WORLD, myrank, ierror)
m1 = (m+size-1)/size; ja=1+m1*myrank; je=max(m1*(myrank+1), m)
jax=ja-1; jex=je+1 // extended boundary with halo

Real :: A(n, jax:jex), B(n, jax:jex)
do j = max(2,ja), min(m-2,je)

do i = 2,n-1
B(i,j) = ... A(i,j)

... A(i-1,j) ... A(i+1,j)

... A(i,j-1) ... A(i,j+1)
end do

end do

Call MPI_Send(.......) ! - sending the boundary data to the neighbors
Call MPI_Recv(.......) ! - receiving from the neighbors,

! storing into the halo cells

size = NUM_IMAGES()
p = THIS_IMAGE() ! index of the invoking image (= MPI myrank+1)
m = size * m1

Real :: A(n, m1)[*], B(n, m1)[*]
do j = 2, m1-1

do i = 2, n-1
B(i,j) = ... A(i,j) ... A(i-1,j) ... A(i+1,j) ... A(i,j-1) ... A(i,j+1)

end do
end do
if (p > 1) then ! calculation on left boundary of each image

do i = 1,n
B(i,1) = ... A(i,1) ... A(i-1,1) ... A(i+1,1) ... A(i,m)[p-1] ... A(i,j+1)

end do
endif
if (p < size) then ! calculation on right boundary of each image

do i = 1,n
B(i,m) = ... A(i,m) ... A(i-1,m) ... A(i+1,m) ... A(i,m-1) ... A(i,1)[p+1]

end do
endif

Call SYNC_IMAGES()

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-30

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 59 / 54

Multi Level Parallelism (MLP)

• Two levels of parallelism (usually)

• Fine grained parallelism provided by the compiler (e.g., OpenMP)
at loop level

• Coarse grained parallelism provided by forked processes

• communication by shared memory arenas, i.e. direct access to
global arrays by compiler generated code

• Minimal latency (0.33–1.0 µsec on 512 processor Origin2000)

• Only four additional routines: INITMEM, GETMEM, FORKIT, BARRIER

• Targeted for large CPU count NUMA SMP systems

• Efficient and easy load balancing on ccNUMA,
e.g., by adapting the number of threads on each process

• Method can also execute across clusters

• A Fortran interface for System V shm

P
arallel H

ardw
are A

rchitectures and P
arallel P

rogram
m

ing M
odels [02]

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 60 / 54

Example: Parallel Efficiency of OVERFLOW/MLP

75

60

45

30

15

0

P
er

fo
rm

an
ce

 (G
FL

O
P

/s
)

0 128 256 384 512
Number of CPUs

• OVERFLOW CFD code at NASA/Ames
• high, sustained GFLOP/s rate
• with Multi Level Parallelism (MLP)
• scalable on large CPU counts
• on 512 processor ccNUMA Origin 2000
Ref.: Ciotti, Taft, Peterson: “Early Experiences with the 512p Origin2000”

in proceedings of the Cray User Group conference SUMMIT 2000,
www.cray.org

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-31

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 61 / 54

MLPlib

The MLPlib routines for scalable parallel execution support are:
• Subroutine INITMEM(numbytes)

– The INITMEM routine sets up a UNIX shared memory arena consisting of numbytes
bytes to be used by all subsequently spawned processes

• Subroutine GETMEM(xarry,xpoint,numxbyt)
– The GETMEM routine allocates numxbyt bytes to the xarray variable
– xpoint is the Cray pointer to xarray
– xarray is resident in the shared memory arena
– The xarray data will be visible to all MLP processes using the shared memory arena.

• Subroutine FORKIT(numpro,myrank)
– spawns a total of numpro additional processes

– returns current process id myrank (0–numpro)

• Subroutine BARRIER(numpro)
– The BARRIER routine waits until numpro processes have hit the barrier, then all drop

through
Reference: Ciotti, Taft, Peterson: “Early Experiences with the 512p Origin2000”
in proceedings of the Cray User Group conference SUMMIT 2000, www.cray.org

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 62 / 54

Pipelining

• c = a + b

lo
ad

 a
(1

)
lo

ad
 b

(1
)

ad
op

t e
xp

on
en

t

ad
d

m
an

tis
sa

ha
nd

le
 o

ve
rfl

ow

no
rm

al
ize

 re
su

lt

st
or

e
in

to
 c

(1
)

i=1 �
2 �

3 �
4 �

5 �
6 �

7 �
8 �

9 �
10 �

11 �

Startup-time
of the pipeline

1 cycle

a result value is stored
in each cycle

time

Each unit of the
pipeline is active

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-32

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 63 / 54

Parallelism & memory access, I.

• The memory access characterizes vector systems today!

Main MemoryMain Memory

PrePre--fetchfetchPrePre--loadload

Cache

Floating Point Registers

Load

Arithmetic UnitArithmetic Unit

Memory SwitchMemory Switch

Direct vectorDirect vector--loadload
Indexed vectorIndexed vector--loadload

availability
depend on
platform

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 64 / 54

Parallelism & memory access, II.

• Pipelined memory access
– vector register

& vector load/store operations
– indexed vector load/store

operations

– pseudo-vectorization
• e.g., with pre-fetch

• Parallel vector processing (PVP)

• Without vector memory access:
– memory latency hiding with one to three levels of caches

VSTVADDVLD

PF Lat LD + ST
LD + ST

LD + ST
LD + ST

LD + ST

PF Lat LD + ST
LD + ST

2. — Parallel Hardware Architectures and Parallel Programming Models — 2.
2-33

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 65 / 54

Parallelization Costs on NOW (Network of Workstations)
and COTS (Clusters of Commercial Off-The-Shelf PCs)

• Network of workstations (NOW) or Beowulf-class systems
= Clusters of Commercial Off-The-Shelf (COTS) PCs

� probably a huge number of processors
� distributed memory parallelization, e.g., with MPI or HPF

� Amdahl’s law may limit the speedup
� communication overhead may reduce efficiency

� high costs to correctly parallelize codes (e.g., multigrid codes)

Höchstleistungsrechenzentrum Stuttgart
Hardware Architectures & Parallel Programming Models
[2] Slide 66 / 54

Parallelization Costs
on shared memory PVP (Parallel Vector Processor)

• Shared memory Parallel Vector Processing (PVP)

� shared memory parallelization, e.g., with OpenMP

� Amdahl’s law with reduced number of CPUs, but on two levels:

• vectorization

• SMP parallelization

� no communication overhead
� probably easier to achieve good efficiency
� but limited number of CPUs

� cheap parallelization

but expensive hardware?

