

Terminology on Performance

PEAK PERFORMANCE

Theoretical value which can be reached by a computer assuming all CPU functional units are active at the same time. This is hypothetical, and will never be achieved.

SUSTAINED PERFORMANCE

This is the computational speed that really shows up in the system for a given code and a given problem size. It clearly relates to the architecture, because they have a different \rightarrow efficiency.

EFFICIENCY

Value in percent of theoretical peak performance which a system is able to deliver over any time.

Common values on PCC and MPP systems tend to be between 2 and 10%.

On Vector computers the efficiency is typically in the range of 30 to 50 %.

Empowered by Innovation

It's all about th	nis table	2	
***** Program	Informat	ion *****	
Real Time (sec)	:	142.373845	
User Time (sec)	:	122.693250	
Sys Time (sec)			
Vector Time (sec)	:	65.895359	
Inst. Count	:	19621582641.	 How to create
V. Inst. Count	:	2791820381.	 Understand
V. Element Count	:	216956074637.	• Improve
FLOP Count	:	97760445434.	
MOPS	:	1905.449870	
MFLOPS	:	796.787481	
VLEN		77.711330	
V. Op. Ratio (%)	:	92.801205	
Memory Size (MB)	:	496.031250	Use it always, It's
MIPS	:	159.923897	like checking the
I-Cache (sec)	:	1.852328	gasoline
O-Cache (sec)	:	15.546471	consumption of
Bank (sec)	:	3.069632	
			your car
Start Time (date)	: 2002	/06/24 11:32:19	
End Time (date)	: 2002	/06/24 11:34:42	

Agenda	
09:00 -10:00	Introduction to the installed system at HLRS
10:15 - 11.15	Theory I: Differences SX-5/SX-6, Basics on vectorization
coffee break	
11:30 - 12:30	Theory II: Vectorization and optimization examples
lunch break	
13:30 - 15.00	Theory III: Indirect addressing, General Strategy for code tuning
coffee break	
15:15 - 16:30	Theory IV: Most important compiler switches and directives

NEC Theory

NEC Theory

NEC Theory I

Word-Length						
Please have a	always in	mind				
	Real	Real*4	Integer			
Cray	8	8	8			
SX-5/6	4	4	4			
SX-5/6 (-ew)	8	8	8			
SX-5/6 (dbl4)	8	8	4			
Workstation	4	4	4			
WS (-r8)	8	4	4			
SX-5/6 (idbl4)	8	4	4			
		Empo				

NEC Theory

NEC Theory

