

�� How to evaluate the efficiency of your applicationHow to evaluate the efficiency of your application

�� If If efficienyefficieny is low is low �������� How to tune your codeHow to tune your code

�� How can the compiler help you?How can the compiler help you?

�� Solve Potential Porting ProblemsSolve Potential Porting Problems

What you should learn from this course

Terminology on Performance

PEAK PERFORMANCE
Theoretical value which can be reached by a computer assuming all
CPU functional units are active at the same time. This is
hypothetical, and will never be achieved.

SUSTAINED PERFORMANCE
This is the computational speed that really shows up in the system
for a given code and a given problem size. It clearly relates to the
architecture, because they have a different � efficiency.

EFFICIENCY
Value in percent of theoretical peak performance which a system
is able to deliver over any time.
Common values on PCC and MPP systems tend to be between 2 and
10%.
On Vector computers the efficiency is typically in the range of 30
to 50 %.

0

20

40

60

80

100

120

140

160

180

200

0 100 200 300 400 500 600
Peak Gflops

Ef
fe

ct
iv

e
Gf

lo
ps

Typical Weather Code

SX-6(8GF/CPU), 30% efficiency

Aladin: 30.8%

Scalar(<10%eff)

32

160

48

240

320

64

�� How to evaluate the efficiency of your applicationHow to evaluate the efficiency of your application

What you should learn from this course

****** Program Information ******

Real Time (sec) : 142.373845

User Time (sec) : 122.693250

Sys Time (sec) : 1.331073

Vector Time (sec) : 65.895359

Inst. Count : 19621582641.

V. Inst. Count : 2791820381.

V. Element Count : 216956074637.

FLOP Count : 97760445434.

MOPS : 1905.449870

MFLOPS : 796.787481

VLEN : 77.711330

V. Op. Ratio (%) : 92.801205

Memory Size (MB) : 496.031250

MIPS : 159.923897

I-Cache (sec) : 1.852328

O-Cache (sec) : 15.546471

Bank (sec) : 3.069632

Start Time (date) : 2002/06/24 11:32:19

End Time (date) : 2002/06/24 11:34:42

It‘s all about this table

• How to create
• Understand
• Improve

Use it always, It‘s
like checking the
gasoline
consumption of
your car …

�� If your ported code crashes If your ported code crashes �������� How toHow to solve

�� If If efficienyefficieny is low is low �������� How to tune your codeHow to tune your code

What you should learn from this course

�� Writing fast code is writing parallel codeWriting fast code is writing parallel code

�� Writing parallel code on SX does not start with MPI orWriting parallel code on SX does not start with MPI or

OpenMPOpenMP !!

�� Single thread performance has to be improved firstSingle thread performance has to be improved first

�� Your goal is not scalability, but time to solutionYour goal is not scalability, but time to solution

�� Learn how to exploit lower levels of parallelismLearn how to exploit lower levels of parallelism

�� Make your code visible Make your code visible –– the compiler will do the (most) the compiler will do the (most)

of the rest for you, by the right directives/optionsof the rest for you, by the right directives/options

