Verfahren 2. Ordnung: Der MUSCL-Ansatz

S. Roller¹, M. Ferch², C.-D. Munz², M. Dumbser²

Universität Stuttgart
¹Höchstleistungsrechenzentrum Stuttgart (HLRS)
www.hlrs.de
²Institut für Aerodynamik und Gasdynamik (IAG)
www.iag.uni-stuttgart.de

Höhere Ordnung: Rekonstruktion

Berechne lokale Werte an den Gitterzellen grenzen aus den integralen Mittelwerten

\[q(x) \]

Stückweise polynomial

Stückweise lineare Rekonstruktion

MUSCL-Idee (van Leer, 1978)

Monotonic Upwind Scheme for Conservation Laws

Steigungsberechnung: TVD Eigenschaft (Total Variation Diminishing), Skalare mathematische Theorie, erweitert auf Systeme

MUSCL-Schema

1. Stückweise lineare Rekonstruktion
 2. Ordnung im Raum

2. Zeit-Update zu \(t_{n+1/2} \)
 2. Ordnung in der Zeit

3. Godunov-Typ Flußberechnung

Commercial codes: FLOWer, TAU,
Steigungsberechnung

Mathematische Theorie für skalare Erhaltungsgleichungen
TVD-Eigenschaft (Total Variation Diminishing)

\[
\sum_{i=1}^{n} |u_{i}^0 - u_{i}^n| \leq \sum_{i=1}^{n} |u_{i+1}^0 - u_{i}^n|
\]

Hinreichende Bedingung (A. Harten)

\[
0 \leq \left(\frac{\Delta x}{u_{i} - u_{i-1}}, \frac{\Delta x}{u_{i+1} - u_{i}} \right) \leq 2
\]

1. **Minmod-function**

\[
s_{i} = \frac{1}{\Delta x} \minmod(u_{i+1} - u_{i}, u_{i} - u_{i-1})
\]

 \[
 \minmod(a, b) = \begin{cases}
 a & \text{für } |a| < |b|, ab > 0 \\
 b & \text{für } |a| > |b|, ab > 0 \\
 0 & \text{sonst}
 \end{cases}
\]

2. **Sweby’s slope calculation**

\[
s_{i}(a, b) = \text{sign}(a) \max\{\minmod(a, kb), \minmod(ka, b)\}
\]

 mit \(1 \leq k \leq 2\)