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The Compressible Navier-Stokes Equations

o
P+ v-(pU) = 0
(pU), + V:((pU)eU)+Vp = V-2
e+ VUle+p) = V(U)-Vyg

Equations include effects of

* Viscosity
* Heat conduction

Homogeneous System reduces to the Euler Equations
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The nondimensional Navier-Stokes Equations
o

Since numerical problems can arise from variables with extremely
differnt scales the equations are used in nondimensional form

po o+ vipo) = 0

(p0) + v-(pU)e0)rvp = R; V-t
ref
& o+ viie+p) - Re,/.V.(ﬂj)_i(y—l)R};,.Pr‘,vé

The LHS only contains nondimensional variables. The additional Terms

containing the Reynolds number and the Prandtl Number only appear on

the RHS of the system.

— The Euler Equations can be formulated in dimensional or
nondimensional form arbitrarily

We will drop the * for nondimensional variables in the following slides
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Flux Formulation
o

In order to construct a FV method we can formulate the 2D equations as
U+F +G, =F"+G)
The LHS corresponds to the Euler Equations while the RHS can be
written as:
0
Tau, =3 pv,
,u(uy +v,
u(%yux —%yv},)+ vy(uy + vx)— q,
0
wlu, +v,)
THY, =3 pu,

wptl, +v, )+ v(E v, — 2, )=,
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Numerical Algorithm (1)
o

In order to simplify the process, the conservation law is presented in 1D:
U +FU),-F"(U), =0

Source terms are usually treated using a cyclic operator splitting. First
the homogenous system is solved separately:

U+ FWU), =0] _ e
Ulx,e")=0"

Then in a second step the source term is treated using the intermediate
solution of the first step as initial condition

U -F°(U),=0] _
Ulx,em)=0m
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Numerical Algorithm (2)
o
In the following timestep the procedure is repeated in in opposite order:

U,-F(U), - o} e

U(X,tn)z Un+1
Ut +FC(U)x = 0 = Un+2
Ul )0

The cycling procedure ensures preservation of 2nd order accuracy.
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Time Discretisation (1)
o

Explicit methods are computationally less costly and therefore well-
suited for non-stationary problems where small and therefore many
timesteps are required in order to resolve the physical phenomena.

Implicit methods have the advantage that in theory there is no stability
limit which theoretically allows us to choose the timestep size
arbitrarily. While large timesteps are suitable to reach the steady-state
solution quickly, for unsteady problems the timestep needs to be small
enough in order to resolve the physical phenomena.

Implicit methods are, compared to explicit methods, computationally
extremely costly since they require the solution of a linear equation
system with a high number of unknowns. Should the equations be
nonlinear, which is the case here, they also need to be linearized in
order to obtain a linear equation system.
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Time Discretisation (2)
o

The convective part of the equations reduces to the Euler Equations,
which, in most cases, can be treated explicitly in an efficient manner. In
case of a steady-state solution it would be advantageous to apply an
implicit discretisation since there are no small-scale phenomena which
need to be resolved.

The nonconvective part of the equations proves to have big impact on
stability resulting in a very restrictive timestep size for explicit methods
due to its parabolic nature. An explicit time discretisation would cause
extremely small timesteps resulting in a high computation time which
makes an implicit time discretisation the method of choice.
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Time Discretisation (3)
o

In the present case both methods are combined. The explicit timestep
limit for the convective part ensures resolution of small-scale
convective physical phenomena which is well-suited for unsteady
flows. The nonconvective part is discretized implicitly in order to use
the explicit timestep size with no destabilizing effects.
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Time Discretisation (4)
o

In general the timeupdate of a 2D finite volume scheme can be
formulated as follows:

Un+] — Un _At gi+% _gi—% + hi+% _hi—%
Ax Ay

This can be rewritten to

U™ =U"—At-RU" ) sU" =-At-R(U")

resulting in the implicit scheme

Ut =U" - AR )+ (1-0)R[U™))
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Time Discretisation (5)
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a3 In order to obtain a linear equation system, Z(U"*!) needs to be
% linearized:
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Time Discretisation (5)
o

With 6 = I we obtain the so-called fully implicit scheme, which is first
order accurate while with 8 = 0.5 we obtain the Crank-Nicholson
scheme, which is second order accurate. 6 = 0 would yield an explicit
scheme.

The resulting equation system is solved for oU". With the solution we
obtain the timeupdate

U™t =u"+sU"
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Spatial Discretisation (1)
o

For the viscous terms a central differences scheme is used as a spatial
discretisation. While this may seem to be a violation of the finite volume
idea, it can actually be shown that the central differences scheme is
equivalent to a finite volume scheme.

With the numerical flux
num 1
¢ =3 (hU.)+ /)
We obtain the timeupdate for a 1D scheme

Ut =ur -4 e )
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Spatial Discretisation (2)
o

utt=u’- 2AT;((f1 i)+ AW )-(nw)s 1))

At
- UinJrl =U-— (fl (Uir«,H )_ A (Uin—l ))
2Ax
which is identical to a central differences formualtion. The essential
ingredient is the flux formulation of the scheme. This ensures the
conservation properties. The difference to other flux calculations is that
other schemes (e.g. the ROE scheme) have a more sophisticated way
of computing the intercell flux.