First principle on how to get

performance

THEORY ITHEORY I

•Differences SX-6/SX-8
•Basics on Vectorization

NEC‘s SX-Series: Innovation since 1983

SX 1/2 Series
-The first computer in the world

Surpassing 1gflops

SX-4 Series
- first full CMOS design

- Entirely air-cooling

-Introduction of clustered SMP
architecture

SX-5 Series
-High sustained performance

-Largest ever capacity SHARED MEMORY

19831983

19891989

19981998

19941994

SX-3 Series
-Shared memory・・・・multi-function processor

-Unix os

SX-6 Series and SX-7
-Single-chip vector processor

-TFlops scalability through
optimized clustering

20012001

Us
e o
f la
tes
t te
chn
olo
gy

To
 bu
ild
 an
d d
eve
lop
 ne
w g
ene
rat
ion
s o
f

sup
erc
om
pu
ter
s

International RecognitionInternational Recognition

• Eckart-Mauchly Award of

IEEE for CPU architecture

• IEEE and ACM Award for

innovation in packaging

technology

• Eckart-Mauchly Award of

IEEE for CPU architecture

• IEEE and ACM Award for

innovation in packaging

technology

2004/5
SX-8

NEC’s Goals: The Vector Architecture

• Highest single CPU performance

• High sustained performance

• Extremely high bandwidth to memory

• High performance with comparatively

small number of CPUs

• Same manufacturing technology

like conventional CPUs

• Provide Software to use it effectively

SX-8 The Specifications

• Single Node

– Up to 128 GFLOPS

With 8 x 16 GFLOPS Processors

– Up to 128 GBytes Shared Main Memory

• Multi Node

– Up to 65 TFLOPS

– Up to 512 Nodes Using SX-8 IXS

– Up to 4096 Processors

– Up to 64 TBytes Main Memory

SX-8 HLRS Installation

• 72 Nodes

• 9 TB Main Memory

• 40 TB Disk Space

• IXS with 16 GB/s bidirectional per Node

• 72 Nodes x 8 Processors x 16 GFLOPS = 9 TFLOPS

SX-8 CPU Block Diagram

64 GB/s Bandwidth
per CPU

2 GHz System
Clock

4-way Vector

Pipelines

2 GFLOPS

Scalar Performance

SX-8 Multi Node Configuration

16 GB/s bidirectional
Bandwidth per Node

SX-8 Vector Architecture

• Multiple Vector Parallel Pipelines

• 4 Pipelines per Operation = Functional Unit

• Each Instruction Uses 4 Pipelines

• Automatic Hardware Parallelism

• Concurrent Pipeline Set Operation

• Equally Fast Division Unit

• New Square Root Unit

• More Efficient Strided Memory Access

• No Degradation for Stride Two

SX-8 Vector Unit

One Functional Unit : 2 GHz x 4 = 8 GFLOPs
M
e
m
o
ry

Vector- Data 64 x 256

Vregs

8 x

256

Vadd / Vshift

Vmult

Vlogical

Vdiv / Vsqrt

Vregs
8x256

M
a
s
k

64 GB/s

4 way pipes @ 2 GHz

Multiplication vs. Division

y(i)=x1(i)*x2(i)

0

500

1000

1500

2000

2500

3000

1 10 100 1000 10000 100000

Looplength

M
F
L
O

P
S

SX-8 SX-6+

y(i)=x1(i)/x2(i)

0

500

1000

1500

2000

2500

3000

1 10 100 1000 10000 100000

Looplength

M
F
L
O

P
S

SX-8 SX-6+

Multiplication: even vs. odd stride

y(i)=x1(i)*x2(i) i=1,2*n,2

0

500

1000

1500

2000

2500

3000

1 10 100 1000 10000 100000

Looplength

M
F
L
O

P
S

SX-8 SX-6+

y(i)=x1(i)*x2(i) i=1,3*n,3

0

500

1000

1500

2000

2500

3000

1 10 100 1000 10000 100000

Looplength

M
F
L
O

P
S

SX-8 SX-6+

Square Root

y(i)=SQRT(x(i))

0

250

500

750

1000

1250

1500

1750

2000

1 10 100 1000 10000 100000

Looplength

M
S
Q

R
T
S

SX-8 (hard) SX-8 (sof t) SX-6+

Scalar CPU: SX-8

• is more important than one would assume!

• features
– 2 x 64 kByte Cache (Instructions, Data)
– 8 kByte Instruction Buffer
– 128 64-bit registers
– 4 instructions per cycle
– instruction reordering (data flow control)
– branch prediction
– 2 fmult/fadd/fdiv pipes, 2 integer pipes
– double word load
– 1 GHz –> 2 GFLOPs Peak

SX-8 Scalar Unit Block Diagram

Address
Adder

Address
Adder

Store

Branch

I-cache

64KB

Branch

Prediction S
c
a
la
r
R
e
g
is
te
rs

6
4
b
 x
 1
2
8
W

Floating Point
Unit

Integer
Unit

Floating Point
Unit

Integer
Unit

O-Cache

64KB

In
s
tr
u
c
ti
o
n
 D
e
c
o
d
e

Buffer A

Buffer B

To Vector Unit

To transfer data at high speed between main memory and
vector registers, main memory is divided into a maximum of
4096 independent modules (called banks);

Parallel reading or writing is enabled for each different bank
(called interleaving or interlacing). Since only one read or write
process is performed at a time in each bank, if two or more
read or write requests are made to one bank, the later requests
must wait for completion of the preceding request. The fall-off
in speed is due to bank conflict.

MAIN MEMORY –SX-8

Parallelization: SX-8

A SX-8 node can be used as a SMP-System
or distributed memory system

Several SX-8 nodes can be used to run a
MPI-job, using 1-8 MPI-processes per node

Current OS Version is SUPER-UX 15.1

Basics on
Vectorization

Basics on
Vectorization

SX-8 works only with IEEE Format (float0) !!!

• 4 Byte:

– about 7 digits

– 10-38 - 1038

• 8 Byte:

– about 16 digits

– 10-308 - 10308

• 16 Byte:

– about 32 dig

– 10-308 - 10308

– not vectorizable!

Word-Length

448SX-6/8 (idbl4)

444Workstation

488SX-6/8 (dbl4)

448WS (-r8)

888SX-6/8 (-ew)

444SX-6/8

888Cray

IntegerReal*4Real

Please have always in mind

Compatibility

SX-6

SX-7

SX-8

! –sx7

! –sx6ok

ok

Basics on vectorization

First very important principle:
segmentation of operations and pipelining

Segmentation & Pipelining

• Operations are decomposed into segments
• Example: add Floating point number

►compare exponent

►Shift mantissa

►Add mantissa

►Select exponent and normalize

1.14e9 - 2.78e8

1.14e9 - 0.278e9

0.862e9

8.62e8

Pipelining (cont.)

comp. exponents
shift mantissa
add mantissa
...
...

a1+b1 a2+b2 a3+b3 a4+b4 a5+b5 a6+b6 a7+b7

a1+b1

a2+b2

a3+b3

a4+b4

a5+b5

a6+b6

a7+b7

comp. exponents
shift mantissa
add mantissa
...
...

• no pipelining:

• with pipelining:

Segmentation Pipelining

Pipelining (cont.)

• Superscalar pipeline (RISC) :

• Vector pipeline:

comp. exponents
shift mantissa
add mantissa
...
...

comp. exponents
shift mantissa
add mantissa
...
...

latency Vector register length

Pipelining (cont.)

• Parallel ‘Pipesets’

comp. exponents
shift mantissa
add mantissa
...
...

comp. exponents
shift mantissa
add mantissa
...
...

comp. exponents
shift mantissa
add mantissa
...
...

comp. exponents
shift mantissa
add mantissa
...
...

comp. exponents
shift mantissa
add mantissa
...
...

comp. exponents
shift mantissa
add mantissa
...
...

This is the basics of vectorization !!

QUESTIONS ??Optimizations means: Keep these pipelines busy

4-fold parallel @ 2GHz on SX-8

Simple Example: Data Parallelism

• ‘Vector Loop’: Data Parallel
• Independent data

Real a(n), b(n), c(n)

do i = 1, n
a(i) = b(i) + c(i)

end do

Real a(n), b(n), c(n)

do i = 1, n
a(i) = b(i) + c(i)

end do

Real, dimension(n): a, b, c

a = b + c

Real, dimension(n): a, b, c

a = b + c

N=256, Loop will be divided in 4 parts

F90:

F77:

SX-8 Vector Unit

M
e
m
o
ry

Vector- Data 64 x 256

Vregs

8 x

256

Vadd / Vshift

Vmult

Vlogical

Vdiv / Vsqrt

Vregs
8x256

M
a
s
k

64 GB/s

4 way pipes @ 2 GHz

Pipelining (cont.)

Let‘s start with a quick test

Pipelining (cont.)

Real, dimension(n): a, b, c

do i = 1, n
a(i) = b(i) + c(i)

end do

Real, dimension(n): a, b, c

do i = 1, n
a(i) = b(i) + c(i)

end do

Real, dimension(n): a, b, c

do i = 1, n
a(i) = b(i) + a(i-1)

end do

Real, dimension(n): a, b, c

do i = 1, n
a(i) = b(i) + a(i-1)

end do

• Vector loop: Data Parallel

• Scalar loop: Recursion

Current iteration depends on
The result of the previous one

each loop
iteration can
be executed
in parallel

not
vectorizable

What is peak performance of a full

SX-8 node?

How can we calculate this?

What is the maximum vector lenght

and why is it important to use it?

8*16= 128 GFLOPs

8 (CPU) * 2 (FU) * 4 (PIP)*2 GHz

256 words
Keep 4 Pipelines with
64 Elements busy

REAL, DIMENSION (51200) :: A, B, X
A = 5.25

B = 0.0

X = 10.4 + CONSTANT

B = A + X ** 2

All loops were vectorized.
note: Fortran 90 notation.

Vectorization

Recurrence of X
Not vectorized

Vectorization

DO K = 2, KOUNT - 1

X(K+1) = X(K) + Y(K-1)

END DO

Is it vectorizable or not? Why?

Vectorization

program quiz1
REAL, DIMENSION(100) :: A, B, C

DO I = 99, 1, -1

B(I) = A(I + 1)

A(I) = C(I)

END DO

end program

Is it vectorizable or not? Why?

Vectorization

1 program quiz1

2 REAL, DIMENSION(100) :: A, B, C

3

4 DO I = 99, 1, -1

5

6 B(I) = A(I + 1)

7

8 A(I) = C(I)

9

10 END DO

. !CDIR NODEP

. do i = 1, 99

. a(100-i) = c(100-i)

. b(100-i) = a(101-i)

. end do

11

12 end program

Yes, reordering the loop index

Vectorization

program quiz2
real, dimension (1000) :: a,b

DO I = 1, 240

50 CONTINUE

A(I) = B(I) + 2.45
TEST = TEST + INC
IF(TEST == SOMETHING) GO TO 50

END DO
end program

Does it vectorize or not? Why?

Vectorization

program quiz2
real, dimension (1000) :: a,b

DO I = 1, 240

50 CONTINUE

A(I) = B(I) + 2.45
TEST = TEST + INC
IF(TEST == SOMETHING) GO TO 50

END DO
end program

No - Contains a backwards branch

Vectorization

program quiz3
REAL, DIMENSION(1000) :: A, B

DO I = 2, 999

B(I) = A(I - 1)

A(I) = B(I-1)

END DO
end program

Does it vectorize or not? Why?

No, recurrence of B

End of

THEORY I

End of

THEORY I