While the central differences scheme is unconditionally unstable for an
explicit time discretisation it is stable for an implicit time discretisation
making it a suitable approach for both the convective and the
nonconvective part of the equations.
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The Complete Scheme
o

The complete scheme reads:

1

At
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Setting up the Equation System (1)
o

On a structured 1D-Grid the stencil would look like

A B C
r——
i-1 i i+1

Giving the equation system for 8 grid points in x-direction the shape

(B C ofsurl [R!
4 B C sUr| | R
4 B C surl | R

4 B C sur| | R

4 B C sur || R

4 B C sur| | R

4 B Clsur| |R

K 4 BJsuy| |R!]
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Solving the Equation System (1)
o

We obtain a block-tridiagonal matrix that can be solved by i.e. using an
iterative method like the LU-SSOR scheme.

The scheme is based on a splitting of the system matrix (S) into three
separate matrices, one containing the diagonal elements (B), one
containing the elements under the diagonal (A) and one containing the
elements above the diagonal (C).

(B+4)B™'(B+C)SU" = —R"
This yields the following rule for the iteration steps:

SUP =—(B+A)'CSU” +(B+ A)'R"
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Solving the Equation System (2)

o
The component-wise formulation is:
X 1 k-1 X K max
P+l _ n__ p+l P
UM =—| Rl =Y 5,60 = > 5,6U!
Sk =1 j=k+1

Making use of the knowledge of the system matrix' shape we can
optimize the above algorithm signigficantly by only treating the
nonzero elements of the system matrix.

The algorithm is stopped when the residual drops below a pre-defined
lower limit or the iteration count reaches an upper limit.
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The ADI Scheme
[

Having derived the scheme for the one-dimensional case we now extend it to
the second dimension in space. This can either be done directly by formulating
the equation system in 2D or by simply using the ADI scheme

X X

1. {1 + 95{68 (-P+R) —SZ(R)”}}&/*

= 5{6(1/1 +7, ) JFE(W1 +W2)"}+®5t[a(5[/2)"1 2 (éWl)nl}
Ox oy Ox %»

2. {1+9&[; (~o+s,) —;;(S)”}}W” =U"
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Boundary Conditions
o

Boundary conditions need to be set at all boundaries. The most
common boundary types are:

« Walls
* Inflow
¢ Outflow
* Periodic

Apart from walls the boundary conditions are handled the same way
they are handled for the Euler Equations.
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Adiabatic Walls (1)

o

boundary cells

pi»l pnu
Ui Ui,
Vi.j Vislj
Pi; .. Pinj o
ij i+1,j
P Pis,j
u,,
20t~y 20ty = Uy wall
Vi Vi)
Pi; DPinj
ij-1 i+1,j-1

wall ghost cells
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The normal momentum at a
wall needs to be zero so that a
wall does not apply any force
onto the flow. The most simple
approach, which is to simply
extrapolate the pressure, is
shown here.
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Adiabatic Walls (2)

o

boundary cells

Pij P
U Uiy
Vij Vis,j
Pi . Pin,j L
ij i+1,j
Pij Pisj
20t — U ; 20, — Uy
~Vij “ Vi,
) 1%
P \Viy P Vinj-y
i,j-1 i+1,j-1
wall ghost cells
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A more advanced approach
would be to use the normal
momentum equation in order to
calculate the pressure:

Uan p* =p,—Ayx

0 Ou 0(20u o4 ov
Zlu _ 29 iyypds
ox\" oy) ov\30ox) oy\3" oy

AG H L R[S

Inflow
(]

All ghost cell values are prescribed:

inflow ghost cells  boundary cells

P Pij
u, ULJ
v, VL,/
P P
i-1,j ij
P Pija
u, U
Vo Vi
D. Pija
i-1j-1 i,j-1
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o

" Extension to NSE

Outflow

All ghost cell values are extrapolated:

boundary cells  outflow ghost cells

Pij Pij
ul,_/ uL/
Vi) Vij
P Di;
i L imy
Pij-1 Pij
Ui Ui i
Vij Vi
Dija . Pij1) .
i,j-1 i+1,j-1
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Problems can arise from the
extrapolation of the pressure. More
advanced methods would enhance the
results at the boundary significantly.
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Periodic Boundary Conditions

Some Examples for the Equation System (1)

o o
Periodic Boundary Conditions
left ghost cells boundary cells boundary cells right ghost cells U — U . U — U
O - [max > Imax+l - 1
Pl P Pl P
Ui ) - Ui U - - il ] - -
Vi Vi) T V) Ml N2 LO &]1 ’ Hl
P, P P Dy n+l*
Tax+J 0, 1.J 1 ToaxoJ e Lj L1, Ll M2 N3 &]2 H2
Pl 1 Prjt Pl Prj . =
i L, M, N_ [sU" | |H,
v Vi o - max max oo
Plojt ) Prj : P, in ) Pija ) Nlmax+1 L[max -1 L inax 5U1max H[ max
0,j-1 11 Inaoi-1 Inax*1,j-1 - - - - -
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o Some Examples for the Equation System (2) Some Examples for the Equation System (3)
(0]
g o o
a3 Inflow (left) and Outflow (right) Boundary Conditions Wall Boundary Conditions (left and right)
9
- - R
91% (M+C) N, su; H,
3 u=U_ U =U
0] 0 ©? Lpax+1 T - n+l,*
& L M, N, ouU, H,
c . . . .
a M 1 nel* T : =
' Ml NZ éz]l ' Hl 1%
) M N ourt H
o L M, N, surt” H, Tax =2 — - L1 .
P4 n+l*
: : || i Ly M+0) JoUps | | Hy,
5 L i
('n n+l* . . .
1 leaﬂ Mlmaxfl Nlmax éUI.,m—l Hlmax with C being a matrix that maps the boundary cell onto the wall ghost
§ L ., M, o e+ , cell according to the rule for adiabatic wall ghost cells.
max ™ max max T T max
@ - 4 L i
@
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0
c
>
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